SELF OPTIMIZING NETWORKS

Size: px
Start display at page:

Download "SELF OPTIMIZING NETWORKS"

Transcription

1 SELF OPTIMIZING NETWORKS

2 An LTE network is controlled by a network management system of a wide range of functions, e.g. sets the parameters that the network elements are using manages their software detects and corrects any faults in their operation Using such a management system, an operator can remotely configure and optimize every base station in the radio access network every component of the core network However, the process requires manual intervention, which can make it time-consuming, expensive and prone to error 3GPP has gradually introduced a self optimizing or Self Organizing Networks (SON) technique into LTE

3 3GPP Release 8 SON capabilities self configuration of a base station automatic establishment of communications with its neighbors interference coordination load balancing 3GPP Release 9 enhancement mobility robustness optimization random access channel optimization energy saving 3GPP Release 10 enhancement drive test minimization

4 Self optimizing networks are summarized in TR and TS The main impact of SON is on the radio access network s signaling procedures, notably the ones on the X2 interface

5 Contents 1. Self Optimizing Networks in Release 8 2. New Features in Release 9 3. Drive Test Minimization in Release 10

6 1. Self Optimizing Networks in Release Self Configuration of an enb 1.2 Automatic Neighbor Relations 1.3 Interference Coordination 1.4 Mobility Load Balancing

7 1.1 Self Configuration of an enb In LTE, a network operator can set up a new base station with minimal knowledge of the outside world, which might include the domain name of the network management system the domain names of its MMEs and serving gateways The base station can acquire the other information it needs by a process of self configuration the base station contacts the management system and downloads the software it will require for its operation it also downloads a set of configuration parameters, e.g., a tracking area code a list of PLMN identities the global cell identity maximum transmit power of each cell

8 In the configuration parameters, the management system can explicitly assign a physical cell identity to each of the base station s cells this places an unnecessary burden on the network planner, as every cell must have a different identity from any other cells that are nearby it also causes difficulties in networks that contain home base stations, which can be sited without any knowledge of their neighbors at all as an alternative, the management system can simply give the base station a short list of allowed physical cell identities the base station then chooses a physical cell identity at random from the ones that remain

9 As part of the self configuration process, the base station also runs a S1 setup procedure, to establish communications with each of the MMEs that it is connected to the base station tells the MME about its tracking area code and PLMN identities, as well as any closed subscriber groups that it belongs to the MME replies with a message that indicates its globally unique identity and can now communicate with the base station over the S1 interface A home enb belongs to a closed subscriber group (CSG) and can only be accessed by mobiles with a USIM that also belongs to the closed subscriber group

10 1.2 Automatic Neighbor Relations During the configuration process no need for a base station to find out anything about its neighboring cells no need for it to set up a neighbor list This removes a large burden from the network operator and a large potential source of error Instead, a mobile can identify a neighboring cell by itself and can tell the base station about it later on using the RRC measurement reports The base station can then establish communications with its neighbor using the automatic neighbor relation procedure shown in the following figure

11 Automatic neighbor relation procedure

12 The procedure is triggered when the base station receives a measurement report containing a physical cell identity that it was not previously aware of (1) The base station cannot contact the new cell right away, so it sends the mobile a second measurement configuration to ask for more information (2)

13 In response, the mobile reads the neighboring cell s system information and returns its global cell identity, tracking area code and PLMN list in a second measurement report (3) The base station now has enough information to initiate an S1 based handover to the new cell

14 To support X2 based handovers, the base station sends the global cell ID to the MME and asks it to return an IP address that the neighboring base station is using for communications over X2 (4) The MME is already communicating with the neighboring base station over S1, so it can send the request onwards (5) and can return the neighbor s reply (6)

15 The two base stations can now establish communications across the X2 interface (7), using X2 setup procedure During this procedure, the base stations exchange information about all the cells they are controlling, including their global cell identities physical cell identities carrier frequencies

16 A base station can also use steps 1 to 3 of this procedure to learn about neighboring cells that are using UMTS, GSM or cdma2000 In the case of UMTS, e.g., the mobile returns neighbor s global cell identity location area (LA) code routing area (RA) code PLMN identity list This is enough information for the base station to initiate an intersystem handover over S1 and also allows the base station to populate [ 輸入數據 ] the neighbor lists

17 1.3 Interference Coordination The X2-AP Load Indication procedure helps a network to minimize the interference between neighboring base stations and to implement the fractional frequency reuse schemes To use the procedure, a base station sends an X2-AP Load Information message to one of its neighbors

18 In the message, it can include three information elements for each cell that it is controlling (1) describes the transmitted power in every downlink resource block the neighbor can use this information in its scheduling procedure, by avoiding downlink transmissions to distant mobiles in resource blocks that are subject to high levels of downlink interference (2) describes the interference that the base station is receiving in every uplink resource block the neighbor can use this in a similar way, so that it does not schedule uplink transmissions from distant mobiles in resource blocks that are subject to high uplink interference

19 (3) a list of uplink resource blocks in which the base station intends to schedule distant mobiles here, the second base station is expected to avoid scheduling uplink transmissions from distant mobiles in those resource blocks, so that it does not return high levels of uplink interference to the first base station

20 1.4 Mobility Load Balancing The following figure shows a mobility load balancing or resource status reporting procedure Using this procedure, nearby base stations can cooperate to even out the load in the radio access network Resource status reporting procedure maximize the total capacity of the system

21 Using an X2-AP Resource Status Request (1), a Release 8 base station can ask one of its neighbors to report three items of information (1) the percentage of resource blocks that the neighbor is using in each of its cells, for both GBR and non GBR traffic (2) the load on the S1 interface (3) the hardware load

22 The neighbor returns an acknowledgement (2) and then reports each item periodically for both the uplink and downlink, using an X2-AP Resource Status Update (3) As a result of this information, a congested base station can hand over a mobile to a neighboring cell that has enough spare capacity and can even out the load in the radio access network

23 Release 9 adds two enhancements (1) the neighbor reports a fourth field in its Resource Status Update, the composite available capacity group, which indicates the capacity that it has available for load balancing purposes on the uplink and downlink the original base station can use this information to assist its handover decision

24 (2) Secondly, there is a risk after such a handover that the new base station will hand the mobile straight back to the old one to prevent this from happening, Release 9 introduces a X2 mobility settings change procedure using this procedure, a base station can ask a neighbor to adjust the thresholds that it is using for measurement reporting, by means of the cell specific offsets after the adjustment, the mobile should stay in the target cell, instead of being handed back

25 Release 10 adds one enhancement using an S1 direct information transfer procedure, a base station can initiate the exchange of radio access network information management (RIM) information with a UMTS or GSM neighbor the information includes the composite available capacity group in the case of an LTE cell and the cell load information group in the case of the other technologies this information can trigger a load balancing handover to a UMTS or GSM neighbor

26 2. New Features in Release Mobility Robustness Optimization 2.2 Random Access Channel Optimization 2.3 Energy Saving

27 2.1 Mobility Robustness Optimization Mobility robustness optimization is a self optimization technique that first appears in Release 9 Using this technique, a base station can gather information about any problems that have arisen due to the use of unsuitable measurement reporting thresholds It can then use the information to adjust the thresholds it is using and to correct the problem

28 There are three main causes of trouble, the first of which is shown in the figure the base station has started a handover to a new cell (1) but it has done this too late, because its measurement reporting thresholds have been poorly set alternatively, it may not have started the handover at all before any handover is executed, the mobile s received signal power falls below a threshold and its radio link fails (2) Mobility robustness optimization, triggered by a handover that was too late

29 in response, the mobile runs the cell selection procedure and discovers the cell that it should have been handed to it contacts the new cell using the random access procedure (3) and a RRC connection reestablishment procedure (4, 5, 6), in which it identifies itself using the old cell s physical cell ID and its old C-RNTI [C-RNTI:Cell Radio Network Temporary Identifier]

30 in step 6, the mobile can also indicate that it has measurements from immediately before the radio link failure of the power received from the old cell and its neighbors if it does, then the base station retrieves this information using an RRC UE Information procedure (7, 8)

31 the new base station can now tell the old base station about the problem, using a Release 9 X2-AP Radio Link Failure (RLF) Indication message (9) after a series of such reports, the old base station can take action by adjusting its measurement reporting thresholds, using proprietary optimization software

32 The next problem is shown in the figure the base station has carried out a handover too early (1), perhaps in an isolated area where the mobile is briefly receiving line-ofsight coverage from the new cell the mobile completes the handover, but its radio link soon fails (2) Mobility robustness optimization, triggered by a handover that was too early

33 on running the cell selection procedure, the mobile rediscovers the old cell, re-establishes an RRC connection (3), and identifies itself using its new physical cell ID and C-RNTI the old base station notifies the new one, as before (4)

34 however, the new base station notices that it had just received the mobile in a handover from the old one, so it tells the old base station using another Release 9 message, an X2-AP Handover Report (5) once again, the old base station can use the information to adjust its measurement thresholds

35 The final problem is in the figure the base station has handed the mobile over to the wrong cell, perhaps due to an incorrect cell specific measurement offset (1) Mobility robustness optimization, triggered by a handover to the wrong cell

36 the mobile s radio link fails as before (2) and it reestablishes an RRC connection with a third cell, the one it should have been handed to in the first place (3) in response, the third base station sends a radio link failure indication to the second (4), which notifies the original base station using a handover report as before (5)

37 Mobility robustness optimization is enhanced in Release 10, to let the system detect unnecessary handovers to another radio access technology after a handover to UMTS or GSM, the new radio access network can ask the mobile to continue measuring the signal power that it is receiving from nearby LTE cells if the signal power is sufficiently high, then the network can tell the LTE base station that it triggered the handover unnecessarily, using the S1-AP direct information transfer procedure as before, the base station can use a series of such reports to adjust its measurement reporting thresholds

38 2.2 Random Access Channel Optimization A base station can gather two types of information to help it optimize the random access channel (1) the base station can use the RRC UE information procedure to retrieve information about a mobile s last successful random access attempt the information includes the number of preambles that the mobile sent before receiving a reply and an indication of whether the contention resolution procedure failed at any stage using this information, the base station can adjust the random access channel s power settings and resource block allocations, so as to minimize the load that the channel makes on the air interface

39 (2) neighboring base stations can exchange information about the parameters that they are using for the random access channel, during the X2 setup procedure the information includes PRACH frequency offset and PRACH configuration index, which determine the resource blocks that the channel is using root sequence index, which determines the cell s choice of random access preambles using this information, the base stations can minimize the interference between random access transmissions in nearby cells, by allocating them different sets of resource blocks and different preambles

40 Note: preamble a preamble is a signal used in network communications to synchronize transmission timing between two or more systems in wireless transmissions, the radio preamble (also called a header) is a section of data at the head of a packet. the length of the preamble can affect the time it takes to transmit data by increasing the packet overhead

41 2.3 Energy Saving Save energy is achieved by switching off cells that are not being used A typical situation is the use of picocells in a shopping centre, in which a cell can be switched off outside shopping hours if it only contributes to the network s capacity, but not to its coverage If a base station supports this feature, then it can decide to switch the cell off after a long period of low load To do this, it hands any remaining mobiles over to cells that have overlapping coverage, tells them about the change using an X2-AP enb Configuration Update and switches the cell off The base station itself remains switched on, so, at a later time, a neighbor can ask the base station to switch the cell on again using an X2- AP Cell Activation Request

42 3. Drive Test Minimization in Release 10 Network operators have traditionally assessed the coverage of a radio access network by transporting measurement devices around its intended coverage area, using a drive testing technique As well as being time-consuming and expensive, this technique provides coverage data that are limited to the route of the drive test and supplies little or no information about coverage indoors Network operators do, however, have another ready supply of measurement devices in the form of the users mobiles Using a minimization of drive tests (MDT) technique, an operator can ask its mobiles to return measurements that supplement or even replace the ones obtained from traditional drive testing

43 As part of the customer care process, the operator is obliged to obtain the users consent for using their mobiles in drive test minimization The network stores the relevant information in the home subscriber server (HSS) and checks it before measurement activation If the user does consent, then two measurement modes are available immediate measurements for mobiles in RRC_CONNECTED state logged measurements for mobiles in RRC_IDLE

44 Immediate measurements the mobile measures the downlink RSRP or RSRQ and reports these quantities to the base station along with any location data that it has available [RSRP:Reference Signal Received Power, RSRQ:Reference Signal Received Quality] the base station can then return the information to the management system, using the existing network management procedures for trace reporting

45 Logged measurements a base station can also send an RRC Logged Measurement Configuration message to an active mobile, to configure it for logged measurements once it enters RRC_IDLE in idle mode, the mobile makes its measurements with a period that is a multiple of the discontinuous reception cycle it then stores the information in a log, along with time stamps and any location data that it has available

46 when the mobile next establishes an RRC connection, it can signal the availability of its measurement log using a field in the message RRC Connection Setup Complete the base station can then retrieve the logged measurements from the mobile using the RRC UE Information procedure and can forward them to the management system as before

DOWNLINK AIR-INTERFACE...

DOWNLINK AIR-INTERFACE... 1 ABBREVIATIONS... 10 2 FUNDAMENTALS... 14 2.1 INTRODUCTION... 15 2.2 ARCHITECTURE... 16 2.3 INTERFACES... 18 2.4 CHANNEL BANDWIDTHS... 21 2.5 FREQUENCY AND TIME DIVISION DUPLEXING... 22 2.6 OPERATING

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

LTE-1x/1xEV-DO Terms Comparison

LTE-1x/1xEV-DO Terms Comparison LTE-1x/1xEV-DO Terms Comparison 2/2009 1. Common/General Terms UE User Equipment Access Terminal (AT) or MS enode B Evolved Node B Base station (BTS) Downlink (DL) Transmissions from the network to the

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 133 V10.4.0 (2011-11) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (3GPP TS 36.133 version 10.4.0 Release

More information

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable!

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable! Innovating Telecoms Training Very informative, instructor was engaging and knowledgeable! Watch our course intro video. LTE Air Interface Course Description With the introduction of LTE came the development

More information

3GPP TS V ( )

3GPP TS V ( ) 3GPP TS 37.320 V12.2.0 (2014-09) Technical Specification 3 rd Generation Partnership Project; Technical Specification Group Radio Access Network; Universal Terrestrial Radio Access (UTRA) and Evolved Universal

More information

LTE enb - 5G gnb dual connectivity (EN-DC)

LTE enb - 5G gnb dual connectivity (EN-DC) LTE enb - 5G gnb dual connectivity (EN-DC) E-UTRAN New Radio - Dual Connectivity (EN-DC) is a technology that enables introduction of 5G services and data rates in a predominantly 4G network. UEs supporting

More information

LTE enb - 5G gnb dual connectivity (EN-DC)

LTE enb - 5G gnb dual connectivity (EN-DC) LTE enb - 5G gnb dual connectivity (EN-DC) E-UTRAN New Radio - Dual Connectivity (EN-DC) is a technology that enables introduction of 5G services and data rates in a predominantly 4G network. UEs supporting

More information

Progression of LTE Automatic Neighbour Relations

Progression of LTE Automatic Neighbour Relations IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 4, Ver. III (Jul - Aug. 2014), PP 54-58 Progression of LTE Automatic Neighbour

More information

Long Term Evolution (LTE)

Long Term Evolution (LTE) 1 Lecture 13 LTE 2 Long Term Evolution (LTE) Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications

More information

Cellular Networks and Mobile Compu5ng COMS , Fall 2012

Cellular Networks and Mobile Compu5ng COMS , Fall 2012 Cellular Networks and Mobile Compu5ng COMS 6998-11, Fall 2012 Instructor: Li Erran Li (lierranli@cs.columbia.edu) hlp://www.cs.columbia.edu/~lierranli/ coms6998-11/ 9/4/2012: Introduc5on to Cellular Networks

More information

ETSI TS V8.7.0 ( ) Technical Specification

ETSI TS V8.7.0 ( ) Technical Specification TS 136 214 V8.7.0 (2009-10) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer - Measurements (3GPP TS 36.214 version 8.7.0 Release 8) 1 TS 136 214 V8.7.0

More information

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR XGP Forum Document TWG-009-01-TR Title: Conformance test for XGP Global Mode Version: 01 Date: September 2, 2013 XGP Forum Classification: Unrestricted List of contents: Chapter 1 Introduction

More information

10EC81-Wireless Communication UNIT-6

10EC81-Wireless Communication UNIT-6 UNIT-6 The first form of CDMA to be implemented is IS-95, specified a dual mode of operation in the 800Mhz cellular band for both AMPS and CDMA. IS-95 standard describes the structure of wideband 1.25Mhz

More information

Mobile Data Tsunami Challenges Current Cellular Technologies

Mobile Data Tsunami Challenges Current Cellular Technologies 1! 2! Cellular Networks Impact our Lives Cellular Core Network! More Mobile Connection! More Infrastructure! Deployment! 1010100100001011001! 0101010101001010100! 1010101010101011010! 1010010101010101010!

More information

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4]

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4] 192620010 Mobile & Wireless Networking Lecture 4: Cellular Concepts & Dealing with Mobility [Reader, Part 3 & 4] Geert Heijenk Outline of Lecture 4 Cellular Concepts q Introduction q Cell layout q Interference

More information

What LTE parameters need to be Dimensioned and Optimized

What LTE parameters need to be Dimensioned and Optimized What LTE parameters need to be Dimensioned and Optimized Leonhard Korowajczuk CEO/CTO CelPlan International, Inc. www.celplan.com webinar@celplan.com 8/4/2014 CelPlan International, Inc. www.celplan.com

More information

ETSI TS V9.3.0 ( ) Technical Specification

ETSI TS V9.3.0 ( ) Technical Specification TS 136 133 V9.3.0 (2010-04) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (3GPP TS 36.133 version 9.3.0 Release

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

ETSI TS V ( ) Technical Specification

ETSI TS V ( ) Technical Specification TS 136 214 V10.1.0 (2011-04) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements (3GPP TS 36.214 version 10.1.0 Release 10) 1 TS 136 214 V10.1.0

More information

3GPP TS V8.9.0 ( )

3GPP TS V8.9.0 ( ) TS 36.133 V8.9.0 (2010-03) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION

CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent

More information

ETSI SMG#24 TDoc SMG 903 / 97. December 15-19, 1997 Source: SMG2. Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary

ETSI SMG#24 TDoc SMG 903 / 97. December 15-19, 1997 Source: SMG2. Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary ETSI SMG#24 TDoc SMG 903 / 97 Madrid, Spain Agenda item 4.1: UTRA December 15-19, 1997 Source: SMG2 Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary Concept Group Alpha -

More information

Test Plan for LTE Carrier Aggregation Interoperability

Test Plan for LTE Carrier Aggregation Interoperability Test Plan for LTE Carrier Aggregation Interoperability Version 2.0 August 2017 2016 CTIA - The Wireless Association. All rights reserved. CTIA hereby grants to CTIA Authorized Testing Laboratories (CATLs),

More information

LTE Whitepaper Santosh Kumar Dornal n wireless.blogspot.com

LTE Whitepaper Santosh Kumar Dornal  n wireless.blogspot.com LTE Whitepaper Santosh Kumar Dornal http://wired n wireless.blogspot.com Table of Contents LTE Interfaces and Protocols...3 LTE Network Elements...4 LTE Radio Network...6 LTE Bearers & QoS... 17 LTE Control

More information

TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS

TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/289,949,

More information

ETSI TS V ( )

ETSI TS V ( ) TS 137 320 V11.3.0 (2013-04) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA);

More information

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II BASICS & CHALLENGES Dr Konstantinos Dimou Senior Research Engineer Ericsson Research konstantinos.dimou@ericsson.com Overview Introduction Definition Vision

More information

Introduction. Air Interface. LTE and UMTS Terminology and Concepts

Introduction. Air Interface. LTE and UMTS Terminology and Concepts LTE and UMTS Terminology and Concepts By Chris Reece, Subject Matter Expert - 8/2009 UMTS and LTE networks are surprisingly similar in many respects, but the terms, labels and acronyms they use are very

More information

ETSI TS V9.1.1 ( ) Technical Specification

ETSI TS V9.1.1 ( ) Technical Specification TS 136 410 V9.1.1 (2011-05) Technical Specification LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 general aspects and principles (3GPP TS 36.410 version 9.1.1 Release 9) 1 TS 136

More information

TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK

TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/332,510,

More information

Index. API 218 APL 47 Application testing 301 Automatic Gain Control See AGC. 3GPP 18, 208, 312 3GPP specifications 47, 48, 57, 208, 220, 243, 273

Index. API 218 APL 47 Application testing 301 Automatic Gain Control See AGC. 3GPP 18, 208, 312 3GPP specifications 47, 48, 57, 208, 220, 243, 273 Index 3GPP 18, 208, 312 3GPP specifications 47, 48, 57, 208, 220, 243, 273 AC 21, 237, 242, 263 Acquisition Indicator 217 Active set 240, 250, 285 Adjacent power leakage See APL Admission Control See AC

More information

TEPZZ _668Z B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.: H04W 56/00 ( )

TEPZZ _668Z B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.: H04W 56/00 ( ) (19) TEPZZ _668Z B_T (11) EP 2 166 802 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 18.03. Bulletin /12 (1) Int Cl.: H04W 6/00 (09.01) (21) Application

More information

CHAPTER 2 WCDMA NETWORK

CHAPTER 2 WCDMA NETWORK CHAPTER 2 WCDMA NETWORK 2.1 INTRODUCTION WCDMA is a third generation mobile communication system that uses CDMA technology over a wide frequency band to provide high-speed multimedia and efficient voice

More information

ETSI TS V8.2.0 ( ) Technical Specification

ETSI TS V8.2.0 ( ) Technical Specification TS 136 133 V8.2.0 (2008-11) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (3GPP TS 36.133 version 8.2.0 Release

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.410 V12.1.0 (2014-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN);

More information

Research and Solution of Semi-persistent Scheduling Problem in LTE System

Research and Solution of Semi-persistent Scheduling Problem in LTE System 211 International Conference on Computer Science and Information Technology (ICCSIT 211) IPCSIT vol. 51 (212) (212) IACSIT Press, Singapore DOI: 1.7763/IPCSIT.212.V51.66 Research and Solution of Semi-persistent

More information

TITLE DUAL CONNECTIVITY POWER CONTROL FOR WIRELESS NETWORK AND WIRELESS DEVICE

TITLE DUAL CONNECTIVITY POWER CONTROL FOR WIRELESS NETWORK AND WIRELESS DEVICE TITLE DUAL CONNECTIVITY POWER CONTROL FOR WIRELESS NETWORK AND WIRELESS DEVICE CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/408,338,

More information

3GPP TR V9.0.0 ( )

3GPP TR V9.0.0 ( ) TR 36.805 V9.0.0 (2009-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Minimization of drive-tests in Next Generation Networks; (Release

More information

Training Programme. 1. LTE Planning Overview. 2. Modelling a LTE Network. 3. LTE Predictions. 4. Frequency and PCI Plan Analysis

Training Programme. 1. LTE Planning Overview. 2. Modelling a LTE Network. 3. LTE Predictions. 4. Frequency and PCI Plan Analysis ATOLL LTE FEATURES Training Programme 1. LTE Planning Overview 2. Modelling a LTE Network 3. LTE Predictions 4. Frequency and PCI Plan Analysis 5. Monte-Carlo Based Simulations Slide 2 of 82 1. LTE Planning

More information

LTE and 1x/1xEV-DO Terminology and Concepts

LTE and 1x/1xEV-DO Terminology and Concepts LTE and 1x/1xEV-DO Terminology and Concepts By Don Hanley, Senior Consultant 2/2009 1xEV-DO and LTE networks are surprisingly similar in many respects, but the terms, labels and acronyms they use are very

More information

Optimization of Algorithms for Mobility in Cellular Systems

Optimization of Algorithms for Mobility in Cellular Systems Master s Thesis Optimization of Algorithms for Mobility in Cellular Systems Bernt Christensen Olof Knape Department of Electrical and Information Technology, Faculty of Engineering, LTH, Lund University,

More information

ETSI TS V8.1.0 ( ) Technical Specification

ETSI TS V8.1.0 ( ) Technical Specification TS 136 410 V8.1.0 (2009-01) Technical Specification LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 layer 1 general aspects and principles (3GPP TS 36.410 version 8.1.0 Release 8)

More information

EVALUATION OF REAL DATA CALL SET UP SUCCESS RATE IN E-UTRAN

EVALUATION OF REAL DATA CALL SET UP SUCCESS RATE IN E-UTRAN 64 Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011, 64 69, DOI: 10.2478/v10198-011-0031-x EVALUATION OF REAL DATA CALL SET UP SUCCESS RATE IN E-UTRAN Martin KOLLÁR CMT OP NW TAR, Siemens Program

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

Politecnico di Milano Facoltà di Ingegneria dell Informazione. 3 Basic concepts. Wireless Networks Prof. Antonio Capone

Politecnico di Milano Facoltà di Ingegneria dell Informazione. 3 Basic concepts. Wireless Networks Prof. Antonio Capone Politecnico di Milano Facoltà di Ingegneria dell Informazione 3 Basic concepts Wireless Networks Prof. Antonio Capone Wireless Networks Wireless or wired, what is better? Well, it depends on the situation!

More information

ETSI TS V8.3.0 ( ) Technical Specification

ETSI TS V8.3.0 ( ) Technical Specification TS 136 133 V8.3.0 (2008-11) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (3GPP TS 36.133 version 8.3.0 Release

More information

Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool

Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool A. Benjamin Paul, Sk.M.Subani, M.Tech in Bapatla Engg. College, Assistant Professor in Bapatla Engg. College, Abstract This paper involves

More information

Mobile Network Evolution Part 1. GSM and UMTS

Mobile Network Evolution Part 1. GSM and UMTS Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

Docket No.: U Uplink Transmission in a Wireless Device and Wireless Network

Docket No.: U Uplink Transmission in a Wireless Device and Wireless Network Uplink Transmission in a Wireless Device and Wireless Network CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/327,265, filed April

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.410 V10.2.0 (2011-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN);

More information

Test Plan for LTE Carrier Aggregation Interoperability

Test Plan for LTE Carrier Aggregation Interoperability Test Plan for LTE Carrier Aggregation Interoperability Version 3.0 March 2019 2019 CTIA - The Wireless Association. All rights reserved. CTIA-The Wireless Association ( CTIA ) hereby grants CTIA Authorized

More information

Dynamic Radio Resource Allocation for Group Paging Supporting Smart Meter Communications

Dynamic Radio Resource Allocation for Group Paging Supporting Smart Meter Communications IEEE SmartGridComm 22 Workshop - Cognitive and Machine-to-Machine Communications and Networking for Smart Grids Radio Resource Allocation for Group Paging Supporting Smart Meter Communications Chia-Hung

More information

Data and Computer Communications. Chapter 10 Cellular Wireless Networks

Data and Computer Communications. Chapter 10 Cellular Wireless Networks Data and Computer Communications Chapter 10 Cellular Wireless Networks Cellular Wireless Networks 5 PSTN Switch Mobile Telecomm Switching Office (MTSO) 3 4 2 1 Base Station 0 2016-08-30 2 Cellular Wireless

More information

ETSI TS V8.3.0 ( ) Technical Specification

ETSI TS V8.3.0 ( ) Technical Specification TS 123 272 V8.3.0 (2009-03) Technical Specification Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Circuit Switched (CS) fallback in Evolved

More information

PERFORMANCE ANALYSIS OF ADAPTIVE ANTENNA SYSTEM

PERFORMANCE ANALYSIS OF ADAPTIVE ANTENNA SYSTEM PERFORMANCE ANALYSIS OF ADAPTIVE ANTENNA SYSTEM IN LTE (4G) USING OFDM TECHNIQUE Md. Yasin Ali 1, Liton Chandra Paul 2 1 Department of Electrical & Electronics Engineering, University of Information Technology

More information

3GPP TS V8.3.0 ( )

3GPP TS V8.3.0 ( ) TS 36.133 V8.3.0 (2008-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements

More information

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet PXI LTE FDD and LTE TDD Measurement Suites Data Sheet The most important thing we build is trust A production ready ATE solution for RF alignment and performance verification UE Tx output power Transmit

More information

Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems

Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems 1 Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems + Bing-Zhi Hsieh, + Yu-Hsiang Chao, + Ray-Guang Cheng, and ++ Navid Nikaein + Department of Electronic and

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

UCS-805 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2011

UCS-805 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2011 Location Management for Mobile Cellular Systems SLIDE #3 UCS-805 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2011 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com

More information

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 The evolution A set of radio access technologies is required to satisfy future requirements Required Performance TRx Spectrum efficiency

More information

SON in 4G Mobile Networks

SON in 4G Mobile Networks SON in 4G Mobile Networks Self-Optimization Techniques for Intelligent Base Stations Bell Labs Stuttgart Ulrich Barth 9. Fachtagung des ITG-FA 5.2, Oktober 2010 Self- organizing Radio Access Networks Motivation

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.523-1 V11.4.0 (2013-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved

More information

LTE Review. EPS Architecture Protocol Architecture Air Interface DL Scheduling EMM, ECM, RRC States QoS, QCIs & EPS Bearers

LTE Review. EPS Architecture Protocol Architecture Air Interface DL Scheduling EMM, ECM, RRC States QoS, QCIs & EPS Bearers LTE Review EPS Architecture Protocol Architecture Air Interface DL Scheduling EMM, ECM, RRC States QoS, s & EPS Bearers Evolved Packet System (EPS) Architecture S6a HSS MME PCRF S1-MME S10 S11 Gxc Gx E-UTRAN

More information

CHAPTER 7 ROLE OF ADAPTIVE MULTIRATE ON WCDMA CAPACITY ENHANCEMENT

CHAPTER 7 ROLE OF ADAPTIVE MULTIRATE ON WCDMA CAPACITY ENHANCEMENT CHAPTER 7 ROLE OF ADAPTIVE MULTIRATE ON WCDMA CAPACITY ENHANCEMENT 7.1 INTRODUCTION Originally developed to be used in GSM by the Europe Telecommunications Standards Institute (ETSI), the AMR speech codec

More information

3GPP TS V8.0.0 ( )

3GPP TS V8.0.0 ( ) TS 36.213 V8.0.0 (2007-09) Technical Specification 3 rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

More information

(LTE Fundamental) LONG TERMS EVOLUTION

(LTE Fundamental) LONG TERMS EVOLUTION (LTE Fundamental) LONG TERMS EVOLUTION 1) - LTE Introduction 1.1: Overview and Objectives 1.2: User Expectation 1.3: Operator expectation 1.4: Mobile Broadband Evolution: the roadmap from HSPA to LTE 1.5:

More information

LTE Direct Overview. Sajith Balraj Qualcomm Research

LTE Direct Overview. Sajith Balraj Qualcomm Research MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION This technical data may be subject to U.S. and international export, re-export, or transfer ( export ) laws. Diversion contrary to U.S.

More information

ISR with Circuit Switched Fallback

ISR with Circuit Switched Fallback ISR with CSFB - Feature Description, page 1 Call Flows, page 2 Relationships to Other Features, page 4 Relationships to Other Products, page 4 How it Works, page 5 ISR CSFB Procedures, page 6 Standards

More information

Modeling and Dimensioning of Mobile Networks: from GSM to LTE. Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski

Modeling and Dimensioning of Mobile Networks: from GSM to LTE. Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski Modeling and Dimensioning of Mobile Networks: from GSM to LTE Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski Modeling and Dimensioning of Mobile Networks: from GSM to LTE GSM

More information

LTE IDLE MODE OPTIMIZATION IMPROVING END USER EXPERIENCES

LTE IDLE MODE OPTIMIZATION IMPROVING END USER EXPERIENCES LTE IDLE MODE OPTIMIZATION IMPROVING END USER EXPERIENCES Kwangrok Chang, Ragil Putro Wicaksono, Seiji Kunishige, Noriteru Takagaki MOTiV Research Co. Ltd., Tokyo Japan {kwangrok.chang, ragil.wicaksono,

More information

Hailu, Sofonias; Säily, Mikko Hybrid paging and location tracking scheme for inactive 5G UEs

Hailu, Sofonias; Säily, Mikko Hybrid paging and location tracking scheme for inactive 5G UEs Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Hailu, Sofonias; Säily, Mikko Hybrid

More information

MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012

MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 Location Management for Mobile Cellular Systems MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com Cellular System

More information

Design of optimized mobility capabilities in future 5G systems

Design of optimized mobility capabilities in future 5G systems Design of optimized mobility capabilities in future 5G systems Aalborg University Master Thesis, September 2014 - June 1015 Group 1053 - Wireless Communication Systems Title: Design of optimized mobility

More information

Docket No.: EE U TITLE HANDOVER OF USER EQUIPMENT WITH MULTIMEDIA BROADCAST MULTICAST SERVICES

Docket No.: EE U TITLE HANDOVER OF USER EQUIPMENT WITH MULTIMEDIA BROADCAST MULTICAST SERVICES TITLE HANDOVER OF USER EQUIPMENT WITH MULTIMEDIA BROADCAST MULTICAST SERVICES CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/423,644,

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 3/23/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 3/23/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 3/23/2015 GSM Global System for Mobile Communications (reference From GSM to LET by Martin Sauter) There were ~3 billion GSM users in 2010. GSM Voice

More information

Mobile Data Tsunami Challenges Current Cellular Technologies

Mobile Data Tsunami Challenges Current Cellular Technologies Cellular Core Network! 1! Mobile Data Tsunami Challenges Current Cellular Technologies 2! Global growth 18 Qmes from 2011 to 2016 Cellular Networks COS 461: Computer Networks Spring 2013 Guest Lecture

More information

UTRAN Radio Resource Management

UTRAN Radio Resource Management UTRAN Radio Resource Management BTS 3 BTS 1 UE BTS 2 Introduction Handover Control Soft/Softer Handover Inter Frequency Handover Power Control Closed Loop Power Control Open Loop Power Control Interference

More information

Cellular Network Planning and Optimization Part VI: WCDMA Basics. Jyri Hämäläinen, Communications and Networking Department, TKK, 24.1.

Cellular Network Planning and Optimization Part VI: WCDMA Basics. Jyri Hämäläinen, Communications and Networking Department, TKK, 24.1. Cellular Network Planning and Optimization Part VI: WCDMA Basics Jyri Hämäläinen, Communications and Networking Department, TKK, 24.1.2008 Outline Network elements Physical layer Radio resource management

More information

BASIC CONCEPTS OF HSPA

BASIC CONCEPTS OF HSPA 284 23-3087 Uen Rev A BASIC CONCEPTS OF HSPA February 2007 White Paper HSPA is a vital part of WCDMA evolution and provides improved end-user experience as well as cost-efficient mobile/wireless broadband.

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 521-3 V14.5.0 (2018-09) TECHNICAL SPECIFICATION LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 3:

More information

3GPP TS V8.2.0 ( )

3GPP TS V8.2.0 ( ) TS 43.022 V8.2.0 (2010-03) Technical Specification 3 rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Functions related to Mobile Station (MS) in idle mode

More information

Wireless Test World 2009

Wireless Test World 2009 Wireless Test World 2009 Agilent, Your Partner in Advancing Agilent, Your Partner in Advancing New New Wireless Wireless Communications Communications LTE Protocol Signaling and Control Presented by: Choi,

More information

Long Term Evolution (LTE) Radio Network Planning Using Atoll

Long Term Evolution (LTE) Radio Network Planning Using Atoll Long Term Evolution (LTE) Radio Network Planning Using Atoll Gullipalli S.D. Rohit Gagan, Kondamuri N. Nikhitha, Electronics and Communication Department, Baba Institute of Technology and Sciences - Vizag

More information

MAPS for LCS System. LoCation Services Simulation in 2G, 3G, and 4G. Presenters:

MAPS for LCS System. LoCation Services Simulation in 2G, 3G, and 4G. Presenters: MAPS for LCS System LoCation Services Simulation in 2G, 3G, and 4G Presenters: Matt Yost Savita Majjagi 818 West Diamond Avenue - Third Floor, Gaithersburg, MD 20878 Phone: (301) 670-4784 Fax: (301) 670-9187

More information

Advanced Warning Message Distribution Platform for the Next-generation Mobile Communication Network

Advanced Warning Message Distribution Platform for the Next-generation Mobile Communication Network SAE Emergency Warning System Area Mail Special Articles on SAE Standardization Technology Advanced Warning Message Distribution Platform for the Next-generation Mobile Communication Network 3GPP Release

More information

Lecture overview. UMTS concept UTRA FDD TDD

Lecture overview. UMTS concept UTRA FDD TDD Lecture overview 3G UMTS concept UTRA FDD TDD 3 rd Generation of Mobile Systems Goal to create a global system enabling global roaming International Mobile Telecommunications (IMT-2000) requirements: Throughput

More information

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT Ihr Spezialist für Mess- und Prüfgeräte Keysight Technologies Narrowband IoT (): Cellular Technology for the Hyperconnected IoT Application Note datatec Ferdinand-Lassalle-Str. 52 72770 Reutlingen Tel.

More information

TRAINING OBJECTIVE. RF Planning Training Course will show the attendees how to plan, design and optimize networks efficiently.

TRAINING OBJECTIVE. RF Planning Training Course will show the attendees how to plan, design and optimize networks efficiently. TRAINING PROGRAM Diploma In Radio Network Planning DRNP Advance Diploma In Radio Network Planning - ADRNP Masters Diploma In Radio Network Planning - MDRNP TRAINING OBJECTIVE Our RF Planning Training is

More information

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih From D2D to V2X Hung-Yu Wei National Taiwan University Acknowledgement to Mei-Ju Shih OUTLINE Preview RAN2#91 Rel-13 ed2d General UE-to-Network Relays ProSe discovery in partial- and outside network coverage

More information

RADIO LINK ASPECT OF GSM

RADIO LINK ASPECT OF GSM RADIO LINK ASPECT OF GSM The GSM spectral allocation is 25 MHz for base transmission (935 960 MHz) and 25 MHz for mobile transmission With each 200 KHz bandwidth, total number of channel provided is 125

More information

Enhanced DRX Quick Sleeping Mechanism For Power Aware LTE System

Enhanced DRX Quick Sleeping Mechanism For Power Aware LTE System Enhanced DRX Quick Sleeping Mechanism For Power Aware LTE System M.Leeban Moses 1, R.Alwin 2, J.Prabakaran 3 1,2,3 ECE, Coimbatore Institute of Engineering and Technology Abstract - Discontinuous Reception

More information

Mobile Communication and Mobile Computing

Mobile Communication and Mobile Computing Department of Computer Science Institute for System Architecture, Chair for Computer Networks Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de Structure

More information

Wprowadzenie do techniki LTE. Prowadzący: Szymon Raksimowicz

Wprowadzenie do techniki LTE. Prowadzący: Szymon Raksimowicz Wprowadzenie do techniki LTE Prowadzący: Szymon Raksimowicz Warszawa, maj 2014 Wprowadzenie do techniki LTE Szymon Raksimowicz Agenda 1. Wprowadzenie 2. Architektura EPS 3. Interfejs radiowy 4. Stos protokołów

More information