A Review on Mid-point Compensation of a Two-machine System Using STATCOM

Size: px
Start display at page:

Download "A Review on Mid-point Compensation of a Two-machine System Using STATCOM"

Transcription

1 Volume-4, Issue-2, April-2014, ISSN No.: International Journal of Engineering and Management Research Available at: Page Number: A Review on Mid-point Compensation of a Two-machine System Using STATCOM Gaurav Tembhurnikar 1, Ajit Chaudhari 2, Nilesh Wani 3, Atul Gajare 4, Pankaj Gajare 5 1 PG Student, Department of Electrical Engineering, INDIA 2 Associate Professor, Department of Electrical Engineering, INDIA 3,4,5 Assistant Professor, Department of Electrical Engineering, INDIA ABSTRACT Regarding the power system large wind farms are greatly affected stability and control issues. So it requires a deep study to overcome this potential problems and it requires advanced control and compensating devices to avoid & recover large disturbances this paper involve the use of Static Synchronous Compensator (STATCOM) for stabilizing the grid voltage after grid-side disturbances such as a three phase short circuit fault, temporary trip of a wind turbine and sudden load changes. These will help to maintain and regulate the proper voltage. The DC voltage at individual wind turbine (WT) inverters is also stabilized to facilitate continuous operation of wind turbines during disturbances. Keywords - STATCOM, Dynamic Compensator, SVC, Transient Stability, V-Q Response. I. INTRODUCTION STATCOM is basically a voltage source converter, VSC that converts a dc voltage at its input terminals into three-phase ac voltages at fundamental frequency of controlled magnitude and phase angle. VSCs use pulse width modulation, PWM, technology, which makes it capable of providing high quality ac output voltage to the grid or even to a passive load (Uzunovic, 2001). STATCOM provides shunt compensation in a similar way as SVC but utilizes a voltage source converter rather shunt capacitors and reactors (Machowski, 1997). The basic principle of operation of a STATCOM is the generation of a controllable AC voltage source behind a transformer leakage reactance by a voltage source converter connected to a DC capacitor. The voltage difference across the reactance produces active and reactive power exchanges between the STATCOM and the power system (Wang and Li, 2000). The effect of stabilizing controls on STATCOM controllers have been investigated also in several recent reporting (Wang and Li, 2000), (Wang, 1999). Figure 1: Line diagram of STATCOM 1.1 Features of STATCOM A STATCOM has both turn-on and turn-off control capability (IGBTs). It generates an output ac voltage from a dc voltage. The ac voltage is controllable both in magnitude and phase angle. Flexible Alternating Current Transmission Systems (FACTS) devices, namely STATIC synchronous Compensator (STATCOM), Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC), are used to control the power flow through an electrical transmission line connecting various generators and loads at its sending and receiving ends. FACTS devices consist of a solid-state voltage source inverter with several Gate Turn off (GTO) thyristor switch-based valves and a DC link capacitor, a magnetic circuit, and a controller. The quality of AC waveforms generated by the FACTS devices depends on the valves and the various configuration magnetic circuits. The inverter configuration used in this paper can be utilized to build a voltage source inverter. 109

2 II. SYSTEM MODELLING 2.1 TWO MACHINE SYSTEM WITH MIDPOINT DYNAMIC COMPENSATOR For the symmetrical system shown in the figure 2, the doubling is shown by the increase in the p/δ curve from a to b in figure 3. Without the compensator, curve a is given by the equation; P = Where E is now the emf behind transient reactance (E ) of the two the generators and X1 is the total series reactance, equal to the sum of the line and transformer reactance (which are assumes identical). The effect of shunt capacitance is ignored. With an ideal compensator that holds the midpoint voltage constant at the value E the power angle curve b is obtained according to the equation; We will compare it with the equal area criterion to match the relative transient stability with and without a dynamic shunt compensator. First consider a case without compensation. Assume that a fault occurs between circuit breaker a and b in figure 2 and is cleared by a and b circuit breakers. Curve-1 in figure 3 shows the pre fault transient power angle curve which has a maximum of Curves shown are during the fault. A curve 3 result after the faulted line section is removed and differs from curve 1 is that X l is replaced by 3. E is assumed constant through the first swing period. If there is no compensator, the system can, in principle, be pre loaded to the transient stability power limit P 1 for the prescribed fault, such that the available decelerating energy A 2 just balances the accelerating energya 1. In practice, the power level would be somewhat less than this, to provide a stability margin. This curve is applicable only if the transient compensator voltage/current characteristics is flat, if the compensator responds instantaneously, and if it has sufficient capacity of current. But actually it is not possible to get this condition. The small positive slope in the power-angle curve from b to c, while the limited capacitive current capability breaks the curve at point D, the compensator behaving as a fixed capacitor at higher load angle, curve d. Figure 2: Two-machine system with midpoint dynamic compensator Figure 3: Figure 5: Equal area method illustrating increased transient stability with dynamic shunt compensation The effect of shunt compensator at midpoint with rapid response is shown in figure 5 Curve 1,2 and 3 of figure 3 are replaced by the higher curves 1, 2 and 3, respectively. During the pre-fault power P 1 and the same fault duration, the decelerating area available is now larger and is only partly used up, leaving a margin as indicated in figure 5. In other language, the transient stability limit is improved, that is, the power transfer can be improved up to the point where all of the final margin is used up. In stability margin due to capacitive current of compensator it decreases in figure 5 to the right of point D. III. BASIC CONFIGURATION OF STATCOM Transient power/angle curves with & without dynamic shunt compensation. 2.2 THEORY OF TRANSIENT STABILITY IMPROVEMENT By using thyristor-controlled reactors (TCR) and thyristor-switched capacitors (TSC), SVC provides voltage regulation and dynamic reactive power for VAR absorption and production respectively. A STATCOM accomplishes the same effect by using a VSC to synthesize a voltage waveform of variable magnitude with respect to the system voltage. The STATCOM branches provides both production and reactive power absorption capability and 110

3 incase of an SVC requires separate branches for each. The STATCOM, with the use of PWM, perform faster response and thereby improves power quality. This is very useful to flicker from disturbances caused by electric arc furnaces at steel mills. To increase the power transfer capability by installing an SVC or STATCOM in transmission networks and it is limited by post-contingency voltage criteria or under voltage loss of load probability. Determining the optimum mix of dynamic and switched compensation is a challenge. Control systems are designed to keep the normal operating point within the middle of the SVC or STATCOM dynamic range. The voltage-sourced converter (VSC) is the basic electronic part of a STATCOM, which converts the dc voltage into a frequency, and phase. There are different methods to realize a voltage sourced converter for power utility application and it is based on harmonics and loss considerations, pulse width modulation (PWM) or multiple converters are used. Inherently, STATCOMs have a symmetrical rating with respect to inductive and capacitive reactive power. For example, the rating can be 100 MVAR inductive and 100 MVAR capacitive. For asymmetric rating, STATCOMs need a complementary reactive power source. Figure 6 shows Static Synchronous Compensator (STATCOM) used for midpoint voltage regulation on a 500-kV transmission line. Figure 6: Schematic Diagram of STATCOM Figure7: Phasor diagram for inductive load operation In the last one decade commercial using of Gate Turn-Off thyristor (GTO) devices with high power handling capability, and the advancement of other types of power-semiconductor devices such as IGBT s have to led the development of controllable reactive power sources utilizing electronic switching converter technology. These technologies additionally offer considerable advantages over the existing ones in terms of space reductions and performance. The GTO thyristor enable the design of solid-state shunt reactive compensation equipment based upon switching converter technology. This concept was used to create a flexible shunt reactive compensation device named Static Synchronous Compensator (STATCOM) due to similar operating characteristics to that of a synchronous compensator but without the mechanical inertia. By using of Flexible AC Transmission Systems (FACTS), it is gives a new family of power electronic equipment emerging for controlling and optimizing the performance of power system, e.g. STATCOM, SSSC and UPFC. The use of voltage-source inverter (VSI) has been widely accepted as the next generation of reactive power controllers of power system to replace the conventional VAR compensation, such as the thyristor-switched capacitor (TSC) and thyristor controlled reactors (TCR). A FACT is the acronym for Flexible AC Transmission Systems and refers to a group of resources used to overcome certain limitations in the static and dynamic transmission capacity of electrical networks. The IEEE defines FACTS as alternating current transmission systems incorporating power-electronics-based and other static controllers to enhance controllability and power transfer capability. Purpose of these systems is to supply the network as quickly as possible with inductive or capacitive reactive power that is adapted to its particular requirements and improving transmission quality and the efficiency of the power transmission system. The inevitable globalization and liberalization of energy markets associated with growing deregulation and privatization are increasingly resulting in bottlenecks, uncontrolled load flows, instabilities, and even power transmission failures. Power supplies are increasingly dependent on distributed power plants with higher voltage levels, a greater exchange within meshed systems, and transport to large load centers over what are often long distances. In future this type of power transmission must be implemented safely and cost effectively. Implementing new transmission systems and components is a long-term strategy for meeting these challenges. For the short and medium term, modern transmission technologies can be employed at comparatively little expense to rectify or minimize bottlenecks and substantially improve the quality of supply. It is possible to postpone investing in new plants and, as a result, to achieve critical advantages over the competition especially important in de-regulated energy markets in which power supply companies are subject to extreme pricing pressure. As a world leader in the power transmission and distribution industry, Siemens has developed a number of modern, flexible, high-capacity FACTS for efficiently and reliably regulating voltage, impedance, and phase angle when transmitting power over high-voltage lines. From the other side of view, the FACTS principle is mainly depend on the advanced technologies of power 111

4 electronic techniques and algorithms into the power system, to make it electronically controllable. Much of the research upon which FACTS rests evolved over a period of many years. Nevertheless, FACTS, an integrated technology, is a novel concept that was brought to fruition during the 1980s at the Electric Power Research Institute (EPRI) for applications of North American army objectives. FACTS can capitalize on the many ideas taking place in the area of high-voltage and high-current power electronics, to improve the control of power flows in networks during both steady-state and transient conditions. In the present time of the power network electronically controllable has initiated a change in the way that power plant equipment is designed and built as well as the technology that goes into the planning and operation of transmission and distribution networks. These achievements may also enhance the method energy exchanges are done, as high-speed control of the path of the energy flow is now feasible. FACTS own a lot of promising benefits, technical and economical, which get the benefits of electrical equipment devices, operators, and research groups around the world. FACTS controllers have been installed in various regions of the world. The well different types are: load tap-changers transformer, static VAR compensators, phase-angle regulators, thyristorcontrolled series compensators, static compensators, interphase power controllers and unified power flow controllers. This thesis covers in breadth and depth the modeling and simulation methods required for a thorough study of the steady-state and dynamic operation of electrical power systems with FACTS controllers. The characteristics of a given power system evolve with time, as load grows and generation is added. If the transmission grid capacity is not updated sufficiently the power network becomes vulnerable to steady state and transient stability problems, as stability margins will be narrower. The powerful of the transmission grid to transmit power has constraint by one or more of the following steady-state and dynamic limitations: Angular stability, Voltage stability, Thermal limits, Transient stability, and Dynamic stability. Mainly restrictions on power exchange can be controlled by installing new transmission and generation circuits. Also, FACTS controllers can achieve the same tasks to be met with no huge changes to system layout. These limits affect the packages of the power to be transferred without block out to transmission lines and electric apparatuses. From the operational point of view, FACTS technology is concerned with the ability to control, in an adaptive trend, the directions of the power flows throughout the network, where before the advent of FACTS, high-speed control was very limited. FACTS controllers save a lot of benefits such as reduction of operation and transmission investment cost, increased system security and system reliability, maximize power transfer capabilities, and an overall enhancement of the quality of the electric energy delivered to customers. In many practical situations, it is desirable to include economical and operational considerations into the power flow formulation, so that optimal solutions, within constrained solution spaces, can be obtained. The ability to control the line impedance and the buses voltage magnitudes and phase angles at both the sending and the receiving ends of transmission lines, with almost no delay, has significantly increased the transmission capabilities of the network while considerably enhancing the security of the system. 3.1 FACTS PROVIDE Easy & rapid voltage regulation, increased power transfer over long AC lines, damping of active power oscillations, and load flow control in meshed systems, Thereby significantly improving the stability and performance of existing and future transmission systems. So by using the FACTS devices, many of large industries and power sector companies will be able to better utilize their existing transmission networks, substantially increase the availability and reliability of their line networks, and improve both transient and dynamic network stability while ensuring a better quality of supply. i) ASKS OF FACTS DEVICES Control voltage under various load conditions. Balance reactive power (voltage, transmission losses). Increase the stability of power transmission over long distances. Increase active power stability. ii) STATCOM FEATURES It provides compact and reduced size. System voltage support and stabilization by smooth control over a wide range of operating conditions. Dynamic response following system contingencies. High reliability with modular construction parallel and converter design. Flexibility of reconfiguration to Back To Back power transmission or UPFC (Unified Power Flow Controller) and other configurations. 3.2 OPERATION MODE OF THE STATCOM Active power exchange between the STATCOM and the EPS can be at minimum extent. This means that the inverter cannot provide active power to the AC system form the DC accumulated energy if the output voltage of the inverter goes before the voltage of the AC system. The exchange between the inverter and the AC system can be controlled adjusting the output voltage angle from the inverter to the voltage angle of the AC system. On the other hand, the inverter can absorb the active power of the AC system if its voltage is delayed in respect to the AC system voltage. 112

5 Following figure shows the operation mode of STATCOM for on load operation, capacitive operation and inductive operation. Figure 8: Operation mode of STATCOM 3.3 V-I CHARACTERISTIC OF A STATCOM The STATCOM smoothly and continuously controls voltage from V1 to V2. However, if the system voltage exceeds a low-voltage (V1) or high-voltage limit (V2), the STATCOM acts as a constant current source by controlling the converter voltage (Vi) appropriately. Thus, when operating at its voltage limits, the amount of reactive power compensation provided by the STATCOM is more than the most-common competing FACTS controller, namely the Static Var Compensator (SVC). This is because at a low voltage limit, the reactive power drops off as the square of the voltage for the SVC, where Mvar=f(BV2), but drops off linearly with the STATCOM, where Mvar=f(VI). This makes the reactive power controllability of the STATCOM superior to that of the SVC, particularly during times of system distress. Quicker response time (A STATCOM has a step response of 8 ms to 30 ms). This helps with compensation of negative phase current and with the reduction of voltage flicker. Active power control is possible with a STATCOM (with optional energy storage on dc circuit). This could further help with system stability control. No potential for creating a resonance point. This is because no capacitor banks or reactors are required to generate the reactive power for a STATCOM. The STATCOM has a smaller installation space due to no capacitors or reactors required to generate MVAR, minimal or no filtering, and the availability of high capacity power semiconductor devices. Designs of systems of equal dynamic ranges have shown the STATCOM to be as much as 1/3 the area and 1/5 the volume of an SVC. A modular design of the STATCOM allows for high availability (i.e., one or more modules of the STATCOM can be out-of-service without the loss of the entire compensation system). IV. MODELING OF THE STATCOM AND ANALYSIS 4.1 Operating Principles The fundamental phasor diagram of the STATCOM terminal voltage with the voltage at PCC for an inductive load in operation, neglecting the harmonic content in the STATCOM terminal voltage, is shown in figure 7. Ideally, increasing the amplitude of the STATCOM terminal voltage Voa above the amplitude of the utility voltage Vsa causes leading (capacitive) current Ic to be injected into the system at PCC. Iac, the real component of Ic, accounts for the losses in the resistance of the inductor coil and the power electronic converter. Ideally, if the system losses can be minimized to zero, Ic_a, would become zero, and Ic would be leading at perfect quadrature. Then, Voa, which is lagging and greater than Vsa, would also be in phase with Vsa. The STATCOM in such a case operates in capacitive mode (when the load is inductive). 4.2 Modeling The modeling is carried out with the following assumptions: 1. All switches are ideal. 2. The source voltages are balanced. 3. Rs represents the converter losses and the losses of the coupling inductor. 4. The harmonic contents caused by switching action are negligible. Figure 9: V-I characteristic of a STATCOM In addition the STATCOM has other advantages compared to an SVC, such as: 113

6 4.3 Analysis of model i) STATCOM Dynamic Response Figure 10: V ref signal (dotted lines) along with the measured positive-sequence voltage v m at the STATCOM We will now verify the dynamic response of our model. Open the STATCOM dialog box and select "Display Control parameters". Verify that the "Mode of operation" is set to "Voltage regulation" and that "External control of reference voltage Vref" is selected. Also, the "droop" parameter should be set to 0.03 and the "Vac Regulator Gains" to 5 (proportional gain Kp) and 1000 (integral gain Ki). Close the STATCOM dialog block and open the "Step Vref" block (the red timer block connected to the "Vref" input of the STATCOM). This block should be programmed to modify the reference voltage Vref as follows: Initially Vref is set to 1 pu; at t=0.2 s, Vref is decreased to 0.97 pu; then at t=0.4 s, Vref is increased to 1.03; and finally at 0.6 s, Vref is set back to 1 pu. Also, make sure that the fault breaker at bus B1will not operate during the simulation (the parameters "Switching of phase A, B and C" should not be selected). Figure 11: The reactive power Q m absorbed (positive value) or generated (negative value) by the STATCOM Run the simulation and look at the "VQ_STATCOM" scope. The first graph displays the Vref signal (magenta trace) along with the measured positivesequence voltage Vm at the STATCOM bus (yellow trace). The second graph displays the reactive power Qm (yellow trace) absorbed (positive value) or generated (negative value) by the STATCOM. The signal Qref (magenta trace) is not relevant to our simulation because the STATCOM is in "Voltage regulation" and not in "Var Control". Looking at the Qm signal we can determine that the closed-loop time constant of the system is about 20 ms. This time constant depends primarily on the power system strength at bus B2 and on the programmed Vac Regulator gains of the STATCOM. To see the impact of the regulator gains, multiply the two gains of the Vac Regulator Gains by two and rerun the simulation. You should observe a much faster response with a small overshoot. Looking at the Vm and Vref signals, you can see that the STATCOM does not operate as a perfect voltage regulator ( Vm does not follow exactly the reference voltage Vref). This is due to the regulator droop (regulating slope) of 0.03 pu. For a given maximum capacitive/inductive range, this droop is used to extend the linear operating range of the STATCOM and also to ensure automatic load sharing with other voltage compensators (if any). Set the droop parameter to 0 and the voltage regulator gains back to 5 (Kp) and 1000 (Ki). If you then run a simulation, you will see that the measured voltage Vm now follows perfectly the reference voltage Vref. ii) Comparison between STATCOM & SVC under fault condition Figure 12: Measured voltage Vm on both systems We will now compare our STATCOM model with a SVC model having the same rating (+/- 100 MVA). If you double-click on the "SVC Power System" (the magenta block), you will see a SVC connected to a power grid similar to the power grid on which our STATCOM is connected. A remote fault will be simulated on both systems using a fault breaker in series with fault impedance. The value of the fault impedance has been programmed to produce 30% voltage sag at bus B2.Before running the simulation; you will first disable the "Step Vref" block by multiplying the time vector by 100. You will then program the fault breaker by selecting the parameters "Switching of phase A, B and C" and verify that the breaker is programmed (look at the "Transition times" parameter) to operate at t=0.2 s for a duration of 10 cycles. Check also that the fault breaker inside the "SVC Power System" has the same parameters. Finally, set the STATCOM droop back to its original value (0.03 pu). 114

7 Figure 13: The measured reactive power Qm generated by the SVC and the STATCOM Run the simulation and look at the "SVC vs STATCOM" scope. The first graph displays the measured voltage Vm on both systems (magenta trace for the SVC). The second graph displays the measured reactive power Qm generated by the SVC (magenta trace) and the STATCOM (yellow trace). During the 10-cycle fault, a key difference between the SVC and the STATCOM can be observed. The reactive power generated by the SVC is pu and the reactive power generated by the STATCOM is pu. We can then see that the maximum capacitive power generated by a SVC is proportional to the square of the system voltage (constant susceptance) while the maximum capacitive power generated by a STATCOM decreases linearly with voltage decrease (constant current). This ability to provide more capacitive power during a fault is one important advantage of the STATCOM over the SVC. In addition, the STATCOM will normally exhibit a faster response than the SVC because with the voltagesourced converter, the STATCOM has no delay associated with the thyristor firing (in the order of 4 ms for a SVC). [3] Reactive power control in electric systems by Timothy J.E. Miller. [4] Hingorani, N.G. and L. Gyugyi, Understanding FACTS, IEEE Press, New York. [5] Macho ski, J., Power System Dynamics and Stability, John Wiley & Sons. [6] Hamad, A.E., Analysis of Power System Stability Enhamsement by Static VAr Compensators, IEEE Transactions on power Systems, 1(4): [7] M. Sajedihir, Y. Hoseinpoor, P.Mosadegh Ardabili, T. Pirazadeh., Analysis and Simulation of a STATCOM for Midpoint Voltage Regulation of Transmission Lines, Australian Journal of Basic and Applied Sciences, 5(10): V. CONCLUSION In this Paper, We observed the voltage can be 500 KV transmission Line at Mid-point which can be used in the industrial lines as well as interconnected power grid network of transmission Lines. We have compared the output and performance of SVC and STATCOM with respect to the analytical and Simulation studies. So, from the output characteristic of SVC and STATCOM. We can conclude that both these devices improve the behavior of power system under the transient voltage condition by using MATLAB based modeling and simulation. REFERENCES [1] Zhou, E.Z., Application of static VAR compensators to Increase Power System Damping, IEEE Transactions on power system, 8(2): [2] Wang, H.F. and F. Li, Design of STATCOM Multivariable Sampled Regulator, Int. conf. on Electric Utility Deregulation and power Tech, City University, London. Copyright Vandana Publications. All Rights Reserved. 115

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Chapter 10: Compensation of Power Transmission Systems

Chapter 10: Compensation of Power Transmission Systems Chapter 10: Compensation of Power Transmission Systems Introduction The two major problems that the modern power systems are facing are voltage and angle stabilities. There are various approaches to overcome

More information

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India) ISSN: 2349-7637 (Online) RESEARCH HUB International Multidisciplinary Research Journal (RHIMRJ) Research Paper Available online at: www.rhimrj.com Modeling and Simulation of Distribution STATCOM Bhavin

More information

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Ishwar Lal Yadav Department of Electrical Engineering Rungta College of Engineering and Technology Bhilai, India

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

Brief Study on TSCS, SSSC, SVC Facts Device

Brief Study on TSCS, SSSC, SVC Facts Device Brief Study on TSCS, SSSC, SVC Facts Device Ramesh Kumari, Parveen M.Tech. Student, Department of EEE, Mata Rajkaur Institute of Engineering & technology, Rewari, Haryana, India Asst. Professor, Department

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

FACTS devices in Distributed Generation

FACTS devices in Distributed Generation FACTS devices in Distributed Generation 1 K. B. MOHD. UMAR ANSARI, 2 SATYENDRA VISHWAKARMA, 3 GOLDY SHARMA 1, 2, 3 M.Tech (Electrical Power & Energy Systems), Department of Electrical & Electronics Engineering,

More information

International Journal of Engineering & Computer Science IJECS-IJENS Vol:12 No:06 14 Smart Power Transmission System Using FACTS Device

International Journal of Engineering & Computer Science IJECS-IJENS Vol:12 No:06 14 Smart Power Transmission System Using FACTS Device International Journal of Engineering & Computer Science IJECS-IJENS Vol:12 No:06 14 Smart Power Transmission System Using FACTS Device Engr.Qazi Waqar Ali ¹, Prof.Dr.Azzam ul Asar ² 1. Sarhad University

More information

ELEMENTS OF FACTS CONTROLLERS

ELEMENTS OF FACTS CONTROLLERS 1 ELEMENTS OF FACTS CONTROLLERS Rajiv K. Varma Associate Professor Hydro One Chair in Power Systems Engineering University of Western Ontario London, ON, CANADA rkvarma@uwo.ca POWER SYSTEMS - Where are

More information

Investigation of D-Statcom Operation in Electric Distribution System

Investigation of D-Statcom Operation in Electric Distribution System J. Basic. Appl. Sci. Res., (2)29-297, 2 2, TextRoad Publication ISSN 29-434 Journal of Basic and Applied Scientific Research www.textroad.com Investigation of D-Statcom Operation in Electric Distribution

More information

Designing Of Distributed Power-Flow Controller

Designing Of Distributed Power-Flow Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 01-09 Designing Of Distributed Power-Flow Controller 1 R. Lokeswar Reddy (M.Tech),

More information

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER CSEA2012 ISSN: ; e-issn:

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER  CSEA2012 ISSN: ; e-issn: POWER FLOW CONTROL BY USING OPTIMAL LOCATION OF STATCOM S.B. ARUNA Assistant Professor, Dept. of EEE, Sree Vidyanikethan Engineering College, Tirupati aruna_ee@hotmail.com 305 ABSTRACT In present scenario,

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control Spring 2014 Instructor: Kai Sun 1 References Saadat s Chapters 12.6 ~12.7 Kundur s Sections

More information

Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System

Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System Paramjit Singh 1, Rajesh Choudhary 2 1 M.Tech, Dept, Elect, Engg, EMax group of institute, Badauli (H.R.) 2 Astt.Prof.,

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

factors that can be affecting the performance of a electrical power transmission system. Main problems which cause instability to a power system is vo

factors that can be affecting the performance of a electrical power transmission system. Main problems which cause instability to a power system is vo 2011 International Conference on Signal, Image Processing and Applications With workshop of ICEEA 2011 IPCSIT vol.21 (2011) (2011) IACSIT Press, Singapore Location of FACTS devices for Real and Reactive

More information

Smart Power Transmission System Using FACTS Device

Smart Power Transmission System Using FACTS Device International Journal of Applied Power Engineering (IJAPE) Vol. 2, No. 2, August 2013, pp. 61~70 ISSN: 2252-8792 61 Smart Power Transmission System Using FACTS Device Qazi Waqar Ali 1, Azzam ul Asar 2

More information

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3 STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College of Engineering Pattoor,

More information

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER S. Tara Kalyani 1 and G. Tulasiram Das 1 1 Department of Electrical Engineering, Jawaharlal Nehru Technological University, Hyderabad,

More information

Voltage Control and Power System Stability Enhancement using UPFC

Voltage Control and Power System Stability Enhancement using UPFC International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 10 th April, 2014 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.12, April

More information

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme I J E E E C International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626 and Computer Engineering 2(1): 7-12(2013) Transient stability improvement by using shunt FACT device (STATCOM)

More information

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT Harshkumar Sharma 1, Gajendra Patel 2 1 PG Scholar, Electrical Department, SPCE, Visnagar, Gujarat, India 2 Assistant

More information

ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER

ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER 1 PRATIK RAO, 2 OMKAR PAWAR, 3 C. L. BHATTAR, 4 RUSHIKESH KHAMBE, 5 PRITHVIRAJ PATIL, 6 KEDAR KULKARNI 1,2,4,5,6 B. Tech Electrical, 3 M. Tech Electrical

More information

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1 Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load MADHYAMA V. WANKHEDE Department Of Electrical Engineering G. H. Raisoni College of

More information

Power System Oscillations Damping and Transient Stability Enhancement with Application of SSSC FACTS Devices

Power System Oscillations Damping and Transient Stability Enhancement with Application of SSSC FACTS Devices Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2015, 2(11): 73-79 Research Article ISSN: 2394-658X Power System Oscillations Damping and Transient Stability

More information

Modeling and Simulation of STATCOM

Modeling and Simulation of STATCOM Modeling and Simulation of STATCOM Parimal Borse, India Dr. A. G. Thosar Associate Professor, India Samruddhi Shaha, India Abstract:- This paper attempts to model and simulate Flexible Alternating Current

More information

Improvement in Power Quality of Distribution System Using STATCOM

Improvement in Power Quality of Distribution System Using STATCOM Improvement in Power Quality of Distribution System Using STATCOM 1 Pushpa Chakravarty, 2 Dr. A.K. Sharma 1 M.E. Scholar, Depart. of Electrical Engineering, Jabalpur Engineering College, Jabalpur, India.

More information

Performance Improvement of Power System Using Static Synchronous Compensator (STATCOM) Priya Naikwad, Mayuri Kalmegh, Poonam Bhonge

Performance Improvement of Power System Using Static Synchronous Compensator (STATCOM) Priya Naikwad, Mayuri Kalmegh, Poonam Bhonge 2017 IJSRST Volume 3 Issue 2 Print ISSN: 235-6011 Online ISSN: 235-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 16 th February 2017 In association with International

More information

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stility Subir Datta and Anjan Kumar Roy Abstract The paper presents a new ANFIS-based controller for enhancement of voltage stility

More information

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 84 CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 4.1 INTRODUCTION Now a days, the growth of digital economy implies a widespread use of electronic equipment not only in the industrial

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Mitigating the Harmonic Distortion in Power System using SVC With AI Technique Mr. Sanjay

More information

The Influence of Thyristor Controlled Phase Shifting Transformer on Balance Fault Analysis

The Influence of Thyristor Controlled Phase Shifting Transformer on Balance Fault Analysis Vol.2, Issue.4, July-Aug. 2012 pp-2472-2476 ISSN: 2249-6645 The Influence of Thyristor Controlled Phase Shifting Transformer on Balance Fault Analysis Pratik Biswas (Department of Electrical Engineering,

More information

Application of SVCs to Satisfy Reactive Power Needs of Power Systems

Application of SVCs to Satisfy Reactive Power Needs of Power Systems 1 Application of SVCs to Satisfy Reactive Power Needs of Power Systems H. K. Tyll, Senior Member, IEEE Abstract In the early days of power transmission problems like voltage deviation during load changes

More information

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: Volume 8 Issue 1 APRIL 2014.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: Volume 8 Issue 1 APRIL 2014. WIND TURBINE VOLTAGE STABILITY USING FACTS DEVICE PRAVEEN KUMAR.R# and C.VENKATESH KUMAR* #M.E.POWER SYSTEMS ENGINEERING, EEE, St. Joseph s college of engineering, Chennai, India. *Asst.Professor, Department

More information

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System 1 Leena N C, 2 B. Rajesh Kamath, 3 Shri Harsha 1,2,3 Department of EEE, Sri Siddhartha Institute of Technology, Tumkur-572105,

More information

Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC

Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC A.Naveena, M.Venkateswara Rao 2 Department of EEE, GMRIT, Rajam Email id: allumalla.naveena@ gmail.com,

More information

Fundamental Concepts of Dynamic Reactive Compensation. Outline

Fundamental Concepts of Dynamic Reactive Compensation. Outline 1 Fundamental Concepts of Dynamic Reactive Compensation and HVDC Transmission Brian K. Johnson University of Idaho b.k.johnson@ieee.org 2 Outline Objectives for this panel session Introduce Basic Concepts

More information

A NOVEL APPROACH ON INSTANTANEOUS POWER CONTROL OF D-STATCOM WITH CONSIDERATION OF POWER FACTOR CORRECTION

A NOVEL APPROACH ON INSTANTANEOUS POWER CONTROL OF D-STATCOM WITH CONSIDERATION OF POWER FACTOR CORRECTION IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 7, Jul 2014, 13-18 Impact Journals A NOVEL APPROACH ON INSTANTANEOUS

More information

Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices

Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices Aarti Rai Electrical & Electronics Engineering, Chhattisgarh Swami Vivekananda Technical University,

More information

Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC)

Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC) Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC) K. Manoz Kumar Reddy (Associate professor, Electrical and Electronics Department, Sriaditya Engineering College, India)

More information

Volume I Issue VI 2012 September-2012 ISSN

Volume I Issue VI 2012 September-2012 ISSN A 24-pulse STATCOM Simulation model to improve voltage sag due to starting of 1 HP Induction-Motor Mr. Ajay Kumar Bansal 1 Mr. Govind Lal Suthar 2 Mr. Rohan Sharma 3 1 Associate Professor, Department of

More information

Comparison of FACTS Devices for Power System Stability Enhancement

Comparison of FACTS Devices for Power System Stability Enhancement Comparison of FACTS Devices for Power System Stability Enhancement D. Murali Research Scholar in EEE Dept., Government College of Engineering, Bargur-635 104, Tamilnadu, India. Dr. M. Rajaram Professor

More information

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD A. F. Huweg, S. M. Bashi MIEEE, N. Mariun SMIEEE Universiti Putra Malaysia - Malaysia norman@eng.upm.edu.my

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

Interline Power Flow Controller: Review Paper

Interline Power Flow Controller: Review Paper Vol. (0) No. 3, pp. 550-554 ISSN 078-365 Interline Power Flow Controller: Review Paper Akhilesh A. Nimje, Chinmoy Kumar Panigrahi, Ajaya Kumar Mohanty Abstract The Interline Power Flow Controller (IPFC)

More information

Transient Stability Enhancement with Application of FACTS Devices

Transient Stability Enhancement with Application of FACTS Devices Transient Stability Enhancement with Application of FACTS Devices Joel.R. Sutter, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya E-mail: joelruttosutter@gmail.com

More information

Power Quality and the Need for Compensation

Power Quality and the Need for Compensation Power Quality and the Need for Compensation Risha Dastagir 1, Prof. Manish Khemariya 2, Prof. Vivek Rai 3 1 Research Scholar, 2,3 Asst. Professor, Lakshmi Narain College of Technology Bhopal, India Abstract

More information

Performance and Analysis of Reactive Power Compensation by Unified Power Flow Controller

Performance and Analysis of Reactive Power Compensation by Unified Power Flow Controller Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol. 3, No. 3, September 2015, pp. 141~149 ISSN: 2089-3272 141 Performance and Analysis of Reactive Power Compensation by Unified Power

More information

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC)

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2530-2536 ISSN: 2249-6645 Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) B. M. Naveen Kumar Reddy 1, Mr. G. V. Rajashekar 2,

More information

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Anju Gupta Department of Electrical and Electronics Engg. YMCA University of Science and Technology anjugupta112@gmail.com P.

More information

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 11 (November 2015), PP.13-18 Modelling Of Various Facts Devices for Optimal

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter Journal of Engineering Science and Technology Review 3 (1) (2010) 65-69 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Intelligence Controller for STATCOM Using Cascaded

More information

Analysis of FACTS Devices in Transmission System

Analysis of FACTS Devices in Transmission System Volume 02 - Issue 02 February 2017 PP. 22-27 Analysis of FACTS Devices in Transmission System Anand K. Singh, Harshad M. Mummadwar PG Scholar-Electrical Engineering (IPS)-DMIETR-Wardha, PG Scholar-Electrical

More information

Keywords: Stability, Power transfer, Flexible a.c. transmission system (FACTS), Unified power flow controller (UPFC). IJSER

Keywords: Stability, Power transfer, Flexible a.c. transmission system (FACTS), Unified power flow controller (UPFC). IJSER International Journal of Scientific & Engineering Research, Volume, Issue, March-4 74 ISSN 9-8 IMPACT OF UPFC ON SWING, VOLTAGE STABILITY AND POWER TRANSFER CAPABILITY IN TRANSMISSION SYSTEM Mr. Rishi

More information

Power Control Scheme of D-Statcom

Power Control Scheme of D-Statcom ISSN : 48-96, Vol. 4, Issue 6( Version 3), June 04, pp.37-4 RESEARCH ARTICLE OPEN ACCESS Power Control Scheme of D-Statcom A. Sai Krishna, Y. Suri Babu (M. Tech (PS)) Dept of EEE, R.V.R. & J.C. College

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC)

Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC) International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 1 Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC) K. Manoz

More information

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 25-33 Application of Fuzzy Logic Controller in UPFC

More information

Chapter-5 MODELING OF UNIFIED POWER FLOW CONTROLLER. There are a number of FACTS devices that control power system

Chapter-5 MODELING OF UNIFIED POWER FLOW CONTROLLER. There are a number of FACTS devices that control power system 94 Chapter-5 MODELING OF UNIFIED POWER FLOW CONTROLLER 5.1 Introduction There are a number of FACTS devices that control power system parameters to utilize the existing power system and also to enhance

More information

COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR)

COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR) 7 February 2018 RM Zavadil COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR) Brief Overview of Sub-Synchronous Resonance Series

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 A Statcom-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System B.T.RAMAKRISHNARAO*, B.ESWARARAO**, L.NARENDRA**, K.PRAVALLIKA** * Associate.Professor, Dept.of EEE, Lendi Inst.Of

More information

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X 2017 IJSRST Volume 3 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 16 th February 2017 In association with International

More information

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Design Strategy for Optimum Rating Selection of Interline D-STATCOM International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 3 ǁ March. 2013 ǁ PP.12-17 Design Strategy for Optimum Rating Selection of Interline

More information

Reactive Power Compensation Technologies: State-of-the-Art Review

Reactive Power Compensation Technologies: State-of-the-Art Review Reactive Power Compensation Technologies: State-of-the-Art Review JUAN DIXON, SENIOR MEMBER, IEEE, LUIS MORÁN, FELLOW, IEEE, JOSÉ RODRÍGUEZ, SENIOR MEMBER, IEEE, AND RICARDO DOMKE Invited Paper This paper

More information

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC)

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Girish Kumar Prasad 1, Dr. Malaya S Dash 2 1M-Tech Scholar, Dept. of Electrical & Electronics Engineering, Technocrats

More information

Available ONLINE

Available ONLINE Available ONLINE www.ijart.org IJART, Vol. 2 Issue 3, 2012,94-98 ISSN NO: 6602 3127 R E S E A R C H A R T II C L E Enhancement Of Voltage Stability And Power Oscillation Damping Using Static Synchronous

More information

Protection from Voltage Sags and Swells by Using FACTS Controller

Protection from Voltage Sags and Swells by Using FACTS Controller Protection from Voltage Sags and Swells by Using FACTS Controller M.R.Mohanraj 1, V.P.Suresh 2, G.Syed Zabiyullah 3 Assistant Professor, Department of Electrical and Electronics Engineering, Excel College

More information

Development and Simulation of Voltage Regulation System of A.C. Transmission lines using Static Synchronous Compensator (STATCOM)

Development and Simulation of Voltage Regulation System of A.C. Transmission lines using Static Synchronous Compensator (STATCOM) Development and Simulation of Voltage Regulation System of A.C. Transmission lines using Static Synchronous Compensator (STATCOM) Avinash Kumar Nishad 1, Ashish Sahu 2 1 M.E. Scholar, Department of Electrical

More information

Voltage Level and Transient Stability Enhancement of a Power System Using STATCOM

Voltage Level and Transient Stability Enhancement of a Power System Using STATCOM Voltage Level and Transient Stability Enhancement of a Power System Using STATCOM Md. Quamruzzaman 1, Assistant professor, Dept of EEE, Chittagong University of Engineering and Technology, Bangladesh..

More information

Power Quality Improvement using Hysteresis Voltage Control of DVR

Power Quality Improvement using Hysteresis Voltage Control of DVR Power Quality Improvement using Hysteresis Voltage Control of DVR J Sivasankari 1, U.Shyamala 2, M.Vigneshwaran 3 P.G Scholar, Dept of EEE, M.Kumarasamy college of Engineering, Karur, Tamilnadu, India

More information

IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs

IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs Mr. P. Biswas, ABB ABSTRACT The Indian Railways employ single phase 25 kv Traction sub-station (TSS) for supplying power

More information

VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System

VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System Rajkumar Pal 1, Rajesh Kumar 2, Abhay Katyayan 3 1, 2, 3 Assistant Professor, Department of Electrical

More information

Address for Correspondence

Address for Correspondence Research Paper COMPENSATION BY TCSC IN OPEN LOOP CONTROL SYSTEM 1* Sunita Tiwari, S.P. Shukla Address for Correspondence 1* Sr. Lecturer, Polytechnic,Durg Professor, Bhilai Institute of Technology, Durg

More information

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation RESEARCH ARTICLE OPEN ACCESS Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation * G.Ravinder Reddy Assistant Professor,**M.Thirupathaiah * Assistant Professor. (Deparment of Electrical

More information

Analysis of Power System Oscillation Damping & Voltage Stability Improvement Using SSSC in A Multimachine System

Analysis of Power System Oscillation Damping & Voltage Stability Improvement Using SSSC in A Multimachine System nternational Journal of Engineering Research & Technology (JERT) SSN: 2278-8 Vol. 3 ssue 7, July - 24 Analysis of Power System Oscillation Damping & Voltage Stability mprovement Using SSSC in A Multimachine

More information

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM)

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM) International Journal of Advanced Computer Research (ISSN (print): 49777 ISSN (online): 77797) Volume Number4 Issue7 December Transfer Capability Enhancement of Transmission Line using Static Synchronous

More information

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Dr. Jagdish Kumar, PEC University of Technology, Chandigarh Abstract the proper selection of values of energy storing

More information

Performance of DVR & Distribution STATCOM in Power Systems

Performance of DVR & Distribution STATCOM in Power Systems International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Volume: 3 Issue: 2 83 89 Performance of DVR & Distribution STATCOM in Power Systems Akil Ahemad Electrical

More information

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Mitigating Voltage Sag Using Dynamic Voltage Restorer Mitigating Voltage Sag Using Dynamic Voltage Restorer Sumit A. Borakhade 1, R.S. Pote 2 1 (M.E Scholar Electrical Engineering, S.S.G.M.C.E. / S.G.B.A.U. Amravati, India) 2 (Associate Professor, Electrical

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

Long lasting transients in power filter circuits

Long lasting transients in power filter circuits Computer Applications in Electrical Engineering Vol. 12 2014 Long lasting transients in power filter circuits Jurij Warecki, Michał Gajdzica AGH University of Science and Technology 30-059 Kraków, Al.

More information

Damping of Sub synchronous Resonance Using SSSC Based PWM Hysteresis Controller

Damping of Sub synchronous Resonance Using SSSC Based PWM Hysteresis Controller Damping of Sub synchronous Resonance Using SSSC Based PWM Hysteresis Controller E.Kumaresan*, S.Parthasarathy, B.Vidya Department of Electrical& Electronics Engineering Valliammai Engineering College,

More information

CHAPTER 3 MODELLING OF PV SOLAR FARM AS STATCOM

CHAPTER 3 MODELLING OF PV SOLAR FARM AS STATCOM 47 CHAPTER 3 MODELLING OF PV SOLAR FARM AS STATCOM 3.1 INTRODUCTION Today, we are mostly dependent on non renewable energy that have been and will continue to be a major cause of pollution and other environmental

More information

Optimal Placement of Shunt Connected Facts Device in a Series Compensated Long Transmission Line

Optimal Placement of Shunt Connected Facts Device in a Series Compensated Long Transmission Line Journal of Agriculture and Life Sciences Vol. 1, No. 1; June 2014 Optimal Placement of Shunt Connected Facts Device in a Series Compensated Long Transmission Line Sudhakar. Muthyala EEE Dept. University

More information

CONTROLLING A STATIC SYNCHRONOUS COMPENSATOR WITH SUPERCONDUCTING MAGNETIC ENERGY STORAGE FOR APPLICATIONS ON PRIMARY FREQUENCY CONTROL

CONTROLLING A STATIC SYNCHRONOUS COMPENSATOR WITH SUPERCONDUCTING MAGNETIC ENERGY STORAGE FOR APPLICATIONS ON PRIMARY FREQUENCY CONTROL CONTROLLING A STATIC SYNCHRONOUS COMPENSATOR WITH SUPERCONDUCTING MAGNETIC ENERGY STORAGE FOR APPLICATIONS ON PRIMARY FREQUENCY CONTROL M. G. MOLINA and P. E. MERCADO Consejo Nacional de Investigaciones

More information

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM B.Veerraju M.Tech Student (PE&ED) MIST Sathupally, Khammam Dist, India M.Lokya Assistant Professor in EEE Dept.

More information

Multilevel Inverter Based Statcom For Power System Load Balancing System

Multilevel Inverter Based Statcom For Power System Load Balancing System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 36-43 www.iosrjournals.org Multilevel Inverter Based Statcom For Power System Load Balancing

More information

Power Quality Compensation by using UPFC

Power Quality Compensation by using UPFC ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 2) Available online at: www.ijariit.com Power Quality Compensation by using UPFC P. Madhumathi madhumathi9196@gmail.com Vivekanada College of Engineering

More information

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation Slide 1 Excerpt from the BoA BoA: Book of Acronyms MSC/MSR: Mechanically

More information

CHAPTER 2 MODELING OF FACTS DEVICES FOR POWER SYSTEM STEADY STATE OPERATIONS

CHAPTER 2 MODELING OF FACTS DEVICES FOR POWER SYSTEM STEADY STATE OPERATIONS 19 CHAPTER 2 MODELING OF FACTS DEVICES FOR POWER SYSTEM STEADY STATE OPERATIONS 2.1 INTRODUCTION The electricity supply industry is undergoing a profound transformation worldwide. Maret forces, scarcer

More information

Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link.

Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link. Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link. Mr.S.B.Dandawate*, Mrs.S.L.Shaikh** *,**(Department of Electrical Engineering, Walchand College of

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online): 2321-0613 Reactive Power Compensation by using FACTS Devices under Non- Sinusoidal Condition by

More information

SIMULATION RESULTS OF EIGHT BUS SYSTEM USING PUSH-PULL INVERTER BASED STATCOM

SIMULATION RESULTS OF EIGHT BUS SYSTEM USING PUSH-PULL INVERTER BASED STATCOM SIMULATION RESULTS OF EIGHT BUS SYSTEM USING PUSH-PULL INVERTER BASED STATCOM N. USHA, RESEARCH SCHOLAR, JNTU, ANANTAPUR Prof.M.Vijaya kumar, Department of Electrical & Electronics Engineering, JNTU, Anantapur

More information

POWER SYSTEM PERFORMANCE ENHANCEMENT USING FLEXIBLE AC TRANSMISSION SYSTEM DEVICES

POWER SYSTEM PERFORMANCE ENHANCEMENT USING FLEXIBLE AC TRANSMISSION SYSTEM DEVICES POWER SYSTEM PERFORMANCE ENHANCEMENT USING FLEXIBLE AC TRANSMISSION SYSTEM DEVICES by SARAVANA KUMAR RAJENDRAN, B. E. A Thesis submitted to the School of Graduate Studies in partial fulfillment of the

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1787 Performance analysis of D-STATCOM with Consideration of Power Factor Correction M.Bala krishna Naik 1 I.Murali

More information

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research International Journal of Engineering & Science Research POWER QUALITY IMPROVEMENT BY USING DSTATCOM DURING FAULT AND NONLINEAR CONDITIONS T. Srinivas* 1, V.Ramakrishna 2, Eedara Aswani Kumar 3 1 M-Tech

More information

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 5 (Nov. - Dec. 2013), PP 41-45 DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information