Basic Optical Components

Size: px
Start display at page:

Download "Basic Optical Components"

Transcription

1 Basic Optical Components Jorge M. Finochietto Córdoba 2012 LCD EFN UNC Laboratorio de Comunicaciones Digitales Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba, Argentina

2 Optical Networks Seminar Overview Basic Components Network Elements Network Design Network Protocols Transport and Grooming Optical Components 2 / 51

3 Outline 1 Passive Devices 2 Active Devices Optical Components 3 / 51

4 Outline 1 Passive Devices Fibers Couplers Isolators and Circulators Filters and Multiplexers 2 Active Devices Optical Components Passive Devices 4 / 51

5 Outline 1 Passive Devices Fibers Couplers Isolators and Circulators Filters and Multiplexers 2 Active Devices Optical Components Passive Devices Fibers 5 / 51

6 Optical Fiber Optical Fiber Guides optical waves (wavelengths) by total internal reflection Made of glass or plastic: core (n 1 ) + cladding (n 2 ) + coating Refractive index (ratio of speed of light): n 1 1,45 n 1 n 2 Behaves as a waveguide supporting different propagation modes Multi-mode (MM) rate distance limited by modal dispersion Single-mode (SM) rate distance limited by chromatic dispersion and nonlinear effects Optical Components Passive Devices Fibers 6 / 51

7 Optical Fiber Attenuation Optical Components Passive Devices Fibers 7 / 51

8 Outline 1 Passive Devices Fibers Couplers Isolators and Circulators Filters and Multiplexers 2 Active Devices Optical Components Passive Devices Couplers 8 / 51

9 Couplers Concept Used to combine or split optical signals Made by fusing fibers together, or using waveguides in integrated optics Directional coupling: incoming signal power is distributed among output ports Optical Components Passive Devices Couplers 9 / 51

10 Couplers Basic Wavelenght-Independent 2 2 Model A 2 2 coupler consists of 2 input ports and 2 output ones Output power at port i (Pi O ) can be modelled as a function of the input power at each port j (Pj O ) as follows P O 1 = αp I 1 + (1 α)p I 2 P O 2 = (1 α)p I 1 + αp I 2 An excess loss β above the coupling loss α needs to be considered [ ] P1 O = αp1 I + (1 α)p2 I β [ ] P2 O = (1 α)p1 I + αp2 I β α is assumed the same λ k (wavelength-independent) Optical Components Passive Devices Couplers 10 / 51

11 Applications Add/Drop Couplers Used to drop a copy of an incoming signal add another one to the path Implemented by 3dB 2 2 coupler (α = 0,5) Half of the power of each input appears at each output 50/50 Optical Components Passive Devices Couplers 11 / 51

12 Applications Add/Drop Ring Network (Best Case) N nodes interconnected to a commong optical ring by means of add/drop couplers Each node transmits to its forward neighbor Source and sinks separated by 2 couplers Source signal attenuated by 6dB at sink node if no fiber loss is considered Optical Components Passive Devices Couplers 12 / 51

13 Applications Add/Drop Ring Network (Worst Case) N nodes interconnected to a commong optical ring by means of add/drop couplers Each node transmits to its backward neighbor Source and sinks separated by N couplers Source signal attenuated by N 3dB at sink node if no fiber loss is considered Optical Components Passive Devices Couplers 13 / 51

14 Applications Star Couplers N nodes interconnected to a N N star coupler A star coupler can be constructed by interconnecting 3dB 2 2 couplers Each node transmits to any neighbor Source and sinks separated by log 2 (N) couplers Source signal attenuated by log 2 (N) 3dB at sink node if no fiber loss is considered Optical Components Passive Devices Couplers 14 / 51

15 Applications Tap Used to tap off a small portion of the power from a ligth stream for monitoring purposes Designed with values of α close to 1 ( ) Considers only one active input port 90/10 Optical Components Passive Devices Couplers 15 / 51

16 Applications Splitter 1 N Distributes one transmitted signal among N receivers One Nth of the power of the input appears at each output P O i = PI N (i.e.; α = 1/N) Optical Components Passive Devices Couplers 16 / 51

17 Applications Combiner N 1 Combines at most N transmitted signals into a single one Since couplers are reciprocal devices, both splitters and couplers are the same device but working on different directions? Optical Components Passive Devices Couplers 17 / 51

18 Applications Combiner N 1 Combines at most N transmitted signals into a single one Since couplers are reciprocal devices, both splitters and couplers are the same device but working on different directions Power loss Optical Components Passive Devices Couplers 18 / 51

19 Couplers Basic Wavelenght-Dependent 2 2 Model Coupling ratio α can be designed wavelength dependent Output power at port i (Pi O (λ i )) can be modelled as a function of the input power at each port j (Pj O ) as follows P O 1 = α 1 P I 1(λ 1 ) + (1 α 2 )P I 2(λ 2 ) P O 2 = (1 α 1 )P I 1(λ 1 ) + α 2 P I 2(λ 2 ) Note that if α 1 + α 2 = 1 ] P1 O = α 1 [P 1(λ I 1 ) + P2(λ I 2 ) [ ] P2 O = (1 α 1 ) P1(λ I 1 ) + P2(λ I 2 ) A lossless splitter/combiner for α 1 1 (aka WDM coupler) Optical Components Passive Devices Couplers 19 / 51

20 Use Case Unidirectional Passive Optical Network A unidirectional Passive Optical Network (PON) uses 2 wavelengths 1500nm downstream data 1310nm upstream data Both wavelengths can be combined/splitted without loss However, both wavelengths are distributed/gathered with loss Head Node End Nodes Optical Components Passive Devices Couplers 20 / 51

21 Outline 1 Passive Devices Fibers Couplers Isolators and Circulators Filters and Multiplexers 2 Active Devices Optical Components Passive Devices Isolators and Circulators 21 / 51

22 Isolators and Circulators Isolators 1 2-port nonreciprocal passive device that behaves as diode 2 Allows transmission in only one direction, while blocks it in the other direction. 3 Key parameters 1 Insertion loss: loss in the forward direction ( 1dB) 2 Isolation: loss in the return direction ( 40 50dB) 4 Used to prevent reflections from entering devices like optical amplifiers and lasers Optical Components Passive Devices Isolators and Circulators 22 / 51

23 Isolators and Circulators Circulators 1 Multi-port nonreciprocal passive device that behaves as a sequential switch 2 Allows transmission in only one direction, while blocks it in others direction. 3 A N-port circulator can be modelled by the output signal at port i (λ O i ) as a function of the input signal at port j (λ O j ) as follows λ O i = λ I j where j = (i + 1) %N Optical Components Passive Devices Isolators and Circulators 23 / 51

24 Application Wavelength Add/Drop Couplers can implement add/drop functions on different wavelengths with datapath penalty (3dB loss) 50/50 Optical Components Passive Devices Isolators and Circulators 24 / 51

25 Application Wavelength Add/Drop Couplers can implement add/drop functions on different wavelengths with datapath penalty (3dB loss) Interference Optical Components Passive Devices Isolators and Circulators 25 / 51

26 Application Wavelength Add/Drop Couplers can implement add/drop functions on different wavelengths with datapath penalty (3dB loss) Circulators can implement add/drop on the same wavelength without datapath loss Optical Components Passive Devices Isolators and Circulators 26 / 51

27 Application Wavelength Add/Drop Couplers can implement add/drop functions on different wavelengths with datapath penalty (3dB loss) Circulators can implement add/drop on the same wavelength without datapath loss Optical Components Passive Devices Isolators and Circulators 27 / 51

28 Application Wavelength Add/Drop Couplers can implement add/drop functions on different wavelengths with datapath penalty (3dB loss) Circulators can implement add/drop on the same wavelength without datapath loss? Optical Components Passive Devices Isolators and Circulators 28 / 51

29 Application Wavelength Add/Drop Couplers can implement add/drop functions on different wavelengths with datapath penalty (3dB loss) Circulators can implement add/drop on the same wavelength without datapath loss However, circulators cannot add/drop single wavelengths Optical Components Passive Devices Isolators and Circulators 29 / 51

30 Use Case Bidirectional Passive Optical Network A bidirectional Passive Optical Network (PON) uses the same wavelength for downstream and upstream data Head Node End Nodes Optical Components Passive Devices Isolators and Circulators 30 / 51

31 Outline 1 Passive Devices Fibers Couplers Isolators and Circulators Filters and Multiplexers 2 Active Devices Optical Components Passive Devices Filters and Multiplexers 31 / 51

32 Filters and Multiplexers Concepts Enable wavelength selection functions Filtering: 2-port (only select) or 3-port (select-and-reject) Multiplexing and demultiplexing Optical Components Passive Devices Filters and Multiplexers 32 / 51

33 Filters and Multiplexers Fiber Bragg Grating (FBG) Transparent device with a periodic variation of the refractive index, so that a large reflectivity may be reached in some wavelength range Optical Components Passive Devices Filters and Multiplexers 33 / 51

34 Applications Add/Drop A drop function can be implemented by concatenating a circulator and a FBG An add function could be implemented by? Optical Components Passive Devices Filters and Multiplexers 34 / 51

35 Applications Add/Drop A drop function can be implemented by concatenating a circulator and a FBG An add function could be implemented by a circulator: no loss but blocks in-transit wavelengths Optical Components Passive Devices Filters and Multiplexers 35 / 51

36 Applications Add/Drop A drop function can be implemented by concatenating a circulator and a FBG An add function could be implemented by a circulator: no loss but blocks in-transit wavelengths a coupler: loss but in-transit wavelengths pass through Optical Components Passive Devices Filters and Multiplexers 36 / 51

37 Filters and Multiplexers Arrayed Waveguide Grating (AWG) Made by 2 couplers interconnected by an array of waveguides An 1 N wavelength (de)multiplexer can be implemented 1 Incoming signal (multiple wavelengths) 2 Signal distribution to waveguides with different lengths 3 Different phase shifts are aplied to each copy of the signal 4 Interference at output ports 5 Each different wavelength is constructed No loss introduced on the datapath (ideally) Optical Components Passive Devices Filters and Multiplexers 37 / 51

38 Applications Add/Drop All wavelengths can be demultiplexed and multiplexed again with no loss The drop wavelength is terminated on a receiver The add wavelength is originated at a transmitter Optical Components Passive Devices Filters and Multiplexers 38 / 51

39 Applications Add/Drop All wavelengths can be demultiplexed and multiplexed again with no loss The drop wavelength is terminated on a receiver The add wavelength is originated at a transmitter More than one wavelength can be dropped/added Optical Components Passive Devices Filters and Multiplexers 39 / 51

40 Outline 1 Passive Devices 2 Active Devices Switches Converters Optical Components Active Devices 40 / 51

41 Outline 1 Passive Devices 2 Active Devices Switches Converters Optical Components Active Devices Switches 41 / 51

42 Switches Static Crossconnect Multiplexers can be used to build static crossconnects Fixed capability of routing wavelengths over different ports As a result provisioning is hardwired (patch panel) No (fast) protection at all Optical Components Active Devices Switches 42 / 51

43 Switches Reconfigurable Crossconnect Optical switches enable reconfigurable wavelength crossconnect functions Used for either provisioning and/or protection Switches must be nonblocking An unused input port can be connected to any unsed output port Optical Components Active Devices Switches 43 / 51

44 Switches Spanke Architecture An N N switch made by N (1 N) and N (N 1) Strict-sense nonblocking (i.e., regardless of previous connections) Attractive since 1 N elements can be built directly by means of MEMS (movable mirrors), or 1 N splitter plus ON/OFF optical gates (e.g, SOA) Optical Components Active Devices Switches 44 / 51

45 Switches Wavelength Contention Nonblocking switches do not guarantee successful crossconnects Wavelength contention can occur on output ports Same wavelength on different ports (i.e., fibers) Optical Components Active Devices Switches 45 / 51

46 Switches Wavelength Contention Nonblocking switches do not guarantee successful crossconnects Wavelength contention can occur on output ports Same wavelength on same port (i.e., fiber) Optical Components Active Devices Switches 46 / 51

47 Outline 1 Passive Devices 2 Active Devices Switches Converters Optical Components Active Devices Converters 47 / 51

48 Converters Wavelength Converters Converts data from one wavelength to another one Applications Short-Reach (1310nm) to Long-Reach (transparent) transponder Improve network utilization (more later) Classification Fixed-input - Fixed-output Fixed-input - Variable-output Variable-input - Fixed-output Variable-input - Variable-output Simplest approach: optoelectronic conversion Optical Components Active Devices Converters 48 / 51

49 Converters Optoelectronic Converters Different levels of transparency a) 1R: only apmlification b) 2R: amplification + reshaping c) 3R: amplification + reshaping + retiming Optical Components Active Devices Converters 49 / 51

50 Converters Wavelength Conversion Nonblocking switches do not guarantee successful crossconnects Wavelength conversion can be done at output ports Same wavelength on same output port (i.e., fiber) Optical Components Active Devices Converters 50 / 51

51 Basic Optical Components Jorge M. Finochietto Córdoba 2012 LCD EFN UNC Laboratorio de Comunicaciones Digitales Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba, Argentina

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 LECTURE-1 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film

More information

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

More information

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) !

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) ! Components of Optical Networks Based on: Rajiv Ramaswami, Kumar N. Sivarajan, Optical Networks A Practical Perspective 2 nd Edition, 2001 October, Morgan Kaufman Publishers Optical Components! Couplers!

More information

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film filters, active

More information

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Optical Communications and Networking 朱祖勍. Sept. 25, 2017 Optical Communications and Networking Sept. 25, 2017 Lecture 4: Signal Propagation in Fiber 1 Nonlinear Effects The assumption of linearity may not always be valid. Nonlinear effects are all related to

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - I Part - I Objectives In this lecture you will learn the following WDM Components Optical Couplers Optical Amplifiers Multiplexers (MUX) Insertion

More information

Chapter 10 WDM concepts and components

Chapter 10 WDM concepts and components Chapter 10 WDM concepts and components - Outline 10.1 Operational principle of WDM 10. Passive Components - The x Fiber Coupler - Scattering Matrix Representation - The x Waveguide Coupler - Mach-Zehnder

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro Fiber Bragg Gratings for DWDM Optical Networks Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro Overview Introduction. Fabrication. Physical properties.

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - II Objectives In this lecture you will learn the following OADM Optical Circulators Bidirectional OADM using Optical Circulators and FBG Optical Cross

More information

Fiber-based components. by: Khanh Kieu

Fiber-based components. by: Khanh Kieu Fiber-based components by: Khanh Kieu Projects 1. Handling optical fibers, numerical aperture 2. Measurement of fiber attenuation 3. Connectors and splices 4. Free space coupling of laser into fibers 5.

More information

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach Journal of the Optical Society of Korea Vol. 18, No. 5, October 014, pp. 46-441 ISSN: 16-4776(Print) / ISSN: 09-6885(Online) DOI: http://dx.doi.org/10.807/josk.014.18.5.46 Colorless Amplified WDM-PON Employing

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

More information

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong Page of 0 0 0 0 0 0 Schemes of Optical Power Splitter Nodes for Direct ONU-ONU Intercommunication Minhui Yan, Qing-Yang Xu, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong Department of Electrical and

More information

Fibre Optic Sensors: basic principles and most common applications

Fibre Optic Sensors: basic principles and most common applications SMR 1829-21 Winter College on Fibre Optics, Fibre Lasers and Sensors 12-23 February 2007 Fibre Optic Sensors: basic principles and most common applications (PART 2) Hypolito José Kalinowski Federal University

More information

Passive Optical Components for Optical Fiber Transmission

Passive Optical Components for Optical Fiber Transmission Passive Optical Components for Optical Fiber Transmission Norio Kashima Artech House Boston London Contents Preface Part I Basic Technologies 1 Chapter 1 Introduction to Passive Optical Components 3 1.1

More information

WDM Concept and Components. EE 8114 Course Notes

WDM Concept and Components. EE 8114 Course Notes WDM Concept and Components EE 8114 Course Notes Part 1: WDM Concept Evolution of the Technology Why WDM? Capacity upgrade of existing fiber networks (without adding fibers) Transparency:Each optical channel

More information

Wavelength Division Multiplexing Passive Optical Network (WDM-PON) technologies for future access networks

Wavelength Division Multiplexing Passive Optical Network (WDM-PON) technologies for future access networks JOURNAL OF ENGINEERING RESEARCH AND TECHNOLOGY, VOLUME 2, ISSUE 1, MARCH 2015 Wavelength Division Multiplexing Passive Optical Network (WDM-PON) technologies for future access networks Fady I. El-Nahal

More information

Progress Toward Fast Reconfigurable Optical Cross-connect

Progress Toward Fast Reconfigurable Optical Cross-connect Progress Toward Fast Reconfigurable Optical Cross-connect Prasanna A. Gamage, Huug e Waardt COBRA Research Institute, Technical niversity of Eindhoven. In Co-operation with SurfNet. Outline Overview Existing

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE4691-111 S - FINAL EXAMINATION, April 2017 DURATION: 2.5 hours Optical Communication and Networks Calculator Type: 2 Exam Type: X Examiner:

More information

ANALYSIS OF BIDIRECTIONAL LONG REACH WDM PON

ANALYSIS OF BIDIRECTIONAL LONG REACH WDM PON ANALYSIS OF BIDIRECTIONAL LONG REACH WDM PON Surya M, Gokul P.G, mohansurya99@gmail.com Abstract Passive Optical Network (PON) implementing WDM plays a vital role in telecommunication system, due to its

More information

Introduction and concepts Types of devices

Introduction and concepts Types of devices ECE 6323 Introduction and concepts Types of devices Passive splitters, combiners, couplers Wavelength-based devices for DWDM Modulator/demodulator (amplitude and phase), compensator (dispersion) Others:

More information

Optical Transport Technologies and Trends

Optical Transport Technologies and Trends Optical Transport Technologies and Trends A Network Planning Perspective Sept 1, 2014 Dion Leung, Director of Solutions and Sales Engineering dleung@btisystem.com About BTI Customers 380+ worldwide in

More information

Strictly Non-Blocking Optical Cross Connect for WDM Wavelength Path Networks

Strictly Non-Blocking Optical Cross Connect for WDM Wavelength Path Networks Strictly Non-Blocking Optical Cross Connect for WDM Wavelength Path Networks P. S. André 1, 2, J. Pinto 1, A. J. Teixeira 1,3, T. Almeida 1, 4, A. Nolasco Pinto 1, 3, J. L. Pinto 1, 2, F. Morgado 4 and

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG http:// PERFORMANCE EVALUATION OF 1.25 16 GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG Arashdeep Kaur 1, Ramandeep Kaur 2 1 Student, M.Tech, Department of Electronics and Communication

More information

A WDM passive optical network enabling multicasting with color-free ONUs

A WDM passive optical network enabling multicasting with color-free ONUs A WDM passive optical network enabling multicasting with color-free ONUs Yue Tian, Qingjiang Chang, and Yikai Su * State Key Laboratory of Advanced Optical Communication Systems and Networks, Department

More information

PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK

PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK Mukesh Kumar 1, Dr. Ajay Pal Singh 2 Department of Electronics and Communication Engineering, Sant Longowal Institute of Engineering

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq Unit-1 Part-A FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] DEPARTMENT OF ELECTRONICS AND

More information

Enabling Devices using MicroElectroMechanical System (MEMS) Technology for Optical Networking

Enabling Devices using MicroElectroMechanical System (MEMS) Technology for Optical Networking Enabling Devices using MicroElectroMechanical System (MEMS) Technology for Optical Networking December 17, 2007 Workshop on Optical Communications Tel Aviv University Dan Marom Applied Physics Department

More information

OPC1600 MUX WDM OADM SPLITTER

OPC1600 MUX WDM OADM SPLITTER OPC1600 MUX WDM OADM SPLITTER OPC 1600 passive optical splitting platform The OPC 1600 optical splitting platform could, without affecting the original link, fully duplicates one or more copies of data

More information

from ocean to cloud SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU

from ocean to cloud SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU Shigui Zhang, Yan Wang, Hongbo Sun, Wendou Zhang and Liping Ma sigurd.zhang@huaweimarine.com Huawei Marine Networks, Hai-Dian District, Beijing, P.R. China,

More information

Fiber Joints and Couplers; Cable Design. Dr. Mohammad Faisal Dept. of EEE, BUET

Fiber Joints and Couplers; Cable Design. Dr. Mohammad Faisal Dept. of EEE, BUET Fiber Joints and Couplers; Cable Design Dr. Mohammad Faisal Dept. of EEE, BUET Fiber Joints and Couplers For fiber-fiber connection we need joints which are of two major types Fiber splices: these are

More information

Electronically switchable Bragg gratings provide versatility

Electronically switchable Bragg gratings provide versatility Page 1 of 5 Electronically switchable Bragg gratings provide versatility Recent advances in ESBGs make them an optimal technological fabric for WDM components. ALLAN ASHMEAD, DigiLens Inc. The migration

More information

WDM. Coarse WDM. Nortel's WDM System

WDM. Coarse WDM. Nortel's WDM System WDM wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e. colors) of laser light.

More information

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS WHITE PAPER JULY 2017 1 Table of Contents Basic Information... 3 Link Loss Budget Analysis... 3 Singlemode vs. Multimode... 3 Dispersion vs. Attenuation...

More information

Optical Fiber Technology

Optical Fiber Technology Optical Fiber Technology 18 (2012) 29 33 Contents lists available at SciVerse ScienceDirect Optical Fiber Technology www.elsevier.com/locate/yofte A novel WDM passive optical network architecture supporting

More information

Design and Performance Evaluation of 20 GB/s Bidirectional DWDM Passive Optical Network Based on Array Waveguide Gratings

Design and Performance Evaluation of 20 GB/s Bidirectional DWDM Passive Optical Network Based on Array Waveguide Gratings ISSN: 2278 909X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 2, Issue 9, September 2013 Design and Performance Evaluation of 20 GB/s Bidirectional

More information

Optical Add-Drop Multiplexer Based on Fiber Bragg Gratings for Dense Wavelength Division Multiplexing Networks

Optical Add-Drop Multiplexer Based on Fiber Bragg Gratings for Dense Wavelength Division Multiplexing Networks Optical Add-Drop Multiplexer Based on Fiber Bragg Gratings for Dense Wavelength Division Multiplexing Networks P. S. André 1, 2, A. Nolasco Pinto 1, 3, J. L. Pinto 1, 2, T. Almeida 1, 4 and M. Pousa 1,4

More information

CWDM self-referencing sensor network based on ring resonators in reflective configuration

CWDM self-referencing sensor network based on ring resonators in reflective configuration CWDM self-referencing sensor network based on ring resonators in reflective configuration J. Montalvo, C. Vázquez, D. S. Montero Displays and Photonics Applications Group, Electronics Technology Department,

More information

from the Photonics Dictionary at Photonics.com

from the Photonics Dictionary at Photonics.com Photonics term in listing The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection,

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

A tunable Si CMOS photonic multiplexer/de-multiplexer

A tunable Si CMOS photonic multiplexer/de-multiplexer A tunable Si CMOS photonic multiplexer/de-multiplexer OPTICS EXPRESS Published : 25 Feb 2010 MinJae Jung M.I.C.S Content 1. Introduction 2. CMOS photonic 1x4 Si ring multiplexer Principle of add/drop filter

More information

DWDM FILTERS; DESIGN AND IMPLEMENTATION

DWDM FILTERS; DESIGN AND IMPLEMENTATION DWDM FILTERS; DESIGN AND IMPLEMENTATION 1 OSI REFERENCE MODEL PHYSICAL OPTICAL FILTERS FOR DWDM SYSTEMS 2 AGENDA POINTS NEED CHARACTERISTICS CHARACTERISTICS CLASSIFICATION TYPES PRINCIPLES BRAGG GRATINGS

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Implementation of Dense Wavelength Division Multiplexing FBG

Implementation of Dense Wavelength Division Multiplexing FBG AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com Implementation of Dense Wavelength Division Multiplexing Network with FBG 1 J. Sharmila

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is due today, HW #5 is assigned (due April 8)

More information

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Bit error rate and cross talk performance in optical cross connect with wavelength converter Vol. 6, No. 3 / March 2007 / JOURNAL OF OPTICAL NETWORKING 295 Bit error rate and cross talk performance in optical cross connect with wavelength converter M. S. Islam and S. P. Majumder Department of

More information

SYLLABUS Optical Fiber Communication

SYLLABUS Optical Fiber Communication SYLLABUS Optical Fiber Communication Subject Code : IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 100 UNIT - 1 PART - A OVERVIEW OF OPTICAL FIBER

More information

Optical communications

Optical communications Optical communications Components and enabling technologies Optical networking Evolution of optical networking: road map SDH = Synchronous Digital Hierarchy SONET = Synchronous Optical Network SDH SONET

More information

Awaited Emerging Optical Components for All-Optical Ultra-Dense WDM-Networks

Awaited Emerging Optical Components for All-Optical Ultra-Dense WDM-Networks Optical Networking in the Layered Internet Model Awaited Emerging Optical Components for All-Optical Ultra-Dense WDM-Networks Bo Willén, KTH Problems Applications Keep contact Network access End Users

More information

100G EPON Downstream wavelength plan

100G EPON Downstream wavelength plan Downstream wavelength plan Hanhyub Lee Hwan Seok Chung IEEE P802.3ca - Task Force Vancouver, BC Canada March 12-17, 2017 2017-03-13 IEEE 802 Plenary session O-band wavelength plan was accepted at Huntington

More information

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies LW Technology Passive Components LW Technology (Passive Components).PPT - 1 Patchcords Jumper cables to connect devices and instruments Adapter cables to connect interfaces using different connector styles

More information

WaveReady Multi-Degree Reconfigurable Optical Add/Drop Multiplexer WRS-05AD1C00B

WaveReady Multi-Degree Reconfigurable Optical Add/Drop Multiplexer WRS-05AD1C00B WaveReady Multi-Degree Reconfigurable Optical Add/Drop Multiplexer WRS-05AD1C00B www.lumentum.com Data Sheet The flexible, powerful WaveReady Reconfigurable Optical Add/Drop Multiplexer (ROADM) node wavelength

More information

Optical switches. Switching Technology S Optical switches

Optical switches. Switching Technology S Optical switches Optical switches Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165 13-1 Optical switches Components and enabling technologies Contention resolution Optical switching schemes 13-2 1 Components

More information

Key Features for OptiSystem 14

Key Features for OptiSystem 14 14.0 New Features Created to address the needs of research scientists, photonic engineers, professors and students; OptiSystem satisfies the demand of users who are searching for a powerful yet easy to

More information

Pass Cisco Exam

Pass Cisco Exam Pass Cisco 642-321 Exam Number: 642-321 Passing Score: 800 Time Limit: 120 min File Version: 38.8 http://www.gratisexam.com/ Pass Cisco 642-321 Exam Exam Name : Cisco Optical SDH Exam (SDH) Braindumps

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Performance

More information

Chromatic Dispersion Compensation in Optical Fiber Communication System and its Simulation

Chromatic Dispersion Compensation in Optical Fiber Communication System and its Simulation Indian Journal of Science and Technology Supplementary Article Chromatic Dispersion Compensation in Optical Fiber Communication System and its Simulation R. Udayakumar 1 *, V. Khanaa 2 and T. Saravanan

More information

OPTICAL CIRCULATOR FOR FREE SPACE OPTICAL COMMUNICATION

OPTICAL CIRCULATOR FOR FREE SPACE OPTICAL COMMUNICATION Technical Disclosure Commons Defensive Publications Series October 13, 2016 OPTICAL CIRCULATOR FOR FREE SPACE OPTICAL COMMUNICATION Chiachi Wang Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

Wavelength Multiplexing. The Target

Wavelength Multiplexing. The Target The Target Design a MAN* like fiber network for high data transmission rates. The network is partial below sea level and difficult to install and to maintain. Such a fiber network demands an optimized

More information

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services Optical networking Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services Agenda Optical fibre principle Time Division Multiplexing (TDM) Wavelength Division Multiplexing (WDM)

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

Chapter 9 GUIDED WAVE OPTICS

Chapter 9 GUIDED WAVE OPTICS [Reading Assignment, Hecht 5.6] Chapter 9 GUIDED WAVE OPTICS Optical fibers The step index circular waveguide is the most common fiber design for optical communications plastic coating (sheath) core cladding

More information

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data Balaji Raobawale P. G. Department M.B.E.S. College of Engineering, Ambajogai, India S. K. Sudhansu P. G. Department M.B.E.S. College of Engineering,

More information

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Simarpreet Kaur Gill 1, Gurinder Kaur 2 1Mtech Student, ECE Department, Rayat- Bahra University,

More information

Chapter 5 5.1 What are the factors that determine the thickness of a polystyrene waveguide formed by spinning a solution of dissolved polystyrene onto a substrate? density of polymer concentration of polymer

More information

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A. Rylyakov, C. Schow, B. Lee, W. Green, J. Van Campenhout, M. Yang, F. Doany, S. Assefa, C. Jahnes, J. Kash, Y. Vlasov IBM

More information

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1 Dispersion management Lecture 7 Dispersion compensating fibers (DCF) Fiber Bragg gratings (FBG) Dispersion-equalizing filters Optical phase conjugation (OPC) Electronic dispersion compensation (EDC) Fiber

More information

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY 1 AAMIR KHAN, 2 ANITA CHOPRA 1 Department of Information Technology, Suresh Gyan Vihar University,

More information

Fundamentals of DWDM Technology

Fundamentals of DWDM Technology CHAPTER 2 The emergence of DWDM is one of the most recent and important phenomena in the development of fiber optic transmission technology. In the following discussion we briefly trace the stages of fiber

More information

Evolution from TDM-PONs to Next-Generation PONs

Evolution from TDM-PONs to Next-Generation PONs Evolution from TDM-PONs to Next-Generation PONs Ki-Man Choi, Jong-Hoon Lee, and Chang-Hee Lee Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology,

More information

Passive Fibre Components

Passive Fibre Components SMR 1829-16 Winter College on Fibre Optics, Fibre Lasers and Sensors 12-23 February 2007 Passive Fibre Components (PART 2) Walter Margulis Acreo, Stockholm Sweden Passive Fibre Components W. Margulis walter.margulis@acreo.se

More information

Nortel Networks OPTera Long Haul 1600 Optical Line System. 1600G Amplifier Optical Layer Applications Guide

Nortel Networks OPTera Long Haul 1600 Optical Line System. 1600G Amplifier Optical Layer Applications Guide NTY315DX Nortel Networks OPTera Long Haul 1600 Optical Line System 1600G Amplifier Optical Layer Applications Guide Standard Rel 3 Issue 2 October 2000 What s inside... Introduction Optical layer building

More information

WaveReady 40- and 44-Channel Multiplexer/ Demultiplexer with Test Channel. MDX-40MD101CB and MDX-44MD101CB

WaveReady 40- and 44-Channel Multiplexer/ Demultiplexer with Test Channel. MDX-40MD101CB and MDX-44MD101CB WaveReady 40- and 44-Channel Multiplexer/ Demultiplexer with Test Channel MDX-40MD101CB and MDX-44MD101CB www.lumentum.com Data Sheet The WaveReady 40- and 44-Channel Multiplexer/Demultiplexer (DWDM Mux/Demux-40

More information

TELESTE AC NODE SPECIFIC MODULES

TELESTE AC NODE SPECIFIC MODULES TELESTE AC NODE SPECIFIC MODULES AC 6310 Power supply module for Teleste AC8000 and AC8800 optical nodes. Can work alone or it can be operated parallel to split the work load and create the redundancy

More information

. I. Fig. 1: Communication scheme

. I. Fig. 1: Communication scheme Applications of optical polymer waveguide devices on future optical communication and signal processing N.Keil, B.Strebel, H.Yao, J.Krauser* Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbH Einsteinufer

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

S Optical Networks Course Lecture 2: Essential Building Blocks

S Optical Networks Course Lecture 2: Essential Building Blocks S-72.3340 Optical Networks Course Lecture 2: Essential Building Blocks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9

More information

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources J. J. Vegas Olmos, I. Tafur Monroy, A. M. J. Koonen COBRA Research Institute, Eindhoven University

More information

Cisco s CLEC Networkers Power Session

Cisco s CLEC Networkers Power Session Course Number Presentation_ID 1 Cisco s CLEC Networkers Power Session Session 2 The Business Case for ONS 15800 3 What s Driving the Demand? Data Voice 4 What s Driving the Demand? Internet 36,700,000

More information

WaveSmart Wave Division Multiplexing (WDM)

WaveSmart Wave Division Multiplexing (WDM) Application These products are needed when a passive multiplexing or demultiplexing unit is required in a central office environment. They are used in CATV headends and telephone company central offices.

More information

The Fiber-Optic Gyroscope

The Fiber-Optic Gyroscope The Fiber-Optic Gyroscope Second Edition Herve C. Lefevre ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface to the First Edition Preface to the Second Edition xvii xix Introduction 1 References

More information

XM40-QD20LD-J 40-ch Multiplexer/Demultiplexer

XM40-QD20LD-J 40-ch Multiplexer/Demultiplexer XM40-QD20LD-J 40-channel Multiplexer/Demultiplexer with Test Channel & Monitoring POR Features High density packing for full C band Compliant with ITU-T G.694.1 100 GHz DWDM transceivers Integrated 1625

More information

Optical Networks and Transceivers. OPTI 500A, Lecture 2, Fall 2012

Optical Networks and Transceivers. OPTI 500A, Lecture 2, Fall 2012 Optical Networks and Transceivers OPTI 500A, Lecture 2, Fall 2012 1 The Simplest Network Topology Network Node Network Node Transmission Link 2 Bus Topology Very easy to add a device to the bus Common

More information

Technology Overview. 1.1 Introduction

Technology Overview. 1.1 Introduction O N E Technology Overview 1.1 INTRODUCTION 1.2 OPTICAL TRANSMISSION SYSTEMS 1.2.1 Overview 1.2.2 Attenuation 1.2.3 Dispersion 1.2.4 Nonlinear Effects 1.2.5 Optical Fiber 1.2.6 Optical Transmitter and Receivers

More information

1. INTRUDUCTION 2. HFR/WLAN ARCHITECTURE

1. INTRUDUCTION 2. HFR/WLAN ARCHITECTURE Implementation of HFR/WLAN network Josip Lörincz, Goran Udovičić*, Dinko Begušić Phone: +385 (021) 305-912, E-mail: josiplerinc@stt-comhr, FESB-Split *Phone: +385 (021) 559-913, E-mail: goranudovicic@kronhr,

More information

Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization

Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization Enhanced Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization M. Presi, 1, A. Chiuchiarelli, 1 R. Corsini, 1 P. Choudury, 1 F. Bottoni, 1, L.

More information

Contents for this Presentation. Multi-Service Transport

Contents for this Presentation. Multi-Service Transport Contents for this Presentation SDH/DWDM based Multi-Service Transport Platform by Khurram Shahzad ad Brief Contents Description for this of Presentation the Project Development of a Unified Transport Platform

More information

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Florenta Costache Group manager Smart Micro-Optics SMO/AMS Fraunhofer Institute for Photonic Microsystems,

More information

OS3 Fiber Day Fiber to the Home technology. May 21, 2014 / Erik Radius GlasOperator / Vodafone

OS3 Fiber Day Fiber to the Home technology. May 21, 2014 / Erik Radius GlasOperator / Vodafone OS3 Fiber Day Fiber to the Home technology May 21, 2014 / Erik Radius GlasOperator / Vodafone Contents (more or less) Optical fiber Inner workings Fiber types Transmitter, receiver Transmission Link budget

More information