Unified Power Quality Conditioner (UPQC) for Power Distribution Systems

Size: px
Start display at page:

Download "Unified Power Quality Conditioner (UPQC) for Power Distribution Systems"

Transcription

1 Unified Power Quality Conditioner (UPQC) for Power Distribution Systems Shyama P. Das Department of Electrical Engg. IIT Kanpur Introduction Motivation Design, Simulation and Hardware Implementation of Unified Power Quality conditioner (UPQC) (Single phase and Three phase) Optimum UPQC Conclusion and Scope of future research 1

2 Power Quality: Measure of proper utilization of power by customers Electrical Pollutant vs Clean Utility Advent of wide spread use of high power high frequency switching devices Additional System required to maintain quality Deregulation, tariff Power Supply Authority Power Quality Consumer 2

3 PCC Voltage Line Impedance Voltage L O A D Polluting Load " # # $$ %&'! )$ #*# #+, %%- + ( 3

4 Harmonic Polluting Loads Computers Computer controlled machine tools Photo-copying machines Various digital controllers Adjustable speed drives PLCs Uncontrolled or phase controlled rectifiers. Some Important Observations of Power Quality(PQ) Surveys More low r.m.s. voltage sag occur at the PCC Majority of voltage sag are 10-20% More disturbances occur above 70% of nominal line voltage The occurrence of most severe sag events are least frequent. / 4

5 " , % &, %' (09,#!:(9, 4 *(9, IEEE 519 Voltage Limits ;$$6#*# ;$$ )$ 7)- $ &<' &<' +!! +! +! 0 PCC Local Solution Load/ Equipment PCC OTHER LOADS Load/ Equipment Global Solution (Series/Shunt) = 5

6 (a) Providing ride-through capability to the equipment so that they can be protected against certain amount of voltage sag and swell (b) Equipment are provided with an arrangement so that they draw low reactive power and harmonics (c) Disadvantage of this approach is that it cannot take care of existing polluting installations and further it is not always economical to provide the above arrangement for each and every equipment (a) Here independent compensating devices are installed at PCC so that overall PQ improves at PCC. (b) Advantages of this approach are Individual equipment need not be designed according to PQ standards Existing Polluting installations can be taken care of. 6

7 # a)shunt (parallel) Active Filter (STATCOM) b) Series Active Filter (DVR) STATCOM $ $>? *?)$ 7

8 STATCOM! ( 8

9 747". 747" / 9

10 STATCOM Control Strategy 3 > 0 DVR (Dynamic Voltage Restorer) >?, %%?, %$ = 10

11 Reactive Power Transfer V s2 =V L2-2V L V dvr Sin +V dvr 2 In-Phase Compensation 11

12 Phase cum Magnitude Compensation Load harmonic and VAR compensation Voltage sag mitigation and unbalanced voltage correction Fast dynamic response, and steady state accuracy 12

13 Unified Power Quality Conditioner (UPQC)! Utility supply V inj Injection Transformer i s i_load Load Low Pass Filter Inverter- I Inverter- II i c L SLC C dc Synchronous Link Inductor Inverter-I compensates for sag through a tuned filter and voltage transformer Inverter-II (SLCVC) Synchronous Link Converter VAR Compensator provides VAR to the load, isolates load current harmonics, makes input power factor unity SLCVC maintains the charge of the dc link capacitor ( 13

14 Quadrature Compensation UPQC-Q Phasor diagram of UPQC-Q for fundamental power frequency, when θ <Φ. Quadrature Compensation UPQC-Q V inj = 2V inj V s1 m = = mv V s 2 / 2 x(2 x). V s1 Where, x is p.u. sag m = Modulation Index (max MI=1) and transformer ratio 1:1 dc 2 From power balance = Is2 Il 2 cosφ cosθ / 14

15 ,45 #% 32:2 Series VA loading of UPQC-Q 1 VA p.u p.f.=0.25 p.f.=0.5 p.f.=0.6 p.f.=0.7 p.f.=8 p.f.=0.9 p.u. Sag 0,45 #% 32:2 Shunt VA loading of UPQC-Q 1.2 VA p.u p.f.=0.9 p.f.=0.8 p.f.=0.7 p.f.=0.6 p.f.=0.5 p.f.=0.25 p.u. Sag = 15

16 $#,45 #% 32:2 Combined Loading of UPQC-Q VA p.u p.u. Sag. p.f.=0.9 p.f.=0.8 p.f.=0.7 p.f.=0.6 p.f.=0.5 p.f.=

17 Four Modules! " # $ % & " ' " (!"" "! ) # % & V inj V s Peak Detector Ckt. Filter i s N-L Load Vs_peak Gate Drive Gate Drive Hysteresis Control i s SPWM DA * 1 i s DA 0 i s * DA 1 pwm modulating signal ( m DA 3 ) 0 V dc Vs_peak v75 v90 vsec AD0 AD1 AD2 AD3 AD4 PCL-208 [ADC, DAC, Timer, DIO] Computer Fig.3.15 Block diagram of hardware implementation 17

18 Supply current ( i s ) Fig Experimental result of supply current and load current X axis : 5 ms/divy axis: 5 A/div Load current (i L ) Fig Simulation result of supply and load current corresponding to Fig X axis = 5 ms/div Y axis = 5 A/div! Relative Percentage Fig Load current (i_load) spectra (Experimental) Harmonic Number 120 Fig Supply current ( i s ) spectra (Experimental) Relative Percentage Harmonic Spectrum ( 18

19 Fig Experimental results of supply current (i s ) and supply current reference (i s* ) X axis : 5 ms/div Y axis: 10 A/div Fig Simulation results of supply current (i s ) and supply current reference (i s* ) X axis : 5 ms/div Y axis: 10 A/div. Fig Experimental result of v L, v s and vsec Trace-1: Load voltage (v L ) y axis : 50 v/div Trace-2: Supply voltage (v s ) y axis : 50 v/div Trace-3: Series injected voltage (vsec) /38. y axis : 1 v/div x axis : 20ms/div Load voltage Source voltage Injected voltage Fig Simulation result of v L, v s and vsec Trace-1: Load voltage (v L ) y axis : 50v/div Trace-2: Supply voltage(v s ) y axis : 50v/div Trace-3: Series injected voltage ( vsec) /38. y axis : 1v/div / 19

20 120 Relative Percentage THD = 3.6% Harmonic Number Fig Load voltage (v L ) spectra 0 Dc link voltage (vdc) Fig Steady state experimental results of DC link voltage (Vdc), supply ( i s ) and load current ( i L ) X axis : 50ms/div Y axis : vdc 20V/div, i s, i L 5A/div Supply current (i s ) Load current (i_load) Fig Steady state simulation results of DC link voltage (Vdc/1000), supply (i s ) and load current ( i L ) X axis : 50 ms/div Y axis : Vdc.1 V/div, i L = 2 A/div, i s = 10 A/div = 20

21 3-φ AC Source secv i s i_load 3-φ Nonlinear Load i c Low Pass Filter L SLC Vdc Series Compensator SLCVC v dc Vs_peak secv_a v90-a secv_b v90-b secv_c AD0 AD1 AD2 AD3 AD4 AD5 AD6 PCL-208 ADC,DAC, COUNTER TIMER, DIO Computer PCL ch-dac, DIO DAC 1 DAC 2 DAC 3 DAC 4 DAC 5 DA 0 DA 1 m1-a m1-b PI-outA PI-outB PI-outC (m2-a) (m2-b) (m2-c) i sa * i sb * secv_a V sa N V sb secv_b i sa secv_c i sb V sc i sc Peak Detector Ckt. Filter 3-φ N-L Load Vs_peak Gate Driver Gate Driver Hysteresis Control i sa i sb i sc 5 khz SPWM i sa * i sb * i sc * m3-( A B C) 21

22 isa Fig. 4.20a Experimental results of supply current and load current of phase-a X axis: 50 ms/div, Y axis: 5 A/div for isa, 2 A /div for i_loada i_loada Fig. 4.20b Simulated results of supply current and load current of phase-a Fig. 4.21a Experimental results of supply current and supply voltage of phase-a X axis: 50 ms/div, Y axis: 5A/div for isa, 20 V/div for vsa Fig. 4.21b Simulated results of supply current and supply voltage of phase-a 22

23 Harmonic order Load Current (A-phase) Supply current ( A-phase) Magnitude % fundamental Magnitude % fundamental 1st A A 100 5th ma ma th ma ma th ma ma th ma ma th ma ma th ma ma rd ma ma th ma ma 0.38 THD 23.28% 2.957% Displacement Factor ! sag Peak of supply voltage (A) Fig. 4.23a Experimental result of peak of supply voltage and load voltage of phase- A X axis: 100 ms/div, Y axis: 50 V/div for v_loada, V/div for Vsa_peak, Load Voltage (a) Fig. 4.23b Simulated result of peak of supply voltage and load voltage of phase-a ( 23

24 Fig. 4.24a Experimental result of peak of supply voltage and supply current of phase-a X axis: 100 ms/div, Y axis: V/div for Vsa_peak, 2 A/div for i_loada Fig. 4.24b Simulated result of peak of supply voltage and supply current phase-a. Fig. 4.25a Experimental result of peak of supply voltage and injected voltage and supply voltage of phase A, X axis: 10 ms/div, Y axis: 10 V/div for secv_a, 50 V/div for vsa, 52.4 V/div for Vsa_peak Fig. 4.25b Simulated result of injected voltage and supply voltage of phase-a / 24

25 Fig. 4.26a Experimental result of peak of supply voltage and injected voltage and supply voltage of phase- B, X axis: 10 ms/div, Y axis: 50 V/div for vsb, 10 V/div for secv_b, 52.4 V/div for Vsa_peak Fig. 4.26b Simulated result of injected voltage and supply voltage of phase-b 0 Conventional -, * % -, $* % 5 #,4 747"#-, $ * %% #!= 25

26 " #%&32:'!,45 #% 32: Series VA loading of UPQC-P VA p.u p.u. Sag p.f.=0.25 p.f.=0.5 p.f.=0.6 p.f.=0.7 p.f.=0.8 p.f.=0.9! 26

27 ,45 #% 32: Shunt VA loading of UPQC-P 1.2 VA p.u p.f.=0.9 p.f.=0.8 p.f.=0.7 p.f.=0.6 p.f.=0.5 p.f.=0.25 p.u. Sag! $#,45 #% 32: Combined Loading of UPQC-P VA p.u p.u. Sag p.f.=0.9 p.f.=0.8 p.f.=0.7 p.f.=0.6 p.f.=0.5 p.f.=0.25! 27

28 5$ 32:2 3 $%* %$%# 3 $%* % - $ * % $% * %%# $%%* %$%# 3 $%* %!!,4$A 6@%, % "$$4%!( 28

29 -, % $A#%+!. DVR Control Strategy!/ 29

30 Source voltages during normal and sag condition Sag end Sag start Simulation Results!0 Load voltages during normal and sag condition Sag end Sag start Simulation (= Results 30

31 Case Study (Optimized UPQC)!"#$ $ %& '!"($)!"(* $ * $ % $,4&32:2'B=+.++C&B(+. = ',4&32:'B=+(++C&B= = ',4&32: #'B=+/++C&B = ' ( 1. UPQC can mitigate voltage sag. 2. Hybrid (combined analog and digital) control implemented, the control scheme is applicable for both single phase and three phase. 3. No additional energy storage device required for sag compensation, long duration sags and under voltages can also be compensated. 4. Dynamic response is fast. ( 31

32 5. UPQC can supply VAR to the load. 6. It isolates the load current harmonics from flowing to the utility. 7. It maintains input unity power factor at all conditions. 8. Optimized UPQC leads to minimum VA loading of the converters. ( $$ " ( 32

33 (! 33

Investigation on the Performance of UPQC-Q for Voltage Sag Mitigation and PQ Improvement at a Critical Load Point

Investigation on the Performance of UPQC-Q for Voltage Sag Mitigation and PQ Improvement at a Critical Load Point Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2008-01-01 Investigation on the Performance of UPQC-Q for Voltage Sag Mitigation and PQ Improvement at

More information

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 09 (September. 2014), V3 PP 11-20 www.iosrjen.org A Versatile Control Scheme for UPQC for Power Quality Improvement

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 1, January-2014 ISSN

International Journal of Advancements in Research & Technology, Volume 3, Issue 1, January-2014 ISSN 134 Single Phase Unified Power Quality Conditioner with Minimum VA requirement B. Lakshmana Nayak 1, V. Vijaya Kumar 2 1 M.TECH(APS), AMIE, Assoc.Prof., NMR Engineering College, Hyderabad, A.P, India,

More information

Power Quality improvement of a three phase four wire system using UPQC

Power Quality improvement of a three phase four wire system using UPQC International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 4 July-215 www.irjet.net p-issn: 2395-72 Power Quality improvement of a three phase four wire system

More information

Power Quality Improvement using Active shunt Power filter using PI Controller

Power Quality Improvement using Active shunt Power filter using PI Controller Power Quality Improvement using Active shunt Power filter using PI Controller Viki S. Patel M.tech Scholar Electrical Engineering, U.V Patel College of Engineering, Kherva, India patel.viki4@gmail.com

More information

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Design Strategy for Optimum Rating Selection of Interline D-STATCOM International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 3 ǁ March. 2013 ǁ PP.12-17 Design Strategy for Optimum Rating Selection of Interline

More information

DYNAMIC VOLTAGE RESTORER FOR VOLTAGE SAG MITIGATION IN OIL & GAS INDUSTRY

DYNAMIC VOLTAGE RESTORER FOR VOLTAGE SAG MITIGATION IN OIL & GAS INDUSTRY Department of Electrical Engineering Senior Design Project ELEC 499 DYNAMIC VOLTAGE RESTORER FOR VOLTAGE SAG MITIGATION IN OIL & GAS INDUSTRY Student Names: Chresteen Baraket Marina Messiha Supervised

More information

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p.

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. Preface p. xv Acknowledgements p. xix Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. 6 Power Quality Monitoring p. 7 Power

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

Implementation of UPQC for Voltage Sag Mitigation

Implementation of UPQC for Voltage Sag Mitigation Implementation of UPQC for Voltage Sag Mitigation C.H. Ram Jethmalani 1, V. Karthikeyan 2, and Narayanappa 3 1 Adhiyamaan College of Engineering, Hosur, India Email: malanisuryakumaran@gmail.com 2,3 Adhiyamaan

More information

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

ICCCES Application of D-STATCOM for load compensation with non-stiff sources Application of D-STATCOM for load compensation with non-stiff sources 1 Shubhangi Dhole, 2 S.S.Gurav, 3 Vinayak Patil, 4 Pushkraj Kharatmal, 5 Magdum Ranjit 1 Dept of Electrical Engg. AMGOI, VATHAR TERF

More information

Improvement of Power Quality Using a Hybrid Interline UPQC

Improvement of Power Quality Using a Hybrid Interline UPQC Improvement of Power Quality Using a Hybrid Interline UPQC M.K.Elango 1, C.Vengatesh Department of Electrical and Electronics Engineering K.S.Rangasamy College of Technology Tiruchengode, Tamilnadu, India

More information

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances ISSN: 227881 Vol. 1 Issue 1, December- 212 Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances B.Sasikala 1, Khamruddin Syed 2 Department of Electrical and

More information

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES P. K. Mani 1 and K. Siddappa Naidu 2 1 Department of Electrical and Electronics Engineering, Vel Tech Multitech Dr. Rangarajan Dr. Sakunthala Engineering

More information

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 86 CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 5.1 INTRODUCTION Distribution systems face severe power quality problems like current unbalance, current harmonics, and voltage unbalance,

More information

UPQC (Unified Power Quality Conditioner)

UPQC (Unified Power Quality Conditioner) A Unified Power Quality Conditioner (UPQC) is a device that is similar in construction to a Unified Power Flow Conditioner (UPFC). The UPQC, just as in a UPFC, employs two voltage source inverters (VSIs)

More information

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) VOL. 4, NO. 4, JUNE 9 ISSN 89-668 6-9 Asian Research Publishing Network (ARPN). All rights reserved. MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) Rosli Omar and Nasrudin Abd Rahim

More information

Enhancement of Power Quality Using Advanced Series Active Power Filters

Enhancement of Power Quality Using Advanced Series Active Power Filters Enhancement of Power Quality Using Advanced Series Active Power Filters Manoj siva kumar 1, P.Rayalakshmi 2 Associate Professor, Dept. of EEE, PBRVITS, Kavali, SPSR Nellore, A.P, India 1 M.Tech Student,

More information

A Hysteresis based Active Shunt, Passive Series Hybrid Filter for Power Quality Improvement

A Hysteresis based Active Shunt, Passive Series Hybrid Filter for Power Quality Improvement INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR 72132, DECEMBER 27-29, 22 79 A Hysteresis based Active Shunt, Passive Series Hybrid Filter for Power Quality Improvement Shailendra Kumar Jain, Pramod Agrawal,

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 6, Nov Dec, 2016, pp.55 63, Article ID: IJEET_07_06_005 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=6

More information

Power Quality Improvement of Grid Connected Wind Energy System by Statcom for Balanced and Unbalanced Linear and Nonlinear Loads

Power Quality Improvement of Grid Connected Wind Energy System by Statcom for Balanced and Unbalanced Linear and Nonlinear Loads International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume 3, Issue 1 (August 212), PP. 9-17 Power Quality Improvement of Grid Connected Wind

More information

Modelling of Dynamic Voltage Restorer for Mitigation of Voltage Sag and Swell Using Phase Locked Loop

Modelling of Dynamic Voltage Restorer for Mitigation of Voltage Sag and Swell Using Phase Locked Loop Modelling of Dynamic Voltage Restorer for Mitigation of Voltage Sag and Swell Using Phase Locked Loop Deepa Patil 1, Datta Chavan 2 1, 2 Electrical Engineering, Bharati Vidaypeeth Deemed University, Pune,

More information

A Power Control Scheme for UPQC for Power Quality Improvement

A Power Control Scheme for UPQC for Power Quality Improvement A Power Control Scheme for UPQC for Power Quality Improvement 1 Rimpi Rani, 2 Sanjeev Kumar, 3 Kusum Choudhary 1 Student (M.Tech), 23 Assistant Professor 12 Department of Electrical Engineering, 12 Yamuna

More information

Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator

Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator Priyanka Sahu Columbia Institute of Engineering and Technology, Raipur,

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK IMPROVED CONTROL METHOD OF GUPQC UNDER DISTORTED AND UNBALANCED LOAD CONDITION

More information

CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM

CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM 3.1 INTRODUCTION Static synchronous compensator is a shunt connected reactive power compensation device that is capable of generating or

More information

CHAPTER 6 MITIGATION OF VOLTAGE SAG, SWELL AND SINGLE PHASE OUTAGE USING MULTI WINDING TRANSFORMER

CHAPTER 6 MITIGATION OF VOLTAGE SAG, SWELL AND SINGLE PHASE OUTAGE USING MULTI WINDING TRANSFORMER 90 CHAPTER 6 MITIGATION OF VOLTAGE SAG, SWELL AND SINGLE PHASE OUTAGE USING MULTI WINDING TRANSFORMER 6.1 INTRODUCTION From the literature survey it is observed that the DVRs based on direct converters

More information

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL Saravanan.R 1, Hariharan.M 2 1 PG Scholar, Department OF ECE, 2 PG Scholar, Department of ECE 1, 2 Sri Krishna College

More information

STATCOM BASED ON REDUCTION OF PQ ISSUES IN MICRO GRID APPLICATION SYSTEMS

STATCOM BASED ON REDUCTION OF PQ ISSUES IN MICRO GRID APPLICATION SYSTEMS STATCOM BASED ON REDUCTION OF PQ ISSUES IN MICRO GRID APPLICATION SYSTEMS D.Prasad 1, T.V.S. Lakshmi Durga 2, Patti. Ranadheer 3 1,2,3 Assistant Professor, E.E.E., PACE Institute of Technology & sciences,

More information

Experimental Verification of Unified Power Quality Conditioner with Transformation Less Combined Mode Control

Experimental Verification of Unified Power Quality Conditioner with Transformation Less Combined Mode Control Experimental Verification of Unified Power Quality Conditioner with Transformation Less Combined Mode Control S. Srinath *, Anu G. Kumar +, M. P. Selvan # * Research Scholar, + PG student, # Assistant

More information

Protection from Voltage Sags and Swells by Using FACTS Controller

Protection from Voltage Sags and Swells by Using FACTS Controller Protection from Voltage Sags and Swells by Using FACTS Controller M.R.Mohanraj 1, V.P.Suresh 2, G.Syed Zabiyullah 3 Assistant Professor, Department of Electrical and Electronics Engineering, Excel College

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 A Statcom-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System B.T.RAMAKRISHNARAO*, B.ESWARARAO**, L.NARENDRA**, K.PRAVALLIKA** * Associate.Professor, Dept.of EEE, Lendi Inst.Of

More information

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 36-41 Analysis, Modeling and Simulation of Dynamic Voltage

More information

Unified Power Quality conditioner in Grid connected Photovoltaic System

Unified Power Quality conditioner in Grid connected Photovoltaic System Unified Power Quality conditioner in Grid connected Photovoltaic System 1 Sukhjinder Singh, 2 Robinjit Singh, 3 Mukul Chankaya 1 Student M.Tech, 2 Student M.Tech, 3 Assistant Professor 1 Department of

More information

Chapter 2 Shunt Active Power Filter

Chapter 2 Shunt Active Power Filter Chapter 2 Shunt Active Power Filter In the recent years of development the requirement of harmonic and reactive power has developed, causing power quality problems. Many power electronic converters are

More information

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating P.Ankineedu Prasad 1, N.Venkateswarlu 2. V.Ramesh 3, L.V.Narasimharao 4 Assistant Professor 12 & Professor 4& Research Scholar

More information

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy Abstract This paper presents a new unified power-quality conditioning system (MC-UPQC), capable

More information

p. 1 p. 6 p. 22 p. 46 p. 58

p. 1 p. 6 p. 22 p. 46 p. 58 Comparing power factor and displacement power factor corrections based on IEEE Std. 18-2002 Harmonic problems produced from the use of adjustable speed drives in industrial plants : case study Theory for

More information

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 20-26 www.iosrjournals.org Shunt Active Power Filter based on SRF theory and Hysteresis Band Current

More information

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Jaykant Vishwakarma 1, Dr. Arvind Kumar Sharma 2 1 PG Student, High voltage and Power system, Jabalpur Engineering College,

More information

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Mitigating Voltage Sag Using Dynamic Voltage Restorer Mitigating Voltage Sag Using Dynamic Voltage Restorer Sumit A. Borakhade 1, R.S. Pote 2 1 (M.E Scholar Electrical Engineering, S.S.G.M.C.E. / S.G.B.A.U. Amravati, India) 2 (Associate Professor, Electrical

More information

ISSN: [Bhat * et al., 7(8): August, 2018] Impact Factor: 5.164

ISSN: [Bhat * et al., 7(8): August, 2018] Impact Factor: 5.164 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT ON 14 BUS IEEE SYSTEM USING UPQC Hilal Ahmad Bhat *1 & Er. Ravinder Kaur 2 *1&2 Power Engineering, Guru

More information

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 4 (2013), pp. 473-483 International Research Publication House http://www.irphouse.com A Simple Control Algorithm for Three-Phase

More information

Mitigation of Power Quality Problems Using DVR in Distribution Network for Welding Load

Mitigation of Power Quality Problems Using DVR in Distribution Network for Welding Load IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 4 Ver. I (July Aug. 2015), PP 106-112 www.iosrjournals.org Mitigation of Power Quality

More information

2020 P a g e. Figure.2: Line diagram of series active power filter.

2020 P a g e. Figure.2: Line diagram of series active power filter. Power Quality Improvement By UPQC Using ANN Controller Saleha Tabassum 1, B.Mouli Chandra 2 (Department of Electrical & Electronics Engineering KSRM College of Engineering, Kadapa.) (Asst. Professor Dept

More information

ISSN Vol.03,Issue.11, December-2015, Pages:

ISSN Vol.03,Issue.11, December-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.11, December-2015, Pages:2020-2026 Power Quality Improvement using BESS Based Dynamic Voltage Restorer B. ABHINETHRI 1, K. SABITHA 2 1 PG Scholar, Dr. K.V. Subba

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 7 (July 2014), PP.01-15 Reduction of Voltage Imbalance in a Two Feeder

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

Dynamic Modeling and Simulation of Unified Power Quality Conditioner

Dynamic Modeling and Simulation of Unified Power Quality Conditioner International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 1 (2012), pp. 23-36 International Research Publication House http://www.irphouse.com Dynamic Modeling and Simulation of

More information

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 7 (2012), pp. 853-862 International Research Publication House http://www.irphouse.com A Novel FPGA based PWM Active Power

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

Mitigation of Voltage Sag/Swell Using UPQC

Mitigation of Voltage Sag/Swell Using UPQC Mitigation of Voltage Sag/Swell Using UPQC 1 Rajat Patel, 2 Prof.Maulik A. Chaudhari 1 PG Scholar, 2 Assistant Professor Electrical Department, Government engineering college, Bhuj Gujarat Technological

More information

Improved Performance of STATIC Compensator for Grid Connected Wind System Using IRP Theory

Improved Performance of STATIC Compensator for Grid Connected Wind System Using IRP Theory smsamspublications.com Vol.1.Issue.1 15 Improved Performance of STATIC Compensator for Grid Connected Wind System Using IRP Theory Research Article ISSN: 455-191 N.Saida Naik, Assistant Professor Department

More information

Study of Different Fault Conditions using D-STATCOM Employing Diesel Generator-Based Isolation Generation System

Study of Different Fault Conditions using D-STATCOM Employing Diesel Generator-Based Isolation Generation System 2018 IJSRST Volume 4 Issue 5 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Study of Different Fault Conditions using D-STATCOM Employing Diesel Generator-Based Isolation

More information

Multilevel Inverter Based Statcom For Power System Load Balancing System

Multilevel Inverter Based Statcom For Power System Load Balancing System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 36-43 www.iosrjournals.org Multilevel Inverter Based Statcom For Power System Load Balancing

More information

645 P a g e. the quantity of compensate current needed accordingly. Fig. 1. Active powers filter with load current detection.

645 P a g e. the quantity of compensate current needed accordingly. Fig. 1. Active powers filter with load current detection. Shunt Active Power Filter Implementation Using Source Voltage and Source Current Detection Mani Ratnam Tarapatla 1, M Sridhar 2, ANVJ Raj Gopal 3 PG Scholar Department of Electrical Engineering GIET College

More information

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 Unit.2-Voltage Sag D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 13/09/2012 Unit.2 Voltage sag 1 Unit-2 -Voltage Sag Mitigation Using

More information

A Novel Power Factor Correction Rectifier for Enhancing Power Quality

A Novel Power Factor Correction Rectifier for Enhancing Power Quality International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 772~780 ISSN: 2088-8694 772 A Novel Power Factor Correction Rectifier for Enhancing Power Quality

More information

Mitigation of Voltage Sag and Swell Using Dynamic Voltage Restorer

Mitigation of Voltage Sag and Swell Using Dynamic Voltage Restorer Mitigation of Voltage Sag and Swell Using Dynamic Voltage Restorer Deepa Francis Dept. of Electrical and Electronics Engineering, St. Joseph s College of Engineering and Technology, Palai Kerala, India-686579

More information

Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation

Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation A.Jeraldine viji Associate Professor, EEE department, Mailam Engineering College, Tamil Nadu E-mail: jeraldrovan@gmail.com Dr.M.Sudhakaran

More information

Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System

Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System 1 U M Sandeep Kumar, 2 M Siva Sankar Assistant professor,santhiram Engineering College, Nandyal,

More information

A DSTATCOM-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System for Balanced and Unbalanced Non linear Loads

A DSTATCOM-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System for Balanced and Unbalanced Non linear Loads A DSTATCOM-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System for Balanced and Unbalanced Non linear Loads Ch. Siva Koti Reddy, M-Tech Student, Power systems, Department

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

Modeling & Simulation of Micro Grid Distribution System to reduce Harmonics Using Active Power Filters and PI controllers

Modeling & Simulation of Micro Grid Distribution System to reduce Harmonics Using Active Power Filters and PI controllers Modeling & Simulation of Micro Grid Distribution System to reduce Harmonics Using Active Power Filters and PI controllers Akashdeep Soni 1, Mr. Vikas Kumar 2 1 M.Tech (Control System) Scholar, Department

More information

SIMULATION OF D-STATCOM IN POWER SYSTEM

SIMULATION OF D-STATCOM IN POWER SYSTEM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) SIMULATION OF D-STATCOM IN POWER SYSTEM Akil Ahemad 1, Sayyad Naimuddin 2 1 (Assistant Prof. Electrical Engineering Dept., Anjuman college

More information

Literature Review for Shunt Active Power Filters

Literature Review for Shunt Active Power Filters Chapter 2 Literature Review for Shunt Active Power Filters In this chapter, the in depth and extensive literature review of all the aspects related to current error space phasor based hysteresis controller

More information

ISSN Vol.07,Issue.21, December-2015, Pages:

ISSN Vol.07,Issue.21, December-2015, Pages: ISSN 2348 2370 Vol.07,Issue.21, December-2015, Pages:4128-4132 www.ijatir.org Mitigation of Multi Sag/Swell using DVR with Hysteresis Voltage Control DAKOJU H V V S S N MURTHY 1, V. KAMARAJU 2 1 PG Scholar,

More information

Interline Power Quality Conditioner for Power Quality Improvement

Interline Power Quality Conditioner for Power Quality Improvement Interline Power Quality Conditioner for Power Quality Improvement K.Sandhya 1, Dr.A.Jaya Laxmi 2 and Dr.M.P.Soni 3 1 Research Scholar, Department of Electrical and Electronics Engineering, JNTU College

More information

A Multilevel Diode Clamped SVPWM Based Interline Dynamic Voltage Restorer with Sag & Swell Limiting Function

A Multilevel Diode Clamped SVPWM Based Interline Dynamic Voltage Restorer with Sag & Swell Limiting Function International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 5 (2017) pp. 751-760 Research India Publications http://www.ripublication.com A Multilevel Diode Clamped SVPWM

More information

Enhancement of Power Quality based on Unified Power Quality Conditioner (UPQC) K.S.Srikanth, Shaik. Musthak Ahmed, Y.Srinivasa Rao

Enhancement of Power Quality based on Unified Power Quality Conditioner (UPQC) K.S.Srikanth, Shaik. Musthak Ahmed, Y.Srinivasa Rao Enhancement of Power Quality based on Unified Power Quality Conditioner (UPQC) K.S.Srikanth, Shaik. Musthak Ahmed, Y.Srinivasa Rao Abstract Majority of the distributed generations from renewable energy

More information

Downloaded from

Downloaded from Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 330 Power Quality Improvement Using UPQC Chandrashekhar Reddy S Assoc.Professor, Dept.of Electrical

More information

ANALYSIS OF UNIFIED POWER QUALITY CONDITIONER DURING VOLTAGE SAG AND SWELL CONDITIONS

ANALYSIS OF UNIFIED POWER QUALITY CONDITIONER DURING VOLTAGE SAG AND SWELL CONDITIONS ANALYSIS OF UNIFIED POWER QUALITY CONDITIONER DURING VOLTAGE SAG AND SWELL CONDITIONS B. Jyothi 1, B. Jyothsna Rani 2, Dr.M.Venu Gopal Rao 3 1 Asst.professor, Dept of EEE, KL University, Andhra Pradesh,

More information

PLL Synchronization with PID Controller Based Shunt Active Power Line Conditioners

PLL Synchronization with PID Controller Based Shunt Active Power Line Conditioners International Journal of Computer and Electrical Engineering, Vol.3, No., February, PLL Synchronization with PID Controller Based Shunt Active Power Line Conditioners Karuppanan P and Kamala Kanta Mahapatra

More information

Power Quality Improvement By Using CHB Inverter Based DVR

Power Quality Improvement By Using CHB Inverter Based DVR International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 5 Issue: 6 June 28 www.irjet.net p-issn: 2395-72 Power Quality Improvement By Using CHB Inverter Based DVR Bharti

More information

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM P. K. Mani 1 and K. Siddappa Naidu 2 1 Department of Electrical and Electronics Engineering, Vel

More information

ISSN Vol.04,Issue.08, July-2016, Pages:

ISSN Vol.04,Issue.08, July-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.08, July-2016, Pages:1335-1341 A Voltage Controlled D-STATCOM Used In Three Phase Four Wire System for Power Quality Improvement J.RAGHAVENDRA 1, C.SREENIVASULU

More information

Investigation of D-Statcom Operation in Electric Distribution System

Investigation of D-Statcom Operation in Electric Distribution System J. Basic. Appl. Sci. Res., (2)29-297, 2 2, TextRoad Publication ISSN 29-434 Journal of Basic and Applied Scientific Research www.textroad.com Investigation of D-Statcom Operation in Electric Distribution

More information

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC N. Uma Maheshwar, Assistant Professor, EEE, Nalla Narasimha Reddy Group of Institutions. T. Sreekanth,

More information

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 8 (September 2012), PP. 16-20 Implementation of SRF based Multilevel Shunt

More information

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 84 CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 4.1 INTRODUCTION Now a days, the growth of digital economy implies a widespread use of electronic equipment not only in the industrial

More information

Synchronous Reference Frame Theory (SRF) along with PI Controller Based Dynamic Voltage Restorer

Synchronous Reference Frame Theory (SRF) along with PI Controller Based Dynamic Voltage Restorer Research Inventy: International Journal of Engineering And Science Vol.5, Issue 5 (May 2015), PP 59-64 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Synchronous Reference Frame Theory

More information

STUDY OF UNIFIED POWER QUALITY CONDITIONER FOR POWER QUALITY IMPROVEMENT RAJIV KUMAR SINKU

STUDY OF UNIFIED POWER QUALITY CONDITIONER FOR POWER QUALITY IMPROVEMENT RAJIV KUMAR SINKU STUDY OF UNIFIED POWER QUALITY CONDITIONER FOR POWER QUALITY IMPROVEMENT RAJIV KUMAR SINKU Department of Electrical Engineering National Institute of Technology, Rourkela May 2015 STUDY OF UNIFIED POWER

More information

Adaptive Filter Implementation for Dstatcom N.Narasimhulu, K.Swathi Assistant professor, Department of EEE, SKD, Gooty, Andhra Pradesh, India.

Adaptive Filter Implementation for Dstatcom N.Narasimhulu, K.Swathi Assistant professor, Department of EEE, SKD, Gooty, Andhra Pradesh, India. ISSN (Print) : 232 376 ISSN (Online): 2278 887 (An ISO 3297: 27 Certified Organization) Vol., Issue 6, June 216 Adaptive Filter Implementation for Dstatcom N.Narasimhulu, K.Swathi Assistant professor,

More information

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER ABRARKHAN I. PATHAN 1, PROF. S. S. VANAMANE 2 1,2 Department Electrical Engineering, Walchand college of Engineering,

More information

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System G. Laxminarayana 1, S. Raja Shekhar 2 1, 2 Aurora s Engineering College, Bhongir, India Abstract: In this

More information

Analysis & Function of Unified Power Quality Conditioner for Power Quality Improvement of Distributed Network

Analysis & Function of Unified Power Quality Conditioner for Power Quality Improvement of Distributed Network IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 Analysis & Function of Unified Power Quality Conditioner for Power Quality Improvement

More information

Implementation of a Novel Control Strategy for Shunt Active Filter

Implementation of a Novel Control Strategy for Shunt Active Filter 7th WSEAS nt. onf. on MATHEMATAL METHODS and OMPUTATONAL TEHNQUES N ELETRAL ENGNEERNG, Sofia, 27-29/10/05 (pp249-254) mplementation of a Novel ontrol Strategy for Shunt Active Filter M. GHANDH 1, A. AJAM

More information

Three Phase Active Power Filter Based on Current Controlled Voltage Source Inverter

Three Phase Active Power Filter Based on Current Controlled Voltage Source Inverter Volume 4, Number 4, 24 439 Three Phase Active Power Filter Based on Current Controlled Voltage Source Inverter E. E. EL-KHOLY*, A. EL-SABBE*, A. EL-HEFNAWY* and Hamdy M. MHAROUS** *Electrical Engineering

More information

Power Quality and the Need for Compensation

Power Quality and the Need for Compensation Power Quality and the Need for Compensation Risha Dastagir 1, Prof. Manish Khemariya 2, Prof. Vivek Rai 3 1 Research Scholar, 2,3 Asst. Professor, Lakshmi Narain College of Technology Bhopal, India Abstract

More information

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India) ISSN: 2349-7637 (Online) RESEARCH HUB International Multidisciplinary Research Journal (RHIMRJ) Research Paper Available online at: www.rhimrj.com Modeling and Simulation of Distribution STATCOM Bhavin

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

Improvement of Dynamic Voltage Restorer (DVR) Using Proportional Integral (PI)Controller for Mitigation of Voltage Sag

Improvement of Dynamic Voltage Restorer (DVR) Using Proportional Integral (PI)Controller for Mitigation of Voltage Sag Improvement of Dynamic Voltage Restorer (DVR) Using Proportional Integral (PI)Controller for Mitigation of Voltage Sag A.H.A. Hamza 1, M.S. El-Koliel 2, M.N. Ali 1, H. El-Eissawi 2 and M.M. Hafez 2 1 Electrical

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

Modeling and Simulation of STATCOM

Modeling and Simulation of STATCOM Modeling and Simulation of STATCOM Parimal Borse, India Dr. A. G. Thosar Associate Professor, India Samruddhi Shaha, India Abstract:- This paper attempts to model and simulate Flexible Alternating Current

More information

Design of Shunt Active Filter to Improve Power Quality using Pq Theory

Design of Shunt Active Filter to Improve Power Quality using Pq Theory Design of Shunt Active Filter to Improve Power Quality using Pq Theory Miss. Dhanshri sarjerao Pawar Department of Electrical engineering Dr. Babasabeb Ambedakar Technological University Lonere, Raigad

More information

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 90 CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 5.1 INTRODUCTION This chapter deals with the performance comparison between a closed loop and open loop UPFC system on the aspects of power quality. The UPFC

More information