EE 461 Experiment #1 Digital Control of DC Servomotor

Size: px
Start display at page:

Download "EE 461 Experiment #1 Digital Control of DC Servomotor"

Transcription

1 EE 461 Experiment #1 Digital Control of DC Servomotor 1 Objectives The objective of this lab is to introduce to the students the design and implementation of digital control. The digital control is implemented on a lab-scale DC Servomotor in the control systems laboratory. The performance of the resulted digital control system is compared with the continuous-time control system performance. The effect of sampling period T s (or sampling frequency f s = 1 T s ) is studied. When doing the lab, the software packages MATLAB with Control Systems Toolbox, and the Simulink are used for the analysis and design of control systems. 2 Introduction An important approach to digital controller (filter) design is to start with a well-designed analog controller. The digital controller C(z) is then implemented by discretizing the continuoustime controller C(s). This design method is also called design by emulation, which is widely used by control engineers in practice. It is known that for a properly chosen sampling period, this method can provide a useful digital controller with satisfactory performance. In this lab, students are asked to implement the digital controllers, obtained by discretizing a pre-specified analog controller using some common discretization methods. The effect of sampling frequency is also studied by comparing different system responses with respect to f s. In the last part of the experiment, the students are asked to implement a digital controller designed directly for the discrete-time dc-motor model, and the system response is obtained for comparison purpose. 1

2 3 Preparation Before the lab begins, students are required to read and understand the lab preliminary for the hardware and software description. In addition, it is recommended that the students complete the following pre-lab work. The Quanser dc-servomotor in the control systems laboratory has the following model (with a low gear ratio and in the load free case): P(s) = The analog control system can s(s+42) be implemented by using a continuous-time controller C(s): Figure 1: Analog Control System for a DC-Motor In this lab, the analog controller is given as a lead compensator C(s) = 0.08s+0.08 s+3, which can generate a satisfactory transient and steady-state performance of the system step response. By discretizing C(s), one can implement a digital control system: Figure 2: Digital Control System for a DC-Motor 1. With the sampling interval chosen as T s = 0.001, and T s = 0.01, use the Bilinear transformation (Tustin s method) to obtain the discrete-time models of C(s), denoted by C 1 (z) and C 2 (z), respectively. This can be done by using c2d command in Matlab. Record down C(s), C 1 (z), and C 2 (z), and they will be used in the following experiment procedure. 2

3 4 Experiment Procedure 1. Check and understand the wiring between the dc-motor, power module(upm) and the computer. 2. Start the MATLAB, and Simulink. It can be noticed that a Quanser toolbox is installed in the Simulink, and it contains the blocks to interface with the real system setup. 4.1 Part 1. Implementation of Analog Control 3. Build a simulink model (use Simulink and Quanser toolbox) to implement the analog control system in Figure 1, with C(s) given there. The motor shaft Encoder is used to measure the angular position, and a calibration gain of -360/4096 needs to be added to the encoder to convert the angular signal to degree. The reference input is set to a step signal of 30 degrees. 4. Compile your program by going to WinCon in the manual bar and clicking Build, a WinCon interface window will then appear if there is no error in your simulink model. Remember to adjust your motor shaft to zero position before start running the system every time. You can also select scopes to monitor the signals in real-time. For example, choose scopes to monitor the angular position Θ(t) and the control signal u(t) 5. Run the system by clicking Start, after 6 seconds (it can be seen from the scope), stop the program by clicking Stop and save the data for later analysis. Another way to stop the program is to add the following timer in your Simulink model, which allows the simulation to stop automatically. Figure 3: Timer 3

4 4.2 Part 2. Implementation of Digital Control by Emulation 6. Implement the digital control system in Figure 2. Set the sampling time as T s = sec., then replace the analog controller in your Simulink model by the discretized one C 1 (z). Remember to set the same sampling time in the input block, and in the Simulation > Parameters... (change simulation method to discrete, and set the fixed step size as same as T s ). 7. Repeat steps (4) and (5), and save the data 8. Set T s = 0.01 sec., implement C 2 (z). Repeat steps (6) and (7) 4.3 Part 3. Digital Control by Direct Design In the following steps, we are going to implement a digital controller directly designed based on the discretized plant (i.e. the ZOH equivalent model of P(s)), rather than discretizing an analog controller. This method is referred to as direct design method. 9. By setting T s = 0.01 sec., a discrete-time compensator of the form C 3 (z) = K( z z 0.35 ) is chosen. Implement C 3 (z) in your model, and repeat the steps (4) and (5). Observe the system response and save the data. Note: The gain K in C 3 (z), can be tuned to get a good performance. ( Warning: the system is very sensitive to the selection of K, too large K may result in instability, a suitable rang is [0.2, 0.05]), a suitable choice is K = 0.12) 10. When changing the sampling interval to T s = 0.1 (a rather slow sampling), one has to re-design the discrete-time compensator, it is chosen as C 4 (z) = 0.04( z 0.6 ). Implement C 4 (z), and observe the system z 0.35 response. Caution: during the experiment, the motor may run without control, such as turning extremely fast and making unpleasant noises, in these cases, stop the program immediately, and ask for assistance. 5 Analysis and Discussion Finally, after all the trials, load the data into Matlab and plot the time responses of the dcmotor angular position. Evaluate the performance by calculating the percent of overshoot (P.O.), settling time (T s, and steady-state error e ss. It is recommended to plot the reference input signal and the output signals that you want to compare in the same graph. 4

5 1. Compare the step responses of the dc-motor using the discretized controller C 1 (z), and C 2 (z) with that of analog controller C(s), in terms of P.O., T s, and e ss. What can you observe? 2. How does the sampling time affect the system responses in the experiment in Part 2? 3. Compare the system response by using C 3 (z) in Part 3, step (9), with the system response using C 2 (z) in step (8), what can you say about the performance of these two digital controllers? (remember that they are obtained by emulation and direct design ) 4. From all above procedures when trying different sampling intervals, make a discussion on the effects of sampling time to the system performance. 6 Lab Report Individual reports are required although the students may work in groups. should contain: The reports The pre-lab work A brief introduction of the experiment. Printouts of Simulink models, and all the plots. Your discussions by answering the question in section 5. Any conclusions you would like to draw. The lab report is due by 4pm on Feb. 14, 2011 for section H3 and 4pm on Feb. 28, 2011 for section H4. Please drop your report into the box assigned to EE461 LAB outside the main office at 2nd floor ECERF. 5

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #02: Position Control. SRV02 Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #02: Position Control. SRV02 Position Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #02: Position Control SRV02 Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2

More information

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout Linear Motion Servo Plants: IP01 or IP02 Linear Experiment #0: Integration with WinCon IP01 and IP02 Student Handout Table of Contents 1. Objectives...1 2. Prerequisites...1 3. References...1 4. Experimental

More information

Root Locus Design. by Martin Hagan revised by Trevor Eckert 1 OBJECTIVE

Root Locus Design. by Martin Hagan revised by Trevor Eckert 1 OBJECTIVE TAKE HOME LABS OKLAHOMA STATE UNIVERSITY Root Locus Design by Martin Hagan revised by Trevor Eckert 1 OBJECTIVE The objective of this experiment is to design a feedback control system for a motor positioning

More information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall 2012 IMPORTANT: This handout is common for all workbenches. 1. Lab Information a) Date, Time, Location, and Report

More information

PID Control with Derivative Filtering and Integral Anti-Windup for a DC Servo

PID Control with Derivative Filtering and Integral Anti-Windup for a DC Servo PID Control with Derivative Filtering and Integral Anti-Windup for a DC Servo Nicanor Quijano and Kevin M. Passino The Ohio State University Department of Electrical Engineering 2015 Neil Avenue, Columbus

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #03: Speed Control SRV02 Speed Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2

More information

Lab 2: Introduction to Real Time Workshop

Lab 2: Introduction to Real Time Workshop Lab 2: Introduction to Real Time Workshop 1 Introduction In this lab, you will be introduced to the experimental equipment. What you learn in this lab will be essential in each subsequent lab. Document

More information

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control Goals for this Lab Assignment: 1. Design a PD discrete control algorithm to allow the closed-loop combination

More information

Outline. Digital Control. Lecture 3

Outline. Digital Control. Lecture 3 Outline Outline Outline 1 ler Design 2 What have we talked about in MM2? Sampling rate selection Equivalents between continuous & digital Systems Outline ler Design Emulation Method for 1 ler Design

More information

MCE441/541 Midterm Project Position Control of Rotary Servomechanism

MCE441/541 Midterm Project Position Control of Rotary Servomechanism MCE441/541 Midterm Project Position Control of Rotary Servomechanism DUE: 11/08/2011 This project counts both as Homework 4 and 50 points of the second midterm exam 1 System Description A servomechanism

More information

Ver. 4/5/2002, 1:11 PM 1

Ver. 4/5/2002, 1:11 PM 1 Mechatronics II Laboratory Exercise 6 PID Design The purpose of this exercise is to study the effects of a PID controller on a motor-load system. Although not a second-order system, a PID controlled motor-load

More information

Lab 2: Quanser Hardware and Proportional Control

Lab 2: Quanser Hardware and Proportional Control I. Objective The goal of this lab is: Lab 2: Quanser Hardware and Proportional Control a. Familiarize students with Quanser's QuaRC tools and the Q4 data acquisition board. b. Derive and understand a model

More information

EE 370/L Feedback and Control Systems Lab Section Post-Lab Report. EE 370L Feedback and Control Systems Lab

EE 370/L Feedback and Control Systems Lab Section Post-Lab Report. EE 370L Feedback and Control Systems Lab EE 370/L Feedback and Control Systems Lab Post-Lab Report EE 370L Feedback and Control Systems Lab LABORATORY 10: LEAD-LAG COMPENSATOR DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA,

More information

Laboratory Assignment 5 Digital Velocity and Position control of a D.C. motor

Laboratory Assignment 5 Digital Velocity and Position control of a D.C. motor Laboratory Assignment 5 Digital Velocity and Position control of a D.C. motor 2.737 Mechatronics Dept. of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA0239 Topics Motor modeling

More information

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System Introduction CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System The purpose of this lab is to introduce you to digital control systems. The most basic function of a control system is to

More information

Lab 1: Steady State Error and Step Response MAE 433, Spring 2012

Lab 1: Steady State Error and Step Response MAE 433, Spring 2012 Lab 1: Steady State Error and Step Response MAE 433, Spring 2012 Instructors: Prof. Rowley, Prof. Littman AIs: Brandt Belson, Jonathan Tu Technical staff: Jonathan Prévost Princeton University Feb. 14-17,

More information

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering MTE 36 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering Laboratory #1: Introduction to Control Engineering In this laboratory, you will become familiar

More information

EE443L Lab 8: Ball & Beam Control Experiment

EE443L Lab 8: Ball & Beam Control Experiment EE443L Lab 8: Ball & Beam Control Experiment Introduction: The ball and beam control approach investigated last week will be implemented on the physical system in this week s lab. Recall the two part controller

More information

Observer-based Engine Cooling Control System (OBCOOL) Project Proposal. Students: Andrew Fouts & Kurtis Liggett. Advisor: Dr.

Observer-based Engine Cooling Control System (OBCOOL) Project Proposal. Students: Andrew Fouts & Kurtis Liggett. Advisor: Dr. Observer-based Engine Cooling Control System (OBCOOL) Project Proposal Students: Andrew Fouts & Kurtis Liggett Advisor: Dr. Gary Dempsey Date: December 09, 2010 1 Introduction Control systems exist in

More information

Design of Compensator for Dynamical System

Design of Compensator for Dynamical System Design of Compensator for Dynamical System Ms.Saroja S. Chavan PimpriChinchwad College of Engineering, Pune Prof. A. B. Patil PimpriChinchwad College of Engineering, Pune ABSTRACT New applications of dynamical

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

Engine Control Workstation Using Simulink / DSP. Platform. Mark Bright, Mike Donaldson. Advisor: Dr. Dempsey

Engine Control Workstation Using Simulink / DSP. Platform. Mark Bright, Mike Donaldson. Advisor: Dr. Dempsey Engine Control Workstation Using Simulink / DSP Platform By Mark Bright, Mike Donaldson Advisor: Dr. Dempsey An Engine Control Workstation was designed to simulate the thermal environments found in liquid-based

More information

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Experiment 9. PID Controller

Experiment 9. PID Controller Experiment 9 PID Controller Objective: - To be familiar with PID controller. - Noting how changing PID controller parameter effect on system response. Theory: The basic function of a controller is to execute

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Motomatic Servo Control

Motomatic Servo Control Exercise 2 Motomatic Servo Control This exercise will take two weeks. You will work in teams of two. 2.0 Prelab Read through this exercise in the lab manual. Using Appendix B as a reference, create a block

More information

Ch 5 Hardware Components for Automation

Ch 5 Hardware Components for Automation Ch 5 Hardware Components for Automation Sections: 1. Sensors 2. Actuators 3. Analog-to-Digital Conversion 4. Digital-to-Analog Conversion 5. Input/Output Devices for Discrete Data Computer-Process Interface

More information

Penn State Erie, The Behrend College School of Engineering

Penn State Erie, The Behrend College School of Engineering Penn State Erie, The Behrend College School of Engineering EE BD 327 Signals and Control Lab Spring 2008 Lab 9 Ball and Beam Balancing Problem April 10, 17, 24, 2008 Due: May 1, 2008 Number of Lab Periods:

More information

MEM01: DC-Motor Servomechanism

MEM01: DC-Motor Servomechanism MEM01: DC-Motor Servomechanism Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model

More information

Digital Control Lab Exp#8: PID CONTROLLER

Digital Control Lab Exp#8: PID CONTROLLER Digital Control Lab Exp#8: PID CONTROLLER we will design the velocity controller for a DC motor. For the sake of simplicity consider a basic transfer function for a DC motor where effects such as friction

More information

Figure 1.1: Quanser Driving Simulator

Figure 1.1: Quanser Driving Simulator 1 INTRODUCTION The Quanser HIL Driving Simulator (QDS) is a modular and expandable LabVIEW model of a car driving on a closed track. The model is intended as a platform for the development, implementation

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

2.737 Mechatronics Laboratory Assignment 1: Servomotor Control

2.737 Mechatronics Laboratory Assignment 1: Servomotor Control 2.737 Mechatronics Laboratory Assignment 1: Servomotor Control Assigned: Session 4 Reports due: Session 8 in checkoffs Reading: Simulink Text or online manual, Feedback system notes, Ch. 3-6 [1ex] 1 Lab

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Frequency Response Analysis and Design Tutorial

Frequency Response Analysis and Design Tutorial 1 of 13 1/11/2011 5:43 PM Frequency Response Analysis and Design Tutorial I. Bode plots [ Gain and phase margin Bandwidth frequency Closed loop response ] II. The Nyquist diagram [ Closed loop stability

More information

Compensation of a position servo

Compensation of a position servo UPPSALA UNIVERSITY SYSTEMS AND CONTROL GROUP CFL & BC 9610, 9711 HN & PSA 9807, AR 0412, AR 0510, HN 2006-08 Automatic Control Compensation of a position servo Abstract The angular position of the shaft

More information

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2)

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4.1 Introduction This lab introduces new methods for estimating the transfer function

More information

Students: Andrew Fouts Kurtis Liggett. Advisor: Dr. Dempsey

Students: Andrew Fouts Kurtis Liggett. Advisor: Dr. Dempsey Students: Andrew Fouts Kurtis Liggett Advisor: Dr. Dempsey Presentation Overview Project Summary Observer-based control Previous Work Project Goals System Block Diagram Functional Requirements Preliminary

More information

Lab 1: Simulating Control Systems with Simulink and MATLAB

Lab 1: Simulating Control Systems with Simulink and MATLAB Lab 1: Simulating Control Systems with Simulink and MATLAB EE128: Feedback Control Systems Fall, 2006 1 Simulink Basics Simulink is a graphical tool that allows us to simulate feedback control systems.

More information

Position Control of DC Motor by Compensating Strategies

Position Control of DC Motor by Compensating Strategies Position Control of DC Motor by Compensating Strategies S Prem Kumar 1 J V Pavan Chand 1 B Pangedaiah 1 1. Assistant professor of Laki Reddy Balireddy College Of Engineering, Mylavaram Abstract - As the

More information

Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018

Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018 EE314 Systems Spring Semester 2018 College of Engineering Prof. C.R. Tolle South Dakota School of Mines & Technology Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018 In this lab we will setup Matlab

More information

Motor Modeling and Position Control Lab 3 MAE 334

Motor Modeling and Position Control Lab 3 MAE 334 Motor ing and Position Control Lab 3 MAE 334 Evan Coleman April, 23 Spring 23 Section L9 Executive Summary The purpose of this experiment was to observe and analyze the open loop response of a DC servo

More information

By Vishal Kumar. Project Advisor: Dr. Gary L. Dempsey

By Vishal Kumar. Project Advisor: Dr. Gary L. Dempsey Project Deliverable III Senior Project Proposal for Non-Linear Internal Model Controller Design for a Robot Arm with Artificial Neural Networks By Vishal Kumar Project Advisor: Dr. Gary L. Dempsey 12/4/07

More information

Hands-on Lab. PID Closed-Loop Control

Hands-on Lab. PID Closed-Loop Control Hands-on Lab PID Closed-Loop Control Adding feedback improves performance. Unity feedback was examined to serve as a motivating example. Lectures derived the power of adding proportional, integral and

More information

UNIT 2: DC MOTOR POSITION CONTROL

UNIT 2: DC MOTOR POSITION CONTROL UNIT 2: DC MOTOR POSITION CONTROL 2.1 INTRODUCTION This experiment aims to show the mathematical model of a DC motor and how to determine the physical parameters of a DC motor model. Once the model is

More information

CHAPTER 4 FUZZY LOGIC CONTROLLER

CHAPTER 4 FUZZY LOGIC CONTROLLER 62 CHAPTER 4 FUZZY LOGIC CONTROLLER 4.1 INTRODUCTION Unlike digital logic, the Fuzzy Logic is a multivalued logic. It deals with approximate perceptive rather than precise. The effective and efficient

More information

EE 482 : CONTROL SYSTEMS Lab Manual

EE 482 : CONTROL SYSTEMS Lab Manual University of Bahrain College of Engineering Dept. of Electrical and Electronics Engineering EE 482 : CONTROL SYSTEMS Lab Manual Dr. Ebrahim Al-Gallaf Assistance Professor of Intelligent Control and Robotics

More information

SKEE 3732 BASIC CONTROL LABORATORY (Experiment 2) ANGULAR POSITION CONTROL

SKEE 3732 BASIC CONTROL LABORATORY (Experiment 2) ANGULAR POSITION CONTROL Fakulti: FAKULTI KEJURUTERAAN ELEKTRIK Semakan Nama Matapelajaran : MAKMAL TAHUN TIGA UMUM Tarikh Keluaran Kod Matapelajaran : SKEE 3732 Pindaan Terakhir No. Prosedur : 3 : Sept 2016 : Sept 2017 : PK-UTM-FKE-(O)-08

More information

7 Lab: Motor control for orientation and angular speed

7 Lab: Motor control for orientation and angular speed Prelab Participation Lab Name: 7 Lab: Motor control for orientation and angular speed Control systems help satellites to track distant stars, airplanes to follow a desired trajectory, cars to travel at

More information

A Case Study of Rotating Sonar Sensor Application in Unmanned Automated Guided Vehicle

A Case Study of Rotating Sonar Sensor Application in Unmanned Automated Guided Vehicle A Case Study of Rotating Sonar Sensor Application in Unmanned Automated Guided Vehicle Pravin Chandak, Ming Cao and Ernest L. Hall University of Cincinnati Center for Robotics University of Cincinnati

More information

Equipment and materials from stockroom:! DC Permanent-magnet Motor (If you can, get the same motor you used last time.)! Dual Power Amp!

Equipment and materials from stockroom:! DC Permanent-magnet Motor (If you can, get the same motor you used last time.)! Dual Power Amp! University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 5b Position Control Using a Proportional - Integral - Differential (PID) Controller Note: Bring the lab-2 handout to use as

More information

TigreSAT 2010 &2011 June Monthly Report

TigreSAT 2010 &2011 June Monthly Report 2010-2011 TigreSAT Monthly Progress Report EQUIS ADS 2010 PAYLOAD No changes have been done to the payload since it had passed all the tests, requirements and integration that are necessary for LSU HASP

More information

即時控制系統設計 Design of Real-Time Control Systems

即時控制系統設計 Design of Real-Time Control Systems SPRING 2010 即時控制系統設計 Design of Real-Time Control Systems Outline Design of Digital Control Systems Transfer Function Design Methods NTUEE-RTCS24-DTDesign-2 Lecture 24 Controller Design of Digital Control

More information

Pan-Tilt Signature System

Pan-Tilt Signature System Pan-Tilt Signature System Pan-Tilt Signature System Rob Gillette Matt Cieloszyk Luke Bowen Final Presentation Introduction Problem Statement: We proposed to build a device that would mimic human script

More information

Implementation and Simulation of Digital Control Compensators from Continuous Compensators Using MATLAB Software

Implementation and Simulation of Digital Control Compensators from Continuous Compensators Using MATLAB Software Implementation and Simulation of Digital Control Compensators from Continuous Compensators Using MATLAB Software MAHMOUD M. EL -FANDI Electrical and Electronic Dept. University of Tripoli/Libya m_elfandi@hotmail.com

More information

Ball and Beam. Workbook BB01. Student Version

Ball and Beam. Workbook BB01. Student Version Ball and Beam Workbook BB01 Student Version Quanser Inc. 2011 c 2011 Quanser Inc., All rights reserved. Quanser Inc. 119 Spy Court Markham, Ontario L3R 5H6 Canada info@quanser.com Phone: 1-905-940-3575

More information

Design of a Simulink-Based Control Workstation for Mobile Wheeled Vehicles with Variable-Velocity Differential Motor Drives

Design of a Simulink-Based Control Workstation for Mobile Wheeled Vehicles with Variable-Velocity Differential Motor Drives Design of a Simulink-Based Control Workstation for Mobile Wheeled Vehicles with Variable-Velocity Differential Motor Drives Kevin Block, Timothy De Pasion, Benjamin Roos, Alexander Schmidt Gary Dempsey

More information

Optimal Control System Design

Optimal Control System Design Chapter 6 Optimal Control System Design 6.1 INTRODUCTION The active AFO consists of sensor unit, control system and an actuator. While designing the control system for an AFO, a trade-off between the transient

More information

FPGA Implementation of a PID Controller with DC Motor Application

FPGA Implementation of a PID Controller with DC Motor Application FPGA Implementation of a PID Controller with DC Motor Application Members Paul Leisher Christopher Meyers Advisors Dr. Stewart Dr. Dempsey This project aims to implement a digital PID controller by means

More information

Elmo HARmonica Hands-on Tuning Guide

Elmo HARmonica Hands-on Tuning Guide Elmo HARmonica Hands-on Tuning Guide September 2003 Important Notice This document is delivered subject to the following conditions and restrictions: This guide contains proprietary information belonging

More information

STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN EGYPT

STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN EGYPT 3 rd International Conference on Energy Systems and Technologies 16 19 Feb. 2015, Cairo, Egypt STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN

More information

MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER

MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER www.arpnjournals.com MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER M.K.Hat 1, B.S.K.K. Ibrahim 1, T.A.T. Mohd 2 and M.K. Hassan 2 1 Department

More information

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm All problem numbers below refer to those in Haykin & Moher s book. 1. (FT) Problem 2.20. 2. (Convolution) Problem

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

5 Lab 5: Position Control Systems - Week 2

5 Lab 5: Position Control Systems - Week 2 5 Lab 5: Position Control Systems - Week 2 5.7 Introduction In this lab, you will convert the DC motor to an electromechanical positioning actuator by properly designing and implementing a proportional

More information

ECE 5670/ Lab 5. Closed-Loop Control of a Stepper Motor. Objectives

ECE 5670/ Lab 5. Closed-Loop Control of a Stepper Motor. Objectives 1. Introduction ECE 5670/6670 - Lab 5 Closed-Loop Control of a Stepper Motor Objectives The objective of this lab is to develop and test a closed-loop control algorithm for a stepper motor. First, field

More information

CDS 101/110: Lecture 9.1 Frequency DomainLoop Shaping

CDS 101/110: Lecture 9.1 Frequency DomainLoop Shaping CDS /: Lecture 9. Frequency DomainLoop Shaping November 3, 6 Goals: Review Basic Loop Shaping Concepts Work through example(s) Reading: Åström and Murray, Feedback Systems -e, Section.,.-.4,.6 I.e., we

More information

Servo Tuning Tutorial

Servo Tuning Tutorial Servo Tuning Tutorial 1 Presentation Outline Introduction Servo system defined Why does a servo system need to be tuned Trajectory generator and velocity profiles The PID Filter Proportional gain Derivative

More information

Digital Control of MS-150 Modular Position Servo System

Digital Control of MS-150 Modular Position Servo System IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland

More information

Ball Balancing on a Beam

Ball Balancing on a Beam 1 Ball Balancing on a Beam Muhammad Hasan Jafry, Haseeb Tariq, Abubakr Muhammad Department of Electrical Engineering, LUMS School of Science and Engineering, Pakistan Email: {14100105,14100040}@lums.edu.pk,

More information

Lecture 2 Exercise 1a. Lecture 2 Exercise 1b

Lecture 2 Exercise 1a. Lecture 2 Exercise 1b Lecture 2 Exercise 1a 1 Design a converter that converts a speed of 60 miles per hour to kilometers per hour. Make the following format changes to your blocks: All text should be displayed in bold. Constant

More information

CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION. C.Matthews, P.Dickinson, A.T.Shenton

CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION. C.Matthews, P.Dickinson, A.T.Shenton CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION C.Matthews, P.Dickinson, A.T.Shenton Department of Engineering, The University of Liverpool, Liverpool L69 3GH, UK Abstract:

More information

SRV02-Series. Rotary Servo Plant. User Manual

SRV02-Series. Rotary Servo Plant. User Manual SRV02-Series Rotary Servo Plant User Manual SRV02-(E;EHR)(T) Rotary Servo Plant User Manual 1. Description The plant consists of a DC motor in a solid aluminum frame. The motor is equipped with a gearbox.

More information

Modeling and System Identification for a DC Servo

Modeling and System Identification for a DC Servo Modeling and System Identification for a DC Servo Nicanor Quijano and Kevin M. Passino The Ohio State University, Department of Electrical Engineering, 2015 Neil Avenue, Columbus Ohio, 43210, USA March

More information

ECE 5671/6671 Lab 3. Impedance Measurement and Parameter Estimation of a DC Motor

ECE 5671/6671 Lab 3. Impedance Measurement and Parameter Estimation of a DC Motor ECE 5671/6671 Lab 3 Impedance Measurement and Parameter Estimation of a DC Motor 1. Introduction The objective of this lab is to become more familiar with the hardware and software used in the Electric

More information

Project Advisor: Dr. Gary L. Dempsey

Project Advisor: Dr. Gary L. Dempsey Senior Capstone Project Report for Internal Model Controller Design for a Robot Arm By Vishal Kumar Project Advisor: Dr. Gary L. Dempsey 5/15/8 Project Abstract Senior Capstone Project This project is

More information

ME451: Control Systems. Course roadmap

ME451: Control Systems. Course roadmap ME451: Control Systems Lecture 20 Root locus: Lead compensator design Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Fall 2008 1 Modeling Course roadmap Analysis Design

More information

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

Implementation of Proportional and Derivative Controller in a Ball and Beam System

Implementation of Proportional and Derivative Controller in a Ball and Beam System Implementation of Proportional and Derivative Controller in a Ball and Beam System Alexander F. Paggi and Tooran Emami United States Coast Guard Academy Abstract This paper presents a design of two cascade

More information

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers Chapter 4 Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers 4.1. Introduction Data acquisition and control boards, also known as DAC boards, are used in virtually

More information

Sfwr Eng/TRON 3DX4, Lab 4 Introduction to Computer Based Control

Sfwr Eng/TRON 3DX4, Lab 4 Introduction to Computer Based Control Announcements: Sfwr Eng/TRON 3DX4, Lab 4 Introduction to Computer Based Control First lab Week of: Mar. 10, 014 Demo Due Week of: End of Lab Period, Mar. 17, 014 Assignment #4 posted: Tue Mar. 0, 014 This

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Frequency domain specifications Frequency response shaping (Loop shaping) Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University

More information

Phys Lecture 5. Motors

Phys Lecture 5. Motors Phys 253 Lecture 5 1. Get ready for Design Reviews Next Week!! 2. Comments on Motor Selection 3. Introduction to Control (Lab 5 Servo Motor) Different performance specifications for all 4 DC motors supplied

More information

MTHE 332/393 Lab Manual

MTHE 332/393 Lab Manual MTHE 332/393 Lab Manual January 10, 2018 Preface This lab manual, and the labs described herein, have been developed over many years by many people. The labs are intended as a companion to a course taught

More information

Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter To cite this article: M. H. Jafri et al 2017 IOP Conf.

More information

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda Control Design for Servomechanisms 12 14 July 2005, Glasgow Detailed Training Course Agenda DAY 1 INTRODUCTION TO SYSTEMS AND MODELLING 9.00 Introduction The Need For Control - What Is Control? - Feedback

More information

Rectilinear System. Introduction. Hardware

Rectilinear System. Introduction. Hardware Rectilinear System Introduction This lab studies the dynamic behavior of a system of translational mass, spring and damper components. The system properties will be determined first making use of basic

More information

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Recommended Due Date: By your lab time the week of February 12 th Possible Points: If checked off before

More information

Design and Implementation of Fractional order controllers for DC Motor Position servo system

Design and Implementation of Fractional order controllers for DC Motor Position servo system American. Jr. of Mathematics and Sciences Vol. 1, No.1,(January 2012) Copyright Mind Reader Publications www.journalshub.com Design and Implementation of Fractional order controllers for DC Motor Position

More information

Cantonment, Dhaka-1216, BANGLADESH

Cantonment, Dhaka-1216, BANGLADESH International Conference on Mechanical, Industrial and Energy Engineering 2014 26-27 December, 2014, Khulna, BANGLADESH ICMIEE-PI-140153 Electro-Mechanical Modeling of Separately Excited DC Motor & Performance

More information

HILINK REAL-TIME HARDWARE-IN-THE-LOOP CONTROL PLATFORM FOR MATLAB/SIMULINK

HILINK REAL-TIME HARDWARE-IN-THE-LOOP CONTROL PLATFORM FOR MATLAB/SIMULINK REAL-TIME HARDWARE-IN-THE-LOOP CONTROL PLATFORM FOR MATLAB/SIMULINK Quick Reference release 1.7 May 1, 2016 Disclaimer The developers of the platform (hardware and software) have used their best efforts

More information

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0.

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0. Exercise 6 Motor Shaft Angular Position Control EXERCISE OBJECTIVE When you have completed this exercise, you will be able to associate the pulses generated by a position sensing incremental encoder with

More information

Robot Assessment Report

Robot Assessment Report Robot Assessment Report Report Date 2009-05-27 Report Responsible Customer Information Company Name Address N/A Location N/A Controller Information Controllers S/N 66-33752 Controller Time (Hours) 20800

More information

The Embedded System. - Development and analysis of an Embedded DC-motor controller - by Embedded System Team

The Embedded System. - Development and analysis of an Embedded DC-motor controller - by Embedded System Team The Embedded System - Development and analysis of an Embedded DC-motor controller - by Robert Eriksson Nicklas Lundin Mehiar Moukbel Ronnie Sjödin Thomas Wahlström 2E1242, Project Course Automatic Control

More information

MAE106 Laboratory Exercises Lab # 5 - PD Control of DC motor position

MAE106 Laboratory Exercises Lab # 5 - PD Control of DC motor position MAE106 Laboratory Exercises Lab # 5 - PD Control of DC motor position University of California, Irvine Department of Mechanical and Aerospace Engineering Goals Understand how to implement and tune a PD

More information

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems American Journal of Science, Engineering and Technology 217; 2(3): 77-82 http://www.sciencepublishinggroup.com/j/ajset doi: 1.11648/j.ajset.21723.11 Development of a Fuzzy Logic Controller for Industrial

More information

Figure C-1 (p. 907) MATLAB window showing how to access Simulink. The Simulink Library Browser button is shown circled.

Figure C-1 (p. 907) MATLAB window showing how to access Simulink. The Simulink Library Browser button is shown circled. Figure C-1 (p. 907) MATLAB window showing how to access Simulink. The Simulink Library Browser button is shown circled. Figure C-2 (p. 908) a. Simulink Library Browser window showing the Create a new model

More information

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr. Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle

More information