An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM

Size: px
Start display at page:

Download "An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM"

Transcription

1 An LTE compatible massive MIMO testbed based on OpenAirInterface Xiwen JIANG, Florian Kaltenberger EURECOM

2 Testbed Overview Open source platform Based on OAI hardware and software 3GPP LTE compatible Incorporate all protocol layers Enable end-to-end experimentation with readily available 4G terminals TDD reciprocity calibration Exploiting TDD reciprocity through relative calibration 03/05/2016 OAI workshop p 2

3 Key Parameters Parameters Value Number of antennas Up to 64 Center Frequency Bandwidth Sampling Rate 2.6GHz 5MHz FFT Size 512 Number of used subcarriers 300 Slot time Maximum simultaneously served users 7.68MS/s 0.5ms Currently 4 (LTE release 10), extendable 03/05/2016 OAI workshop p 3

4 System Architecture 03/05/2016 OAI workshop p 4

5 Hardware components Ettus Research Octo-clock for clock distribution PCIe Chassis 16 EXMIMO2 cards Huawei Antenna array Each EXMIMO2 card contains 4 RF chains 20 patch antennas with 4 antennas each 03/05/2016 OAI workshop p 5

6 Software implementation RRC Signaling Beamforming weights calculation Logical to physical antenna mapping IFFT and Precoding Parallelization UE specific RS 03/05/2016 OAI workshop p 6

7 RRC signaling Transmission Mode (TM) Configuration in RRCConnectionReconfiguration UE RRCConnectionRequest RRCConnectionSetup RRCConnectionComplete EUTRAN Configure the UE to use TM7 RRCConnectionReconfiguration RRCConnectionReconfigurationComplete TM1/2 Data Transmission TM7 03/05/2016 OAI workshop p 7

8 Logical Antenna Ports LTE antenna ports definition Source: 3g4g.blogspot.com Antenna Ports DL RS 3GPP Release Port 0-3 Cell Specific RS Release 8 Port 4 MBSFN-RS Release 8 Port 5 UE Specific RS for single-layer Beamforming (TM7) Release 8 Port 6 Positioning RS Release 9 Port 7-8 UE specific RS for Dual-layer Beamforming (TM8) Release 9 Port 9-14 UE specific RS for up to 8 layers Beamforming (TM9) Release 10 Port Channel State Information (CSI) RS Release 10 Port CSI-RS (precoded or standard) Release 13 Port CSI-RS (precoded or standard) Release 14 03/05/2016 OAI workshop p 8

9 Antenna Port Mapping (TM7) Cell specific and UE specific antenna port mapping Logical antenna ports are mapped to physical antennas; Precoding the control channel with common beam weights; Precoding data with the UE specific weights. Logical Antenna ports w 0 Physical Antennas Cell Specific 0 w 1 UE Specific 5 w 2 w 3 Cell Specific 1 w 4 w 5 03/05/2016 OAI workshop p 9

10 UE Specific RS Precoding UE specific RS and data with the same weights in order to perform beamforming channel estimation Cell Specific RS: Use common BF weights UE Specific RS data: Use UE specific BF weights 03/05/2016 OAI workshop p 10

11 IFFT and Beam Precoding Parallelization Real time IFFT and beam precoding Challenge: Impossible to perform IFFT and beam precoding sequentially when the number of physical antennas go large Solution: using a thread pool to parallelize the IFFT and beam precoding for all physical antennas Wakeup all threads only when all threads are in waiting status All threads active Thread pool: each thread is in charge of the IFFT and precoding operation for one physical antenna All threads waiting Some threads finish 03/05/2016 OAI workshop p 11

12 Beamforming Weights Calculation CSIT acquisition Challenge: LTE CSIT Feedback mechanism not feasible in massive MIMO. Solution: TDD channel reciprocity, estimate UL channel to assess DL channel. Implementation: Use SRS (UL RS) to estimate UL channel, Calibrate the UL channel to have DL CSIT (reciprocity calibration). Beamforming weights calculation Same weights for the whole frame (since based on TDD reciprocity). MRT is implemented, ZF, MMSE are to be accomplished. 03/05/2016 OAI workshop p 12

13 TDD Reciprocity Calibration TDD Reciprocity and hardware non-symmetry TDD DL/UL physical channels enjoy reciprocity, implying that we can obtain DL CSI from UL channel estimation TX/RX RF chains are not symmetric, broking the channel reciprocity TDD Reciprocity Calibration The RF chain non-symmetry are stable during time, and can be estimated We perform offline reciprocity calibration to obtain the hardware non-symmetry BS internal calibration within the 64 antenna array so that the UE is not evolved in the calibration 03/05/2016 OAI workshop p 13

14 Demo at WSA Berlin Reduced scale demo with 4 antennas TDD band 38 Motorola phone Reciprocity calibration Beamforming based on reciprocity 03/05/2016 OAI workshop p 14

15 Massive MIMO and C-RAN Massive MIMO is currently implemented centralized as an enhanced 3GPP enodeb function New functional splits (ongoing development) allow flexible (co-located or distributed) C-RAN deployments RRC (IF1 ) (RAU RRU): L1/L2 processing in the frontend RRC (IF1 ) RAU (IF4 5) RRU: one RAU for multiple sites, high speed fronthaul RRC (IF4 5) RRU: several virtual cells, high speed fronthaul Use synchronized low-cost RRUs to create (distributed) massive MIMO array 03/05/2016 OAI workshop p 15

16 Conclusions FDD vs TDD Massive MIMO FDD: UE beam-selection among a set of fixed beams TDD: Can use TDD reciprocity calibration -> better performance due to better quality CSIT Eurecom massive MIMO testbed based on ExpressMIMO2 is being phased out Alternative scalable hardware solutions Synchronized, low-cost RRUs based on USRP B2x0 (mini) like in C-RAN testbed USRPs X3x0 can be scaled & synchronized using PXIe (NI based solution) Very expensive Not supported by UHD and thus OAI Gbit Ethernet switch Skylarke, Other? 03/05/2016 OAI workshop p 16

17 Outlook for 5G New Radio (3GPP Rel 15) Designed for massive MIMO from the start: At least, the 8 orthogonal DL DMRS ports are supported for SU- MIMO and maximum 12 orthogonal DL DMRS ports are supported for MU-MIMO [1] FDD and dynamic TDD Reciprocity based beamforming still possible Hybrid analogue digital antenna systems supported Challenges for reciprocity calibration OAI-NR project starting now Will lay the groundwork for massive MIMO [1] 3GPP TR V ( ) Study on New Radio Access Technology Physical Layer Aspects 03/05/2016 OAI workshop p 17

18 APPENDIX 03/05/2016 OAI workshop p 18

19 APPENDIX 1: STANDARDIZATION FOR MASSIVE MIMO 03/05/2016 OAI workshop p 19

20 LTE release 8/9 (transmission modes 7/8) Unspecified number of TX antennas UE-specific reference signals to which the same beamforming is applied as for PDSCH Means to derive beamforming is unspecified TM7: TM8: One virtual antenna port p={5} Single codeword for one user Two virtual antenna ports p={7,8} Two codewords for two users Codeword User 2 Codeword User 1 p={8} p={7} Beamforming Filters 03/05/2016 OAI workshop

21 LTE release 10 (transmission mode 9) Superset of all previous transmission modes (supports both cell-specific and UEspecific pilots) UE specific reference signals (p={7,8,,6 }) CSI reference signals (p={15,16,,22}) If UE-specific pilots are used Arbitrary number of antennas Up to 8-layer SU/MU-MIMO (max 2 codewords per UE) No. concurrent users limited by PDCCH Feedback (UE-selected) of multiple precoding matrix indicators (quantized as in Rel-8) Measurements made using CSI reference signals 03/05/2016 OAI workshop

22 LTE release 11/12 (transmission mode 10) LTE release 11 (transmission mode 10) Scrambling identities for DMRS can be assigned for better orthogonality in CoMP scenarios epdcch: same beamforming applied to control and data More than 8 UEs possible (per subframe) by using virtual cells (with same enb id) LTE release 12 Mainly small cell enhancements Not many change regarding MIMO 03/05/2016 OAI workshop

23 LTE release 13/14 LTE release 13 New CSI reference signals for up to 16 antennas No new feedback scheme or transmission modes Unfinished work? LTE release 14 Work Item on Enhancements on Full-Dimension (FD) MIMO for LTE CSI reference signals for up to 32 antennas Enhancement on CSI reports Support for providing higher robustness against CSI impairments (such as inter-cell interference or higher-speed UEs) and higher CSI accuracy New transmission mode? 03/05/2016 OAI workshop p 23

24 Summary TDD Massive MIMO feasible even with current Rel 10/11 Using transmission mode 9 or 10 Massive MIMO could even be applied to earlier releases Beamforming of all signals in transmission mode 1 Similar to Artemis private cell concept [Forenza, 2015]? No explicit UE support for relative calibration Not absolutely needed (can be done internally or by proprietary calibration Ues) Maybe work in Rel 13/14 could also be exploited for that FDD Massive MIMO partially feasible Release 14 should support up to 32 antennas feedback modes Can be also used for fixed beam-switching 03/05/2016 OAI workshop p 24

25 APPENDIX 2: PLL ISSUES FOR LMS6002D 03/05/2016 OAI workshop p 25

26 Express MIMO 2 RF RX (4 way) RF TX (4 way) PCI Express (1 or 4 way) Spartan 6 LX150T 4xLMS6002D RF ASICs 12V from ATX power supply 250 MHz 3.8 GHz GPIO for external RF control 03/05/2016 OAI workshop

27 TDD issues on LMS6002D Fig.6. LMS6002D layout 03/05/2016 OAI workshop p 27

28 PLL issues LMS6002D limitations ExpressMIMO2 uses LMS6002D as RF front-end chips Tx and Rx RF chains use different PLLs (initially designed for FDD mode) If we set both PLLs to the same frequency as in the FDD mode, they interfere each other; LMS6002D turns on/off alternatively the PLLs for Tx and Rx in TDD mode, resulting in a random modulation phase and making it impossible to perform MIMO precoding. Solutions Set a ¼*fs frequency shift in Tx and Rx RF chains in the analogue domain, where fs is the sampling frequency Draw back the frequency shift in the digital domain 03/05/2016 OAI workshop p 28

29 TDD workaround Original Signal Baseband filter = 5MHz Offset RX frequency fc-fs/2 fc fcfs/2 Baseband filter = 10MHz Alias fc-fs/2 fc =fc-fs/4 fcfs/2 Shift baseband signal back by fs/4 0 fc = carrier frequency fs = sampling frequency 03/05/2016 OAI workshop p 29

30 TDD workaround Drawbacks Drawbacks LO leakage (issue mostly for UE) Will only work if (left-) adjacent channel is free 03/05/2016 OAI workshop p 30

31 APPENDIX 2: TM7 SIMULATION IN OAI 03/05/2016 OAI workshop p 31

32 OAI Downlink simulation on TM7 Fig.4. TM7 BLER under perfect channel estimation (QPSK, AWGN channel) 03/05/2016 OAI workshop p 32

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Presented by Florian Kaltenberger Swisscom workshop 29.5.2012 Eurecom, Sophia-Antipolis, France Outline Motivation The SAMURAI project Overview

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

COST Action CA15104 Assessment of 5G radio access techniques through experimental platforms

COST Action CA15104 Assessment of 5G radio access techniques through experimental platforms COST Action CA15104 Assessment of 5G radio access techniques through experimental platforms COST Action CA15104 (IRACON) aims to achieve scientific networking and cooperation in novel design and analysis

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Ankit Bhamri, Florian Kaltenberger, Raymond Knopp, Jyri Hämäläinen Eurecom, France

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

3GPP TR V ( )

3GPP TR V ( ) TR 36.871 V11.0.0 (2011-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Downlink Multiple

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

From massive MIMO to C-RAN: the OpenAirInterface 5G testbed

From massive MIMO to C-RAN: the OpenAirInterface 5G testbed From massive MIMO to C-RAN: the OpenAirInterface 5G testbed Florian Kaltenberger, Xiwen Jiang, Raymond Knopp EURECOM, Campus SophiaTech, 06410 Biot, France firstnamelastname@eurecomfr Abstract 5G will

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

3GPP 5G 無線インターフェース検討状況

3GPP 5G 無線インターフェース検討状況 3GPP 5G 無線インターフェース検討状況 エリクソン ジャパン ( 株 ) ノキアソリューションズ & ネットワークス ( 株 ) 2017 年 12 月 22 日 1 Disclaimers This presentation is based on the draft 3GPP specifications to be approved in RAN#78 meeting in Dec/2017.

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

TS 5G.201 v1.0 (2016-1)

TS 5G.201 v1.0 (2016-1) Technical Specification KT PyeongChang 5G Special Interest Group (); KT 5th Generation Radio Access; Physical Layer; General description (Release 1) Ericsson, Intel Corp., Nokia, Qualcomm Technologies

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

Low latency in 4.9G/5G

Low latency in 4.9G/5G Low latency in 4.9G/5G Solutions for millisecond latency White Paper The demand for mobile networks to deliver low latency is growing. Advanced services such as robotics control, autonomous cars and virtual

More information

Interference-Aware Receivers for LTE SU-MIMO in OAI

Interference-Aware Receivers for LTE SU-MIMO in OAI Interference-Aware Receivers for LTE SU-MIMO in OAI Elena Lukashova, Florian Kaltenberger, Raymond Knopp Communication Systems Dep., EURECOM April, 2017 1 / 26 MIMO in OAI OAI has been used intensively

More information

5G new radio architecture and challenges

5G new radio architecture and challenges WHITE PAPER 5G new radio architecture and challenges By Dr Paul Moakes, CTO, CommAgility www.commagility.com 5G New Radio One of the key enabling technologies for 5G will be New Radio (NR). 5G NR standardization

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20 Challenges of 5G mmwave RF Module Ren-Jr Chen rjchen@itri.org.tw M300/ICL/ITRI 2018/06/20 Agenda 5G Vision and Scenarios mmwave RF module considerations mmwave RF module solution for OAI Conclusion 2 5G

More information

PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet

PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet The most important thing we build is trust Designed for the production test of the base station RF, tailored for the evolving small cell

More information

2015 SoftBank Trial Akihabara,Tokyo

2015 SoftBank Trial Akihabara,Tokyo 2015 SoftBank Trial Akihabara,Tokyo Adding street pole mounted Small Cells as a 2 nd LTE layer for the Macro deployment in a dense urban area Akihabara Tokyo 500mm Height limit Detached SBA 1 Trial Goals

More information

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs Performance Studies on LTE Advanced in the Easy-C Project 19.06.2008 Andreas Weber, Alcatel Lucent Bell Labs All Rights Reserved Alcatel-Lucent 2007 Agenda 1. Introduction 2. EASY C 3. LTE System Simulator

More information

Test strategy towards Massive MIMO

Test strategy towards Massive MIMO Test strategy towards Massive MIMO Using LTE-Advanced Pro efd-mimo Shatrughan Singh, Technical Leader Subramaniam H, Senior Technical Leader Jaison John Puliyathu Mathew, Senior Engg. Project Manager Abstract

More information

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany;

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; Proceedings of SDR'11-WInnComm-Europe, 22-24 Jun 2011 LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; meik.kottkamp@rohde-schwarz.com) ABSTRACT From 2009 onwards

More information

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017 Ettus Research USRP Tom Tsou tom.tsou@ettus.com 3rd OpenAirInterface Workshop April 28, 2017 Agenda Company Overview USRP Software Ecosystem Product Line B-Series (Bus) N-Series (Network) X-Series (High

More information

PoC #1 On-chip frequency generation

PoC #1 On-chip frequency generation 1 PoC #1 On-chip frequency generation This PoC covers the full on-chip frequency generation system including transport of signals to receiving blocks. 5G frequency bands around 30 GHz as well as 60 GHz

More information

Chih-Hsuan Chen CHTTL 2016/11/04

Chih-Hsuan Chen CHTTL 2016/11/04 Chih-Hsuan Chen CHTTL 2016/11/04 1/27 Background Rel-13 FD-MIMO Rel-14 efd-mimo NR MIMO 2/27 Spectrum extension Current Capacity Network Densification Spectrum efficiency 3/27 R8/R9 R10 R13 R14 2x2 MIMO

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

Evolution of 3GPP LTE-Advanced Standard toward 5G

Evolution of 3GPP LTE-Advanced Standard toward 5G Evolution of 3GPP LTE-Advanced Standard toward 5G KRNet 2013. 6. 24. LG Electronics Byoung-Hoon Kim (bh.kim@lge.com) Communication Standards Evolution Mobility We are here IMT-Advanced Standard High (~350Km/h)

More information

5G Outlook Test and Measurement Aspects Mark Bailey

5G Outlook Test and Measurement Aspects Mark Bailey 5G Outlook Test and Measurement Aspects Mark Bailey mark.bailey@rohde-schwarz.com Application Development Rohde & Schwarz Outline ı Introduction ı Prospective 5G requirements ı Global 5G activities and

More information

3GPP Long Term Evolution LTE

3GPP Long Term Evolution LTE Chapter 27 3GPP Long Term Evolution LTE Slides for Wireless Communications Edfors, Molisch, Tufvesson 630 Goals of IMT-Advanced Category 1 2 3 4 5 peak data rate DL / Mbit/s 10 50 100 150 300 max DL modulation

More information

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia COSMOS Millimeter Wave June 1 2018 Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia srangan@nyu.edu, hk2532@columbia.edu Millimeter Wave Communications Vast untapped spectrum

More information

MIMO-OFDM for LTE 최수용. 연세대학교전기전자공학과

MIMO-OFDM for LTE 최수용.   연세대학교전기전자공학과 MIMO-OFDM for LTE 최수용 csyong@yonsei.ac.kr http://web.yonsei.ac.kr/sychoi/ 연세대학교전기전자공학과 LTE 시스템의특징 : Architecture LTE(Long Term Evolution) (=E-UTRAN) SAE(System Architecture Evolution) (=EPC) EPS(Evolved

More information

3GPP TR V9.0.0 ( )

3GPP TR V9.0.0 ( ) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) (Release 9) The present document

More information

DOWNLINK AIR-INTERFACE...

DOWNLINK AIR-INTERFACE... 1 ABBREVIATIONS... 10 2 FUNDAMENTALS... 14 2.1 INTRODUCTION... 15 2.2 ARCHITECTURE... 16 2.3 INTERFACES... 18 2.4 CHANNEL BANDWIDTHS... 21 2.5 FREQUENCY AND TIME DIVISION DUPLEXING... 22 2.6 OPERATING

More information

Introduction to Shortened TTI And Processing Time for LTE. Sam Meng HTC

Introduction to Shortened TTI And Processing Time for LTE. Sam Meng HTC Introduction to Shortened TTI And Processing Time for LTE Sam Meng HTC 1 Table of Contents Background Design Considerations Specification Concluding Remarks 2 3 Background TTI in LTE Short for Transmission

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

C O M PAN Y R E S T R I C T E D

C O M PAN Y R E S T R I C T E D What is 5G? It s a paradigm shift 1G~1985 2G1992 3G2001 4G2010 5G2020 Transition from analog to digital www Define use case Analyze requirements Define technology embb www Define technology framework Find

More information

Agenda. Overview of LTE UE Attach Procedure OAI-UE Threading Structure & Timing Walk through the OAI-UE Codes

Agenda. Overview of LTE UE Attach Procedure OAI-UE Threading Structure & Timing Walk through the OAI-UE Codes OAI UE overview Wilson W. K. Thong (ASTRI), Fabrice Nabet, Haithem Bilel (TCL), Florian Kaltenberger, Raymond Knopp (Eurecom) OAI workshop 2017 BUPT, Beijing, April 27 th 2017 Agenda Overview of LTE UE

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

5G New Radio (NR) : Physical Layer Overview and Performance

5G New Radio (NR) : Physical Layer Overview and Performance 5G New Radio (NR) : Physical Layer Overview and Performance IEEE Communication Theory Workshop - 2018 Amitabha Ghosh Nokia Fellow and Head, Radio Interface Group Nokia Bell Labs May 15 th, 2018 1 5G New

More information

Design and implementation of an LTE system with multi-thread parallel processing on OpenAirInterface platform [Invited paper]

Design and implementation of an LTE system with multi-thread parallel processing on OpenAirInterface platform [Invited paper] Design and implementation of an LTE system with multi-thread parallel processing on OpenAirInterface platform [Invited paper] Hengyang Shen *, Xingguang Wei *, Haitao Liu *, Yang Liu +, and Kan Zheng *

More information

Capacity Enhancement Techniques for LTE-Advanced

Capacity Enhancement Techniques for LTE-Advanced Capacity Enhancement Techniques for LTE-Advanced LG 전자 윤영우연구위원 yw.yun@lge.com 1/28 3GPP specification releases 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 GSM/GPRS/EDGE enhancements

More information

Addressing Design and Test Challenges for new LTE-Advanced Standard

Addressing Design and Test Challenges for new LTE-Advanced Standard Addressing Design and Test Challenges for new LTE-Advanced Standard Sheri DeTomasi Modular Program Manager LTE-A Multi-channel Apps Updated December 15, 2014 The Data Challenge Internet Email Navigation

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

PHY/MAC design concepts of 5G Version 1.0

PHY/MAC design concepts of 5G Version 1.0 PHY/MAC design concepts of 5G 1 2018 Version 1.0 Outline Introduction Background (standardization process, requirements/levers, LTE vs 5G) Part I: 5G PHY/MAC Enablers Physical channels, physical reference

More information

Scheduler Algorithms for MU-MIMO

Scheduler Algorithms for MU-MIMO Scheduler Algorithms for MU-MIMO WISSAM MOUSTAFA AND RICHARD MUGISHA MASTER S THESIS DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY FACULTY OF ENGINEERING LTH LUND UNIVERSITY Scheduler Algorithms

More information

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G ICTC 2015 Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G Juho Lee Samsung Electronics Presentation Outline LTE/LTE-Advanced evolution: an overview LTE-Advanced in Rel-13 Expectation for LTE-Advanced

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Tabrez Khan Application Engineering Group 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies 5G development

More information

OAI UE 5G NR FEATURE PLAN AND ROADMAP

OAI UE 5G NR FEATURE PLAN AND ROADMAP OAI UE 5G NR FEATURE PLAN AND ROADMAP Fabrice Nabet BUPT OpenAir Workshop, April 28 2017, Beijing TCL Communication Technology Holdings Ltd. 5G Spirit From OAI LTE to 5G NR LTE UE basic functionalities

More information

Utilization of Channel Reciprocity in Advanced MIMO System

Utilization of Channel Reciprocity in Advanced MIMO System Utilization of Channel Reciprocity in Advanced MIMO System Qiubin Gao, Fei Qin, Shaohui Sun System and Standard Deptartment Datang Mobile Communications Equipment Co., Ltd. Beijing, China gaoqiubin@datangmobile.cn

More information

GTI Proof of Concept of 5G System White Paper

GTI Proof of Concept of 5G System White Paper GTI Proof of Concept of 5G System White Paper http://www.gtigroup.org Page 0 White Paper of Proof of Concept of 5G System V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

(some) Device Localization, Mobility Management and 5G RAN Perspectives

(some) Device Localization, Mobility Management and 5G RAN Perspectives (some) Device Localization, Mobility Management and 5G RAN Perspectives Mikko Valkama Tampere University of Technology Finland mikko.e.valkama@tut.fi +358408490756 December 16th, 2016 TAKE-5 and TUT, shortly

More information

S. Mohammad Razavizadeh. Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST)

S. Mohammad Razavizadeh. Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST) S. Mohammad Razavizadeh Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST) 2 Evolution of Wireless Networks AMPS GSM GPRS EDGE UMTS HSDPA HSUPA HSPA+ LTE LTE-A

More information

4G TDD MIMO OFDM Network

4G TDD MIMO OFDM Network 4G TDD MIMO OFDM Network 4G TDD 移动通信网 Prof. TAO Xiaofeng Wireless Technology Innovation Institute (WTI) Beijing University of Posts & Telecommunications (BUPT) Beijing China 北京邮电大学无线新技术研究所陶小峰 1 Background:

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

5G: implementation challenges and solutions

5G: implementation challenges and solutions 5G: implementation challenges and solutions University of Bristol / Cambridge Wireless 18 th September 2018 Matthew Baker Nokia Bell-Labs Head of Radio Physical Layer & Coexistence Standardisation Higher

More information

Building versatile network upon new waveforms

Building versatile network upon new waveforms Security Level: Building versatile network upon new waveforms Chan Zhou, Malte Schellmann, Egon Schulz, Alexandros Kaloxylos Huawei Technologies Duesseldorf GmbH 5G networks: A complex ecosystem 5G service

More information

Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges

Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges Vincent Lau Dept of ECE, Hong Kong University of Science and Technology Background 2 Traditional Interference

More information

SEVENTH FRAMEWORK PROGRAMME

SEVENTH FRAMEWORK PROGRAMME SEVENTH FRAMEWORK PROGRAMME Theme ICT-2009.1.1 The network of the future Deliverable D5.2 Work Package 5 proof-of-concepts D5.2 Blocks assessment and system evaluation Contract no.: 248268 Project acronym:

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

WHITEPAPER MULTICORE SOFTWARE DESIGN FOR AN LTE BASE STATION

WHITEPAPER MULTICORE SOFTWARE DESIGN FOR AN LTE BASE STATION WHITEPAPER MULTICORE SOFTWARE DESIGN FOR AN LTE BASE STATION Executive summary This white paper details the results of running the parallelization features of SLX to quickly explore the HHI/ Frauenhofer

More information

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4, 2016 1 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13)

More information

Overview of OAI Work in BUPT

Overview of OAI Work in BUPT 1 4 th OAI Workshop Overview of OAI Work in BUPT Luhan Wang Beijing Univ. of Posts & Telec. Paris, Nov. 8, 2017 Introduction of BUPT group 2 1.1 项目内容概况 BUPT Beijing University of Posts and Telecommunications

More information

5G Synchronization Aspects

5G Synchronization Aspects 5G Synchronization Aspects Michael Mayer Senior Staff Engineer Huawei Canada Research Centre WSTS, San Jose, June 2016 Page 1 Objective and outline Objective: To provide an overview and summarize the direction

More information

LTE Transmission Modes and Beamforming White Paper

LTE Transmission Modes and Beamforming White Paper LTE Transmission Modes and Beamforming White Paper Multiple input multiple output (MIMO) technology is an integral part of 3GPP E-UTRA long term evolution (LTE). As part of MIMO, beamforming is also used

More information

TEPZZ 7Z45_ B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

TEPZZ 7Z45_ B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION (19) TEPZZ 7Z4_ B_T (11) EP 2 704 13 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 16.08.17 Bulletin 17/33 (21) Application number: 12777760. (22)

More information

Massive MIMO testbed: Validation STEFFEN MALKOWSKY, LUND UNIVERSITY, SWEDEN

Massive MIMO testbed: Validation STEFFEN MALKOWSKY, LUND UNIVERSITY, SWEDEN Massive testbed: Validation SEFFEN MALKOWSKY, LUND UNIVERSIY, SWEDEN Why do we need a testbed? Ø heoretical results show that massive has very promising features for future wireless generation, however

More information

Part I Evolution. ZTE All rights reserved

Part I Evolution. ZTE All rights reserved Part I Evolution 2 ZTE All rights reserved 4G Standard Evolution, LTE-A in 3GPP LTE(R8/R9) DL: 100Mbps, UL: 50Mbps MIMO, BF,LCS, embms LTE-A (R10/R11) DL: 1Gbps, UL: 500Mbps CA, Relay, Het-Net CoMP, emimo

More information

UNIVERSITY OF SUSSEX

UNIVERSITY OF SUSSEX UNIVERSITY OF SUSSEX OFDMA in 4G Mobile Communications Candidate Number: 130013 Supervisor: Dr. Falah Ali Submitted for the degree of MSc. in Digital Communication Systems School of Engineering and Informatics

More information

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions NR Radio Access Network 2019 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION...3 5G RAN CONCEPTS - WBL...3 5G RAN NR AIR INTERFACE...3 5G RAN NR N18 FUNCTIONALITY...3

More information

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT.

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT. Evolution of cellular wireless systems from 2G to 5G 5G overview 6-13 th October 2017 Enrico Buracchini TIM INNOVATION DEPT. Up to now.we are here. Source : Qualcomm presentation @ 5G Tokyo Bay Summit

More information

Addressing Future Wireless Demand

Addressing Future Wireless Demand Addressing Future Wireless Demand Dave Wolter Assistant Vice President Radio Technology and Strategy 1 Building Blocks of Capacity Core Network & Transport # Sectors/Sites Efficiency Spectrum 2 How Do

More information

Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems

Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems Florian Kaltenberger and Raymond Knopp EURECOM Sophia-Antipolis, France Martin Danneberg

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

(LTE Fundamental) LONG TERMS EVOLUTION

(LTE Fundamental) LONG TERMS EVOLUTION (LTE Fundamental) LONG TERMS EVOLUTION 1) - LTE Introduction 1.1: Overview and Objectives 1.2: User Expectation 1.3: Operator expectation 1.4: Mobile Broadband Evolution: the roadmap from HSPA to LTE 1.5:

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.201 V10.0.0 (2010-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.216 V10.3.1 (2011-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

More information

RAN and Key technologies in 5G NR

RAN and Key technologies in 5G NR RAN and Key technologies in 5G NR Zhixi Wang Huawei Technology September,2018 Agenda NR Overall Architecture and Network Interfaces Physical Layer Layer 2 and RRC Deployment Architecture and Scenarios

More information

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR XGP Forum Document TWG-009-01-TR Title: Conformance test for XGP Global Mode Version: 01 Date: September 2, 2013 XGP Forum Classification: Unrestricted List of contents: Chapter 1 Introduction

More information

LTE. Essential Test and Measurement Tools

LTE. Essential Test and Measurement Tools LTE Essential Test and Measurement Tools WaveJudge 4900 Troubleshooting LTE techology: discovering root causes Whether you are developing, certifying or implementing LTE technology, troubleshooting functional

More information

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Jiangzhou Wang University of Kent 1 / 31 Best Wishes to Professor Fumiyuki Adachi, Father of Wideband CDMA [1]. [1]

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II BASICS & CHALLENGES Dr Konstantinos Dimou Senior Research Engineer Ericsson Research konstantinos.dimou@ericsson.com Overview Introduction Definition Vision

More information

Canadian Evaluation Group

Canadian Evaluation Group IEEE L802.16-10/0061 Canadian Evaluation Group Raouia Nasri, Shiguang Guo, Ven Sampath Canadian Evaluation Group (CEG) www.imt-advanced.ca Overview What the CEG evaluated Compliance tables Services Spectrum

More information