Next Generation Wireless Communication System

Size: px
Start display at page:

Download "Next Generation Wireless Communication System"

Transcription

1 Next Generation Wireless Communication System - Cognitive System and High Speed Wireless - Yoshikazu Miyanaga Distinguished Lecturer, IEEE Circuits and Systems Society Hokkaido University Laboratory of Information Communication Networks Graduate School of Information Science and Technology Sapporo , Hokkaido Japan

2 Key Technologies OFDM (Orthogonal Frequency Division Multiplexing) Wireless LAN 54MBPS (IEEE a,.11g) 300MBPS 600MBPS (IEEE n) Digital TV broadcasting WiMAX Next Generation Mobile Phone 3G LTE (super 3G, in JP), 4G ( in JP) MIMO (Multiple Input Multiple Output Communication Channels ) Wireless LAN 300MBPS 600MBPS (IEEE n) Over 1GBPS (IEEE802.11ac) Advanced WiMAX Next Generation Mobile Phone 2

3 channel A/D D/A S/P Basic OFDM System Mapping Input Data P/S Guard Interval IFFT S/P Delete GI Demapping Output Data FFT Equalizer P/S

4 Basic OFDM System p FFT within several nano second Coder: cov, blk Input Data Mapping S/P IFFT Guard Interval P/S D/A Low Power Design channel De-Coder: Viterbi, LDPC Output Data Demapping P/S Equalizer FFT Delete GI S/P A/D p FFT within several nano second

5 MIMO System Transmitter Receiver TX Encoder Encoder Mapper Mapper IFFT IFFT FFT FFT MIMO Detector De-Mapper De-Mapper Decoder Decoder RX

6 MIMO Decoding Circuit The mode when the receiver gets the training symbols The estimation of channel and the inverse matrix calculation should be completed. The mode when the receiver gets data symbols MIMO decoding should be applied. from FFT A, Β Channel Estimation H y (from 1st and 2nd training symbols) MIMO Detector G s Inverse Matrix G = 1 Η Memory

7 MIMO Decoding Circuit High speed & Low power. from FFT A, Β H (from 1st and 2nd training symbols) G = 1 Η y Channel Estimation Low Power Design Inverse Matrix Memory MIMO Detector G s Matrix Inversion within several nano second

8 Low Power Consumption Design Smaller number of Gates Switching power reduction Leak current reduction Parallel/Pipelined Calculation Lower Clock Rate Power Control Gated clock Dynamic Power Suspension of Module Block 8

9 and MORE Lower Voltage Input Supply Sub-threshold design Dynamic voltage control New Algorithm Design Lower calculation cost Complete Parallel/Pipelined Processing New Architecture Design Dynamic Architecture 9

10 COGNITIVE RADIO SYSTEM FOR THE NEXT GENERATION WIRELESS NETWORK

11 WHAT IS COGNITIVE RADIO?!? In 2000, FCC introduced a Cognitive Radio System which used efficiently frequency bands. In 2005, IEEE 802 Committee introduced an advance system, i.e., a cognitive radio system, in which an occupied frequency band is automatically selected and dynamically changed.

12 Conventional Radio Mode All available frequency bands are fixed. Accordingly, the frequency band possibly used for the system has been assigned as a prior information. time : t1 time : t2 time : t3 ch1 ch2 ch3 A B C A C B Freq. ch1 for system A ch2 for system B ch3 for system C time : t4 A B C FCC reports over 80% bands are not used at the specific location and time.

13 Cognitive Radio Mode The system finds out the available bands and then select some of suitable bands dynamically by itself. time : t1 ch1 ch2 ch3 A B C Freq. System A and B are conventional radio. System C is a cognitive radio. time : t2 A C ch1 for system A time : t3 C B C ch2 for system B time : t4 A B C ch3 for system C

14 Cognitive Radio Mode It changes the frequency bandwidths depending on communication environment. The resources of frequency bands are fully and optimally used. It has many communication modes. The high throughput is usually kept. The complexity of a system becomes high compared to a fixed radio system. High power-consumption and circuit size become considerably large.

15 Our cognitive system Our design of new cognitive system is based on MIMO-OFDM system. All parts of our system behaves as cognitive systems!!! 15

16 Cognitive MIMO-OFDM Con Sensor Processor MAC.11a OFDM 2x2 MIMO 300M OFDM.11n OFDM 450M VHT OFDM 4x2 MIMO 4x4 MIMO 8x4 MIMO RF

17 Cognitive MIMO-OFDM Intelligent Sensor is designed. A sensor tries to find out the information of current communication environment. Con Sensor Processor MAC The AI controller.11a OFDM determines 2x2 MIMO the optimum communication mode Cognitive OFDM 4x2 MIMO with suitable parameters in which lowest BER/PER can be designed..11n OFDM 4x4 MIMO From its decision, a specific mode and a RF アンテナ suitable 450M 1.8G New band OFDM are 8x4 selected MIMO automatically.

18 Cognitive MIMO-OFDM Con Sensor Processor MAC.11a OFDM 2x2 MIMO 300M OFDM.11n OFDM 450M VHT OFDM 4x2 MIMO 4x4 MIMO 8x4 MIMO RF

19 Cognitive MIMO-OFDM Con Cognitive MIMO-OFDM is designed. Its features are given as follows 20~100MHz band is determined dynamically. Minimum PER can be achieved. MAC The optimum throughput is selected among Sensor Processor 54M~1.8Gbps..11a OFDM 2x2 MIMO 300M OFDM.11n OFDM 450M VHT OFDM 4x2 MIMO 4x4 MIMO 8x4 MIMO RF

20 Modes in Cognitive MIMO-OFDM HU-VHT

21 Number of Butterfly Blocks HU-VHT

22 Required data paths for all FFTs Array of Butterfly blocks

23 Evaluation Hardware description language Logic synthesis Clock frequency technology Verilog HDL Design Analyzer 100MHz 90nmCMOS

24 Evaluation(consumption power) System FFT Conventional Proposed length (mw) (mw) a/n SISO n SISO IEEE802.16e SISO n 4x4 MIMO n 2x3 MIMO HU-VHT 2x2 MIMO Conventional means each power consumption is given from a corresponding sub-module only. It does not means the power consumption of the total system.

25 Evaluation(circuit area) No. of gates Conventional Proposed Area Proposed structure can reduce a circuit scale by about 35%.

26 HIGH SPEED WIRELESS COMMUNICATION 26

27 Current Trend of MIMO-OFDM Systems IEEE Standards Development by Hokkaido Univ. (Only Baseband) 3Gbps Hokkaido Univ. 8x8 MIMO-OFDM (2010) 3.0 Gbps Transmit Speed 2Gbps 1Gbps 500M bps IEEE802.11n Optional (2009) 600Mbps IEEE802.11a (2002) 54Mbps IEEE802.11ac [2012] 3.0 Gbps Hokkaido Univ. 4x4 MIMO-OFDM (2008) 1.5 Gbps IEEE802.11n Draft (2007) 300Mbps Hokkaido Univ. 2x2 MIMO-OFDM (2006) 600 Mbps Hokkaido Univ. SISO-OFDM (2005) 300 Mbps 20MHz 40MHz 60MHz 80MHz Bandwidth

28 FPGA Board for Evaluation Gigabit Ethernet PHY Xilinx Gigabit Ethernet MAC STARC MAC Altera STARC PHY Output

29 Dynamic Architecture of Low Power OFDM BB Transmitter Sensor Monitering OFDM BB Receiver Sensor OFDM BB Receiver OFDM BB Transmitter Realization of High Throughput and Low Power

30 Block Diagram of 4x4 MIMO-OFDM Circuit Transmitter Scrambler Encoder Interleave Mapper Pilot & Puncture Insertion Receiver Demapper IFFT Re-order & GI Insertion Viterbi Decoding Preamble Insertion Frame & Freq. Synchronization FFT Re-order & Pilot Remove MIMO Channel Est. & Decoding De-interleave & Dummy Data Insertion De-scrambler

31 Matrix Operations Use of 2x2 Submatrices Conjugate Symmetry in Non Diagonal Submatrices P k = H H k H k + σ 2 k I Hermitian Transpose Conjugate Symmetry P 11 P 21 P P P 14 P24 P23 P 22 P31 P32 P 41 P 42 Complexity Reduction P P33 34 P43 P44 A = C Strassen s Matrix Multiplication and Inversion Use of Conjugate Symmetry Submatrices B D = B A H B D

32 Performance Comparison Reference [2] [3] [4] Proposed Matrix 2 x 2 4 x 4 4 x 4 4 x 4 Detection Algorithm ZF ZF MMSE MMSE Hardware Configuration DSP TMS ASIC 90 nm 43 k gates ASIC 0.25 µm 89 k gates ASIC 90 nm 1.86 M gates Operating Freq. 225 MHz 500 MHz 167 MHz 160 MHz Latency Time 104 x K (µs) 180 x K (ns) 600 x K (ns) (ns) K: No. of OFDM Subcarriers [2] V. Jungnickel, A. Forck, T. Haustein, et al., 1 Gbit/s MIMO-OFDM transmission experiments,'' IEEE Vehicular Technology Conference (VTC), [3] Johan Eilert, Di Wu, and Dake Liu, Efficient complex matrix inversion for MIMO software defined radio, IEEE ISCAS, [4] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W. Fichtner, Algorithm and VLSI architecture for linear MMSE detection in MIMO-OFDM systems, IEEE ISCAS, 2006.

33 Available Data Speed Necessary Conditions Clock Frequency Baseband Bandwidth Processing Latency GI Duration (400 ns) Maximum Transmission Speed (Mbps) 5/6 Coding Rate 64-QAM 400-ns GI Duration Bandwidth (MHz) A 2.6-Gbps MIMO-OFDM receiver is available by the proposed MMSE detector.

34 4x4 MIMO-OFDM with 512 SUBCARRIERS

35 Design Challenge of 8x8 MIMO-OFDM Task group of IEEE802.11ac mentions use of more than four antennas. The maximum number of spatial streams is eight. 8x8 MIMO-OFDM 1.2 Gbps at 40-MHz Channel 3.0 Gbps at 80-MHz Channel 6.0 Gbps at 160-MHz Channel (Use of two transceivers) High Speed and Low-Power Architecture for 8x8 MIMO-OFDM

36 Current Activities in Our Project Total design of 8x8 MIMO-OFDM transceiver Integrated design for multiple data streams Real-time processing for MIMO detection Low power design by intelligent power control Prototype fabrication of wireless system Integration of baseband, RF, antenna units

37 Block Diagram Blocks in FFT/IFFT, Viterbi decoding, MIMO decoding are dominant in circuit scale. Transmitter Scrambler Encoder Interleave & Puncture Mapper Pilot Insertion IFFT Re-order & GI Insertion Preamble Insertion Receiver FFT Demapper Viterbi Decoding Frame & Freq. Synchronization Re-order & Pilot Remove MIMO Channel Est. &Decoding De-interleave & Dummy Data Insertion De-Scrambler

38 Integrated Design Duplicate design Deploy identical circuit blocks for the number of spatial data streams Increase power and area in proportion to spatial data streams Integrated design A circuit block supports multiple-input and multiple-output data paths. Reduce power and area by resource sharing FFT FFT FFT FFT FFT FFT SISO FFT processors MIMO FFT MIMO FFT processor

39 Multi-Path Delay FFT Processor R8MDC (Radix-8 multiple path delay communicator) Based on 8-input and 8-output butterfly units Reduction of multipliers by FFT radix-8 algorithm A 8x8 MIMO FFT processor only needs 1/3 circuit area compared with eight SISO FFT processors.

40 Implementation of 8x8 MIMO-OFDM Circuit performance (100MHz clock, w/o MIMO decoding) Transmitter * memory buffer included No. of logic gates Power Dissipation (mw) IFFT 573, Interleave* 104, Pilot assignment* 219, Others* 348, Total 1,244, Receiver No. of logic gates Power Dissipation (mw) FFT 573, Synchronization 24, Channel Estimation 19, Viterbi decoding 2,724, Deinterleave* 677, Others* 219, Total 4,239,

41 MIMO Detection Strassen s algorithm Systematic matrix operation based on 2x2 matrices Extension of square matrix operations 8x8 matrix inversion 4x4 matrix inversion 8 4x4 matrix multiplication 2x2 matrix inversion 8 2x2 matrix multiplication Division of submatrices in matrix inversion

42 Timing Chart Received signals in frequency domain after FFT y ( t) = H s ( t) + n ( t) k Preprocessing (matrix inversion) G k k H k = ( H H + σ k k k 2 1 k I) H H k MIMO decoding s ˆ ( t) = G k k: OFDM subcarrier index t: OFDM symbol index k y k ( t)

43 Implementation of MIMO Detector 8x8 MIMO detection can complete within guard interval (800 ns) duration. Complete real-time processing in MIMO detection, which is tolerant of time varying fading. 8x8 Full Pipeline 4x4 Full Pipeline * Wordlength (bits) Operating Frequency 80MHz 160MHz Total cell area (μm 2 ) 61,570,100 8,813,200 Number of logic gates 15,392,500 2,203,300 Processing Latency 780 ns 190 ns Power Consumption 1.42 W 701.2mW *Shingo Yoshizawa, Yasushi Yamauchi, Yoshikazu Miyanaga, ``VLSI Implementation of a Complete Pipeline MMSE Detector for a 4x4 MIMO-OFDM Receiver,'' IEICE Transactions on Fundamentals, Vol.E91-A, No.7, pp , July 2008.

44 Prototype Fabrication Wireless transceiver 2x2 MIMO-OFDM transmitter and receiver FPGA baseband units RF transceiver ( MHz frequency band) * *Shingo Yoshizawa, Shinya Odagiri, Yasuhiro Asai, Takashi Gunji, Takashi Saito, Yoshikazu Miyanaga, ``Development and Outdoor Evaluation of an Experimental Platform in an 80-MHz Bandwidth 2x2 MIMO-OFDM System at 5.2-GHz Band,'' IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep

45 FPGA Board 2x2 MIMO-OFDM Transceiver 400 M samples/s by 4x over sampling MMSE and MLD algorithms in MIMO detection

46 Summary New Trend of Wireless Communications MIMO-OFDM WiMAX 3G LTE (super 3G, in JP), 4G ( in JP) LTE : Long Term Evolution ac ( over 1GBPS wireless LAN) Cognitive Wireless System Ultra High Speed Wireless System 4x4 MIMO-OFDM 8x8 MIMO-OFDM 46

47 Who? Yoshikazu Miyanaga He is a professor in Graduate School of Information Science and Technology, Hokkaido University. He is an associate editor of Journal of Signal Processing, RISP Japan (2005- present). He was a chair of Technical Group on Smart Info-Media System, IEICE (IEICE TG-SIS) ( ) and now a member of the advisory committee, IEICE TG-SIS (2006-present). He is also vice-president, IEICE Engineering Science (ES) Society. He is a fellow member of IEICE. He is also vice-president, Asia-Pacific Signal and Information Processing Association (APSIPA). He is a distinguished lecture (DL) of IEEE CAS Society ( ) and now a Board of Governor (BoG) of IEEE CAS Society (2011-present). 47

Design of Over GIGA bit Wireless LSI systems

Design of Over GIGA bit Wireless LSI systems Design of Over GIGA bit Wireless LSI systems Yoshikazu Miyanaga Hokkaido University Laboratory of Information Communication Networks Graduate School of Information Science and Technology Sapporo 060-0814,

More information

Hardware Development of Baseband Transceiver and FPGA-Based Testbed in 8 8 and 2 2 MIMO-OFDM Systems

Hardware Development of Baseband Transceiver and FPGA-Based Testbed in 8 8 and 2 2 MIMO-OFDM Systems Hardware evelopment of Baseband Transceiver and -Based Testbed in 8 8 and 2 2 MIMO-OFM Systems 7 Hardware evelopment of Baseband Transceiver and -Based Testbed in 8 8 and 2 2 MIMO-OFM Systems Shingo Yoshizawa

More information

A Low-Power Adaptive MIMO Detector for MIMO-OFDM WLAN Systems

A Low-Power Adaptive MIMO Detector for MIMO-OFDM WLAN Systems APSIPA ASC 2011 Xi an A Low-Power Adaptive MIMO etector for MIMO-OFM WLAN Systems Shingo Yoshizawa, Nozomi Miyazaki, aisuke Nakagawa, and Yoshikazu Miyanaga Graduate School of Information Science and Technology,

More information

Hardware Development of Baseband Transceiver and FPGA-Based Testbed in 8 8 and 2 2 MIMO-OFDM Systems

Hardware Development of Baseband Transceiver and FPGA-Based Testbed in 8 8 and 2 2 MIMO-OFDM Systems 64 ECTI TRANSACTIONS ON COMPUTER AN INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012 Hardware evelopment of Baseband Transceiver and FPGA-Based Testbed in 8 8 and 2 2 MIMO-OFM Systems Shingo Yoshizawa 1 and

More information

An FPGA 1Gbps Wireless Baseband MIMO Transceiver

An FPGA 1Gbps Wireless Baseband MIMO Transceiver An FPGA 1Gbps Wireless Baseband MIMO Transceiver Center the Authors Names Here [leave blank for review] Center the Affiliations Here [leave blank for review] Center the City, State, and Country Here (address

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi NTT DoCoMo Technical Journal Vol. 7 No.2 Special Articles on 1-Gbit/s Packet Signal Transmission Experiments toward Broadband Packet Radio Access Configuration and Performances of Implemented Experimental

More information

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access NTT DoCoMo Technical Journal Vol. 8 No.1 Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access Kenichi Higuchi and Hidekazu Taoka A maximum throughput

More information

SYSTEM-LEVEL CHARACTERIZATION OF A REAL-TIME 4 4 MIMO-OFDM TRANSCEIVER ON FPGA

SYSTEM-LEVEL CHARACTERIZATION OF A REAL-TIME 4 4 MIMO-OFDM TRANSCEIVER ON FPGA SYSTEM-LEVEL CHARACTERIZATION OF A REAL-TIME 4 4 MIMO-OFDM TRANSCEIVER ON FPGA Simon Haene, David Perels, and Wolfgang Fichtner Integrated Systems Laboratory, ETH Zurich, Switzerland email: {haene,perels,fw}@iis.ee.ethz.ch

More information

IEEE AC MIMO TRANSMITTER BASEBAND PROCESSING ON CUSTOMIZED VLIW PROCESSOR

IEEE AC MIMO TRANSMITTER BASEBAND PROCESSING ON CUSTOMIZED VLIW PROCESSOR 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) IEEE 802.11AC MIMO TRANSMITTER BASEBAND PROCESSING ON CUSTOMIZED VLIW PROCESSOR Mona Aghababaeetafreshi 1, Lasse Lehtonen

More information

Anju 1, Amit Ahlawat 2

Anju 1, Amit Ahlawat 2 Implementation of OFDM based Transreciever for IEEE 802.11A on FPGA Anju 1, Amit Ahlawat 2 1 Hindu College of Engineering, Sonepat 2 Shri Baba Mastnath Engineering College Rohtak Abstract This paper focus

More information

Nutaq OFDM Reference

Nutaq OFDM Reference Nutaq OFDM Reference Design FPGA-based, SISO/MIMO OFDM PHY Transceiver PRODUCT SHEET QUEBEC I MONTREAL I NEW YORK I nutaq.com Nutaq OFDM Reference Design SISO/2x2 MIMO Implementation Simulation/Implementation

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

OFDM and FFT. Cairo University Faculty of Engineering Department of Electronics and Electrical Communications Dr. Karim Ossama Abbas Fall 2010

OFDM and FFT. Cairo University Faculty of Engineering Department of Electronics and Electrical Communications Dr. Karim Ossama Abbas Fall 2010 OFDM and FFT Cairo University Faculty of Engineering Department of Electronics and Electrical Communications Dr. Karim Ossama Abbas Fall 2010 Contents OFDM and wideband communication in time and frequency

More information

Layered Division Multiplexing (LDM) Summary

Layered Division Multiplexing (LDM) Summary Layered Division Multiplexing (LDM) Summary 1 2 Layered Division Multiplexing LDM super-imposes multiple physical layer data streams with different power levels, channel coding and modulation schemes for

More information

Chapter 0 Outline. NCCU Wireless Comm. Lab

Chapter 0 Outline. NCCU Wireless Comm. Lab Chapter 0 Outline Chapter 1 1 Introduction to Orthogonal Frequency Division Multiplexing (OFDM) Technique 1.1 The History of OFDM 1.2 OFDM and Multicarrier Transmission 1.3 The Applications of OFDM 2 Chapter

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

2002 IEEE International Solid-State Circuits Conference 2002 IEEE

2002 IEEE International Solid-State Circuits Conference 2002 IEEE Outline 802.11a Overview Medium Access Control Design Baseband Transmitter Design Baseband Receiver Design Chip Details What is 802.11a? IEEE standard approved in September, 1999 12 20MHz channels at 5.15-5.35

More information

A High-Throughput VLSI Architecture for SC-FDMA MIMO Detectors

A High-Throughput VLSI Architecture for SC-FDMA MIMO Detectors A High-Throughput VLSI Architecture for SC-FDMA MIMO Detectors K.Keerthana 1, G.Jyoshna 2 M.Tech Scholar, Dept of ECE, Sri Krishnadevaraya University College of, AP, India 1 Lecturer, Dept of ECE, Sri

More information

A Low Power and Low Latency Inter Carrier Interference Cancellation Architecture in Multi User OFDM System

A Low Power and Low Latency Inter Carrier Interference Cancellation Architecture in Multi User OFDM System Journal of Scientific & Industrial Research Vol. 75, July 2016, pp. 427-431 A Low Power and Low Latency Inter Carrier Interference Cancellation Architecture in Multi User OFDM System M N Kumar 1 * and

More information

FPGA Prototyping of A High Data Rate LTE Uplink Baseband Receiver

FPGA Prototyping of A High Data Rate LTE Uplink Baseband Receiver FPGA Prototyping of A High Data Rate LTE Uplink Baseband Receiver Guohui Wang, Bei Yin, Kiarash Amiri, Yang Sun, Michael Wu, Joseph R Cavallaro Department of Electrical and Computer Engineering Rice University,

More information

A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS

A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS S.A. Bassam, M.M. Ebrahimi, A. Kwan, M. Helaoui, M.P. Aflaki, O. Hammi, M. Fattouche, and F.M. Ghannouchi iradio Laboratory,

More information

Design, Simulation and Performance Evaluation of 4 x 4 MIMO Transceiver System using 16 QAM

Design, Simulation and Performance Evaluation of 4 x 4 MIMO Transceiver System using 16 QAM Design, Simulation and Performance Evaluation of 4 x 4 MIMO Transceiver System using 16 QAM Rajesh Bansode A.P - IT Department TCET, Kandiwali Prajakta Sarode M.E. Student TCET, Kandiwali B. K. Mishra,

More information

Array Like Runtime Reconfigurable MIMO Detector for n WLAN:A design case study

Array Like Runtime Reconfigurable MIMO Detector for n WLAN:A design case study Array Like Runtime Reconfigurable MIMO Detector for 802.11n WLAN:A design case study Pankaj Bhagawat Rajballav Dash Gwan Choi Texas A&M University-CollegeStation Outline Background MIMO Detection as a

More information

VLSI Implementation of Area-Efficient and Low Power OFDM Transmitter and Receiver

VLSI Implementation of Area-Efficient and Low Power OFDM Transmitter and Receiver Indian Journal of Science and Technology, Vol 8(18), DOI: 10.17485/ijst/2015/v8i18/63062, August 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 VLSI Implementation of Area-Efficient and Low Power

More information

MIMO-LTE A relevant Step towards 4G. Prof. Dr.-Ing. Thomas Kaiser CEO mimoon GmbH

MIMO-LTE A relevant Step towards 4G. Prof. Dr.-Ing. Thomas Kaiser CEO mimoon GmbH MIMO-LTE A relevant Step towards 4G Prof. Dr.-Ing. Thomas Kaiser CEO mimoon GmbH MobiMedia, mimoon is a supplier of embedded communications software for the next generation of MIMO-based wireless communication

More information

The Optimal Employment of CSI in COFDM-Based Receivers

The Optimal Employment of CSI in COFDM-Based Receivers The Optimal Employment of CSI in COFDM-Based Receivers Akram J. Awad, Timothy O Farrell School of Electronic & Electrical Engineering, University of Leeds, UK eenajma@leeds.ac.uk Abstract: This paper investigates

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 PLCP format, Data Rates, OFDM, Modulations, 2 IEEE 802.11a: Transmit and Receive Procedure 802.11a Modulations BPSK Performance Analysis Convolutional

More information

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014 By Fanny Mlinarsky 1/12/2014 Rev. A 1/2014 Wireless technology has come a long way since mobile phones first emerged in the 1970s. Early radios were all analog. Modern radios include digital signal processing

More information

802.11a Hardware Implementation of an a Transmitter

802.11a Hardware Implementation of an a Transmitter 802a Hardware Implementation of an 802a Transmitter IEEE Standard for wireless communication Frequency of Operation: 5Ghz band Modulation: Orthogonal Frequency Division Multiplexing Elizabeth Basha, Steve

More information

EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL

EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL Atsushi Honda, Ichirou Ida, Yasuyuki Oishi, Quoc Tuan Tran Shinsuke Hara Jun-ichi Takada Fujitsu Limited

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems

Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems Markus Myllylä University of Oulu, Centre for Wireless Communications markus.myllyla@ee.oulu.fi Outline Introduction

More information

Socware, Pacwoman & Flexible Radio. Peter Nilsson. Program Manager Socware Research & Education

Socware, Pacwoman & Flexible Radio. Peter Nilsson. Program Manager Socware Research & Education Socware, Pacwoman & Flexible Radio Peter Nilsson Program Manager Socware Research & Education Associate Professor Digital ASIC Group Department of Electroscience Lund University Socware: System-on-Chip

More information

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel Research Letters in Communications Volume 2009, Article ID 695620, 4 pages doi:0.55/2009/695620 Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel Haris Gacanin and

More information

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU Seunghak Lee (HY-SDR Research Center, Hanyang Univ., Seoul, South Korea; invincible@dsplab.hanyang.ac.kr); Chiyoung Ahn (HY-SDR

More information

A FFT/IFFT Soft IP Generator for OFDM Communication System

A FFT/IFFT Soft IP Generator for OFDM Communication System A FFT/IFFT Soft IP Generator for OFDM Communication System Tsung-Han Tsai, Chen-Chi Peng and Tung-Mao Chen Department of Electrical Engineering, National Central University Chung-Li, Taiwan Abstract: -

More information

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY Study Of IEEE P802.15.3a physical layer proposals for UWB: DS-UWB proposal and Multiband OFDM

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Hardware Implementation of OFDM Transceiver. Authors Birangal U. M 1, Askhedkar A. R 2 1,2 MITCOE, Pune, India

Hardware Implementation of OFDM Transceiver. Authors Birangal U. M 1, Askhedkar A. R 2 1,2 MITCOE, Pune, India ABSTRACT International Journal Of Scientific Research And Education Volume 3 Issue 9 Pages-4564-4569 October-2015 ISSN (e): 2321-7545 Website: http://ijsae.in DOI: http://dx.doi.org/10.18535/ijsre/v3i10.09

More information

University of Bristol - Explore Bristol Research. Peer reviewed version

University of Bristol - Explore Bristol Research. Peer reviewed version Tran, M., Doufexi, A., & Nix, AR. (8). Mobile WiMAX MIMO performance analysis: downlink and uplink. In IEEE Personal and Indoor Mobile Radio Conference 8 (PIMRC), Cannes (pp. - 5). Institute of Electrical

More information

Flexible Radio - BWRC Summer Retreat 2003

Flexible Radio - BWRC Summer Retreat 2003 Radio - BWRC Summer Retreat 2003 Viktor Öwall Digital ASIC Group Competence Center for Circuit Design Department of Electroscience Lund University Lund University Founded 1666 All Faculties 35 000 students

More information

Low Power Efficient MIMO-OFDM Design for n WLAN System

Low Power Efficient MIMO-OFDM Design for n WLAN System Low Power Efficient MIMO-OFDM Design for 802.11n WLAN System L.P. Thakare Research Scholar, Department of Electronics Engineering, G.H.Raisoni College of Engineering, Nagpur Dr.Amol.Y.Deshmukh Professor,

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

Basic idea: divide spectrum into several 528 MHz bands.

Basic idea: divide spectrum into several 528 MHz bands. IEEE 802.15.3a Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Overview of Multi-band OFDM Basic idea: divide spectrum into several

More information

EFFICIENT DESIGN OF FFT/IFFT PROCESSOR USING VERILOG HDL

EFFICIENT DESIGN OF FFT/IFFT PROCESSOR USING VERILOG HDL EFFICIENT DESIGN OF FFT/IFFT PROCESSOR USING VERILOG HDL M. SRIDHANYA (1), MRS. G. ANNAPURNA (2) M.TECH, VLSI SYSTEM DESIGN, VIDYA JYOTHI INSTITUTE OF TECHNOLOGY (1) M.TECH, ASSISTANT PROFESSOR, VIDYA

More information

An Improved Detection Technique For Receiver Oriented MIMO-OFDM Systems

An Improved Detection Technique For Receiver Oriented MIMO-OFDM Systems 9th International OFDM-Workshop 2004, Dresden 1 An Improved Detection Technique For Receiver Oriented MIMO-OFDM Systems Hrishikesh Venkataraman 1), Clemens Michalke 2), V.Sinha 1), and G.Fettweis 2) 1)

More information

Partial Reconfigurable Implementation of IEEE802.11g OFDM

Partial Reconfigurable Implementation of IEEE802.11g OFDM Indian Journal of Science and Technology, Vol 7(4S), 63 70, April 2014 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Partial Reconfigurable Implementation of IEEE802.11g OFDM S. Sivanantham 1*, R.

More information

S32: Specialist Group on Physical Layer. Luke Fay, S32 Chairman Sony

S32: Specialist Group on Physical Layer. Luke Fay, S32 Chairman Sony S32: Specialist Group on Physical Layer Luke Fay, S32 Chairman Sony ATSC 3.0 Physical Layer Organization Architecture Key Features Document status Summary S32 Organization S32: PHY Layer (Luke Fay) S32-1:

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Throughput Enhancement for MIMO OFDM Systems Using Transmission Control and Adaptive Modulation

Throughput Enhancement for MIMO OFDM Systems Using Transmission Control and Adaptive Modulation Throughput Enhancement for MIMOOFDM Systems Using Transmission Control and Adaptive Modulation Yoshitaka Hara Mitsubishi Electric Information Technology Centre Europe B.V. (ITE) 1, allee de Beaulieu, Rennes,

More information

Wireless LANs IEEE

Wireless LANs IEEE Chapter 29 Wireless LANs IEEE 802.11 686 History Wireless LANs became of interest in late 1990s For laptops For desktops when costs for laying cables should be saved Two competing standards IEEE 802.11

More information

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei The Case for Optimum Detection Algorithms in MIMO Wireless Systems Helmut Bölcskei joint work with A. Burg, C. Studer, and M. Borgmann ETH Zurich Data rates in wireless double every 18 months throughput

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 1470 Design and implementation of an efficient OFDM communication using fused floating point FFT Pamidi Lakshmi

More information

Major Leaps in Evolution of IEEE WLAN Technologies

Major Leaps in Evolution of IEEE WLAN Technologies Major Leaps in Evolution of IEEE 802.11 WLAN Technologies Thomas A. KNEIDEL Rohde & Schwarz Product Management Mobile Radio Tester WLAN Mayor Player in Wireless Communications Wearables Smart Homes Smart

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EFFICIENT IMPLEMENTATION AND ANALYSIS OF OFDM USING FPGA PROF. H. M. RAUT 1, DR.

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Agilent MIMO Wireless LAN PHY Layer [RF] Operation & Measurement. Application Note 1509

Agilent MIMO Wireless LAN PHY Layer [RF] Operation & Measurement. Application Note 1509 Agilent MIMO Wireless LAN PHY Layer [RF] Operation & Measurement Application Note 1509 Introduction This application note is written for people who need an understanding of MIMO radio operation as it applies

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

10 Gbps Outdoor Transmission Experiment for Super High Bit Rate Mobile Communications

10 Gbps Outdoor Transmission Experiment for Super High Bit Rate Mobile Communications Super High Bit Rate Mobile Communication MIMO-OFDM Outdoor Transmission Experiment 10 Gbps Outdoor Transmission Experiment for Super High Bit Rate Mobile Communications To further increase transmission

More information

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Kenichi Higuchi (1) and Hidekazu Taoka (2) (1) Tokyo University of Science (2)

More information

Bluespec-3: Architecture exploration using static elaboration

Bluespec-3: Architecture exploration using static elaboration Bluespec-3: Architecture exploration using static elaboration Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology L09-1 Design a 802.11a Transmitter 802.11a is an

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM 1 Drakshayini M N, 2 Dr. Arun Vikas Singh 1 drakshayini@tjohngroup.com, 2 arunsingh@tjohngroup.com

More information

Fixed-Point Aspects of MIMO OFDM Detection on SDR Platforms

Fixed-Point Aspects of MIMO OFDM Detection on SDR Platforms Fixed-Point Aspects of MIMO OFDM Detection on SDR Platforms Daniel Guenther Chair ISS Integrierte Systeme der Signalverarbeitung June 27th 2012 Institute for Communication Technologies and Embedded Systems

More information

VLSI Implementation of Auto-Correlation Architecture for Synchronization of MIMO-OFDM WLAN Systems

VLSI Implementation of Auto-Correlation Architecture for Synchronization of MIMO-OFDM WLAN Systems JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.10, NO.3, SEPTEMBER, 2010 185 VLSI Implementation of Auto-Correlation Architecture for Synchronization of MIMO-OFDM WLAN Systems Jongmin Cho*, Jinsang

More information

A High-Speed QR Decomposition Processor for Carrier-Aggregated LTE-A Downlink Systems

A High-Speed QR Decomposition Processor for Carrier-Aggregated LTE-A Downlink Systems A High-Speed QR Decomposition Processor for Carrier-Aggregated LTE-A Downlink Systems Gangarajaiah, Rakesh; Liu, Liang; Stala, Michal; Nilsson, Peter; Edfors, Ove 013 Link to publication Citation for published

More information

A WiMAX/LTE Compliant FPGA Implementation of a High-Throughput Low-Complexity 4x4 64-QAM Soft MIMO Receiver

A WiMAX/LTE Compliant FPGA Implementation of a High-Throughput Low-Complexity 4x4 64-QAM Soft MIMO Receiver A WiMAX/LTE Compliant FPGA Implementation of a High-Throughput Low-Complexity 4x4 64-QAM Soft MIMO Receiver Vadim Smolyakov 1, Dimpesh Patel 1, Mahdi Shabany 1,2, P. Glenn Gulak 1 The Edward S. Rogers

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

A REAL TIME 4X4 MIMO-OFDM SDR FOR WIRELESS NETWORKING RESEARCH

A REAL TIME 4X4 MIMO-OFDM SDR FOR WIRELESS NETWORKING RESEARCH A REAL TIME 4X4 MIMO-OFDM SDR FOR WIRELESS NETWORKING RESEARCH Jesse Chen*,Weijun Zhu, Babak Daneshrad*, Jatin Bhatia, Hun-Seok Kim*, Karim Mohammed*, Sandeep Sasi, Anish Shah* *Wireless Integrated Systems

More information

SOFTWARE IMPLEMENTATION OF THE

SOFTWARE IMPLEMENTATION OF THE SOFTWARE IMPLEMENTATION OF THE IEEE 802.11A/P PHYSICAL LAYER SDR`12 WInnComm Europe 27 29 June, 2012 Brussels, Belgium T. Cupaiuolo, D. Lo Iacono, M. Siti and M. Odoni Advanced System Technologies STMicroelectronics,

More information

A VLSI Design of a Tomlinson-Harashima Precoder for MU-MIMO Systems Using Arrayed Pipelined Processing

A VLSI Design of a Tomlinson-Harashima Precoder for MU-MIMO Systems Using Arrayed Pipelined Processing 2114 IEICE TRANS. FUNDAMENTALS, VOL.E96 A, NO.11 NOVEMBER 2013 PAPER Special Section on Smart Multimedia & Communication Systems A VLSI Design of a Tomlinson-Harashima Precoder for MU-MIMO Systems Using

More information

Maximum-Likelihood Co-Channel Interference Cancellation with Power Control for Cellular OFDM Networks

Maximum-Likelihood Co-Channel Interference Cancellation with Power Control for Cellular OFDM Networks Maximum-Likelihood Co-Channel Interference Cancellation with Power Control for Cellular OFDM Networks Manar Mohaisen and KyungHi Chang The Graduate School of Information Technology and Telecommunications

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note Keysight Technologies Testing WLAN Devices According to IEEE 802.11 Standards Application Note Table of Contents The Evolution of IEEE 802.11...04 Frequency Channels and Frame Structures... 05 Frame structure:

More information

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM Gajanan R. Gaurshetti & Sanjay V. Khobragade Dr. Babasaheb Ambedkar Technological University, Lonere E-mail : gaurshetty@gmail.com, svk2305@gmail.com

More information

Keywords SEFDM, OFDM, FFT, CORDIC, FPGA.

Keywords SEFDM, OFDM, FFT, CORDIC, FPGA. Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Future to

More information

DSP Design in Wireless Communication LIANG LIU AND FREDRIK EDMAN,

DSP Design in Wireless Communication LIANG LIU AND FREDRIK EDMAN, DSP Design in Wireless Communication LIANG LIU AND FREDRIK EDMAN, LIANG.LIU@EIT.LTH.SE Data Rate The Evolving Wireless Scene More bit/($ nj) More bit/sec 100Mb 10Mb 1Mb 100Kb 10Kb 1Kb 802.1a 802.11 (LAN)

More information

PAPER MIMO Testbed for MU-MIMO Downlink Transmission

PAPER MIMO Testbed for MU-MIMO Downlink Transmission IEICE TRANS. COMMUN., VOL.E93 B, NO.2 FEBRUARY 2010 345 PAPER 16 16 MIMO Testbed for MU-MIMO Downlink Transmission Kentaro NISHIMORI a), Riichi KUDO, Naoki HONMA, Members, Yasushi TAKATORI, Senior Member,

More information

Implementation of MIMO Encoding & Decoding in a Wireless Receiver

Implementation of MIMO Encoding & Decoding in a Wireless Receiver Implementation of MIMO Encoding & Decoding in a Wireless Receiver Pravin W. Raut Research Scholar, Sr. Lecturer Shri Datta Meghe Polytechnic Nagpur Hingna Road, Nagpur S.L.Badjate Vice Principal & Professor

More information

A Complete Real-Time a Baseband Receiver Implemented on an Array of Programmable Processors

A Complete Real-Time a Baseband Receiver Implemented on an Array of Programmable Processors A Complete Real-Time 802.11a Baseband Receiver Implemented on an Array of Programmable Processors ACSSC 2008 Pacific Grove, CA Anh Tran, Dean Truong and Bevan Baas VLSI Computation Lab, ECE Department,

More information

Area Efficient Fft/Ifft Processor for Wireless Communication

Area Efficient Fft/Ifft Processor for Wireless Communication IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 3, Ver. III (May-Jun. 2014), PP 17-21 e-issn: 2319 4200, p-issn No. : 2319 4197 Area Efficient Fft/Ifft Processor for Wireless Communication

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

One Cell Reuse OFDM/TDMA using. broadband wireless access systems

One Cell Reuse OFDM/TDMA using. broadband wireless access systems One Cell Reuse OFDM/TDMA using subcarrier level adaptive modulation for broadband wireless access systems Seiichi Sampei Department of Information and Communications Technology, Osaka University Outlines

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

An FPGA Case Study: Narrowband COFDM Video Transceiver for Drones, UAV, and UGV. Produced by EE Times

An FPGA Case Study: Narrowband COFDM Video Transceiver for Drones, UAV, and UGV. Produced by EE Times An FPGA Case Study: Narrowband COFDM Video Transceiver for Drones, UAV, and UGV #eelive Produced by EE Times An FPGA Case Study System Definition Implementation Verification and Validation CNR1 Narrowband

More information

Performance Evaluation of LTE-Advanced Channel Estimation Techniques in Vehicular Environments

Performance Evaluation of LTE-Advanced Channel Estimation Techniques in Vehicular Environments Performance Evaluation of LTE-Advanced Channel Estimation Techniques in Vehicular Environments Noor Munther Noaman 1 and Emad H. Al-Hemiary 2 1 Information and Communication Engineering Department College

More information

Power and Area Efficient Hardware Architecture for WiMAX Interleaving

Power and Area Efficient Hardware Architecture for WiMAX Interleaving International Journal of Signal Processing Systems Vol. 3, No. 1, June 2015 Power and Area Efficient Hardware Architecture for WiMAX Interleaving Zuber M. Patel Dept. of Electronics Engg., S.V. National

More information

Comparison of MIMO OFDM System with BPSK and QPSK Modulation

Comparison of MIMO OFDM System with BPSK and QPSK Modulation e t International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 188-192(2015) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Comparison of MIMO OFDM System with BPSK

More information

ASIC Implementation Comparison of SIC and LSD Receivers for MIMO-OFDM

ASIC Implementation Comparison of SIC and LSD Receivers for MIMO-OFDM ASIC Implementation Comparison of SIC and LSD Receivers for MIMO-OFDM Johanna Ketonen, Markus Myllylä and Markku Juntti Centre for Wireless Communications P.O. Box 4500, FIN-90014 University of Oulu, Finland

More information

Combined Phase Compensation and Power Allocation Scheme for OFDM Systems

Combined Phase Compensation and Power Allocation Scheme for OFDM Systems Combined Phase Compensation and Power Allocation Scheme for OFDM Systems Wladimir Bocquet France Telecom R&D Tokyo 3--3 Shinjuku, 60-0022 Tokyo, Japan Email: bocquet@francetelecom.co.jp Kazunori Hayashi

More information

PERFORMANCE EVALUATION OF WIMAX SYSTEM USING CONVOLUTIONAL PRODUCT CODE (CPC)

PERFORMANCE EVALUATION OF WIMAX SYSTEM USING CONVOLUTIONAL PRODUCT CODE (CPC) Progress In Electromagnetics Research C, Vol. 5, 125 133, 2008 PERFORMANCE EVALUATION OF WIMAX SYSTEM USING CONVOLUTIONAL PRODUCT CODE (CPC) A. Ebian, M. Shokair, and K. H. Awadalla Faculty of Electronic

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Wireless Communication Systems: Implementation perspective

Wireless Communication Systems: Implementation perspective Wireless Communication Systems: Implementation perspective Course aims To provide an introduction to wireless communications models with an emphasis on real-life systems To investigate a major wireless

More information

CHAPTER 3 MIMO-OFDM DETECTION

CHAPTER 3 MIMO-OFDM DETECTION 63 CHAPTER 3 MIMO-OFDM DETECTION 3.1 INTRODUCTION This chapter discusses various MIMO detection methods and their performance with CE errors. Based on the fact that the IEEE 80.11n channel models have

More information

Optimized BPSK and QAM Techniques for OFDM Systems

Optimized BPSK and QAM Techniques for OFDM Systems I J C T A, 9(6), 2016, pp. 2759-2766 International Science Press ISSN: 0974-5572 Optimized BPSK and QAM Techniques for OFDM Systems Manikandan J.* and M. Manikandan** ABSTRACT A modulation is a process

More information

5G 무선통신시스템설계 : WLAN/LTE/5G

5G 무선통신시스템설계 : WLAN/LTE/5G 1 5G 무선통신시스템설계 : WLAN/LTE/5G 김종남 Application Engineer 2017 The MathWorks, Inc. 2 Agenda Innovations in Mobile Communications Waveform Generation and End-to-end Simulation WLAN, LTE, 5G (FBMC, UFMC) RF

More information

SOFTWARE IMPLEMENTATION OF a BLOCKS ON SANDBLASTER DSP Vaidyanathan Ramadurai, Sanjay Jinturkar, Sitij Agarwal, Mayan Moudgill, John Glossner

SOFTWARE IMPLEMENTATION OF a BLOCKS ON SANDBLASTER DSP Vaidyanathan Ramadurai, Sanjay Jinturkar, Sitij Agarwal, Mayan Moudgill, John Glossner SOFTWARE IMPLEMENTATION OF 802.11a BLOCKS ON SANDBLASTER DSP Vaidyanathan Ramadurai, Sanjay Jinturkar, Sitij Agarwal, Mayan Moudgill, John Glossner Sandbridge Technologies, 1 North Lexington Avenue, White

More information