Digital Signal Processing Laboratory 1: Discrete Time Signals with MATLAB

Size: px
Start display at page:

Download "Digital Signal Processing Laboratory 1: Discrete Time Signals with MATLAB"

Transcription

1 Digital Signal Processing Laboratory 1: Discrete Time Signals with MATLAB Thursday, 23 September 2010 No PreLab is Required Objective: In this laboratory you will review the basics of MATLAB as a tool for computation and visualization by using it to create sampled signals. You will learn the units for and relationships between sampling intervals, sampling frequency, number of samples observed, total time observed, signal frequency, and normalized frequency. Background notes: A continuous signal defined mathematically can be "sampled" by simply evaluating it at integer multiples of a sampling interval, T. The corresponding sampling frequency is F T = 1/T. If T is the sampling interval in seconds per sample, then F T is the sampling frequency in Hertz ( i.e. samples per second). An analog sinusoidal signal with frequency f 0 in Hertz (ie cycles per second) is given by x a (t) = A cos(2πf 0 t + φ). The discrete time representation is given by x[n] = A cos(2πf 0 (nt)+ φ ) = A cos(2π(f 0 T)n+ φ ) = A cos(2π(f 0 /F T )n+ φ ) = A cos(2π(ν )n+ φ ) where ν= (f 0 /F T ) cycles per sample. For sinusoidal signals we will often use the normalized frequency, ν. If f 0 cycles per second is the actual frequency of the sinusoid to be sampled, the normalized frequency, ν, is the ratio of the actual frequency to the sampling frequency, ν =f 0 /F T. Unit analysis shows that the units of the normalized frequency are ( cycles per second)/(samples/second) = cycles per sample. The value of the normalized frequency, ν, should be less than 0.5 for accurate representation of the continuous sinusoidal signal by the discrete time sampled signal. MATLAB can be used to easily create and display discrete time signals. There are several ways to generate MATLAB statements to be executed. MATLAB can be used interactively, like a calculator. Type statements in response to the >> prompt and see the result of the statement immediately after it is typed. The arrow keys allow previous statements to be executed again or edited. However, this can be tedious if many statements need to be repeated.

2 An m-file can be a MATLAB script that contains a list of statements. The m-file is executed by simply typing the file name in response to the prompt in the interactive mode. This has the same effect as typing all the individual m-file statements in the interactive mode. Used in this way, the m-file is not a function. The statements in the m-file have access to variables in the workspace that were defined before the m-file is used. After the m-file instructions are complete, the interactive instructions that follow it in the command window or other m-files have access to all data created by the m-file instructions. This laboratory has four parts. Follow the instructions for each part and create the files and plots as required. Laboratory - Part 1 - Interactive creation of vectors and plots MATLAB represents a discrete time signal as an array or vector. Many operations are available for point by point operations on a vector so that explicit "for loops" are rarely needed. Start MATLAB on your workstation. Type the statements listed in the left column of the table below and observe the responses. Then answer the associated questions. Note that semicolons are not placed at the end of these statements, so the result of each statement will be displayed in the command window. This is sometimes useful for short vectors, but should be avoided for larger data vectors. test1=0:6 test1(4) Statements to type Questions...Answers... How long is the vector test1? (Look in the workspace window or type "whos" in response to the >> prompt. Is element 4 of vector test1 equal to 4? Why or why not? powv=2.^test1 cosv=cos(2*pi*(1/6)*test1) expv1=exp(2*pi*(1/6)*test1) Explain each of the four vectors created with these expv2=exp(2*pi*j*(1/6)*test1) four statements. How is expv1 different from expv2? It is easier to see the structure of a signal from a plot than from reading the list of numerical values. plot(expv1) What does this plot show? What is the horizontal axis?

3 plot(expv2) plot( test1, real(expv2), test1, imag(expv2) ) What does this plot show? Explain it in terms of the values displayed when it was created. How is this plot different from the previous one? How is this horizontal axis different from the axis for the plot of expv1? Laboratory - Part 2 - Sampled Sinusoids Interactive Mode statements: 1. Type these statements and observe the plots in the Figure window. (Note the semicolons at the end of each statement!!) Type "help plot" to find more information about plotting. Both plots are plotting the same set of sampled values with linear interpolation between the samples. Verify that the titles and scaling of each are correct. N1=2000; freq1=0.02; phase=0.0; svec1=0:n1; sig1=cos(2*pi*freq1*svec1+phase); whos subplot(2,1,1) plot(svec1,sig1) xlabel('sample number') title([ 'cosine at normalized frequency = ' num2str(freq1)... ' cycles/sample']) The... allows a statement to be continued on the next line subplot(2,1,2) Ts=.005; sample interval plot(svec1*ts, sig1) xlabel('time in seconds') title([ 'Cosine at frequency = ' num2str(freq1/ts)...

4 ' Hz with Ts = ' num2str(1000*ts) ' ms']) 2. The interactive statements above will be put into two m-files so they can be used many times without retyping them all. The Input statement will allow you to change the value of parameters. Using the MATLAB editor, create and save the following text as an m-file named getcossig.m. Note that this m-file is not a function. N1=input('Enter number of samples: '); freq1=input('enter normalized frequency in cycles/sample: '); phase=0.0; svec1=0:(n1-1); sig1=cos(2*pi*freq1*svec1+phase); 3. Using the MATLAB editor, create and save the following text as an m-file named plotcossig.m. subplot(2,1,1) plot(svec1,sig1) xlabel('sample number') title([ 'cosine at normalized frequency = ' num2str(freq1) ' cycles/sample']) subplot(2,1,2) Ts=input('Enter sample time interval in seconds: ') plot(svec1*ts, sig1) xlabel('time in seconds') title([ 'Cosine at frequency = ' num2str(freq1/ts)... ' Hz with Ts = ' num2str(1000*ts) ' ms']) 4. Using the two mfiles, do the following. Reproduce the plots from step 1. How many statements do you need to type in the interactive mode? If you get error messages on the screen from either m-file, edit the m-file to correct the error and then run it again. After you have successfully reproduced the results from step 1, use the two m-files to make plots of the signals specified below. In each case answer the following questions: What is the sampling frequency? How many samples are there per cycle of the input signal? What is the time duration of one cycle on your plot? o For N1=1000, find the correct parameters to plot 10 seconds of a 2.5 Hz signal. o For Ts=0.002, find the correct parameters to plot 5 seconds of a 1.2 Hz signal. o o For f=0.1, find the correct parameters to plot 0.4 seconds of a 5 Hz signal. For N1=20, find the correct parameters to plot 0.4 seconds of a 55 Hz signal. Does this plot match its labels? Why or why not?

5 Laboratory - Part 3 - Sound Output Using getcossig, create sig1 with N1=8000 and ν = Type help sound to learn how to make sound output. Listen to the output sound using sound(sig1,8000). Estimate the duration of the tone and a relative frequency. Is this consistent with F T = 8000Hz? Listen to the output sound using sound(sig1,4000). Compare the duration and frequency to the previous sound output. Is this consistent with F T = 4000Hz? Explain. Listen to the output sound using sound(sig1,12000). Compare the duration and frequency to the previous sound output. Is this consistent with F T = 12000Hz? Explain. What is the relationship of ν to the actual frequency of the tone you hear? How can the same sequence of data points make different frequency sounds? Listen to the output sound using sound(0.5*sig1,8000). Compare it to the first sound output you created. What is different? Why? Listen to the output sound using sound(5.0*sig1,8000). Compare it to the first sound output you created. What is different? Why? (You may want to reread the information about the sound function.) Laboratory - Part 4 Two Simple Filters Write an short m-file named myfilter3 that will implement a three coefficient weighted average filter as follows: Assume that x_in and b_coef vectors are already created before you use myfilter3, and that b_coef has only 3 values. Explicitly create delayed input vectors: x_n = [ x_in 0 0], x_nm1=[0 x_in 0 ], and x_nm2=[0 0 x_in ]. Create the filter output y_out = b_coef[1]* x_n + b_coef[2]*x_nm1 + b_coef[3]*x_nm2 Use your m-file to create the output for the coefficients and inputs specified below. Plot you re the input and output for each case. Set b_coef=[1/3 1/3 1/3] o Set x_in = [ zeros(1,10), ones(1, 20), zeros(1,10) ] o Set x_in = 0:39 o Set x_in = (-1).^(0:39) Set b_coef = [1/4-1/2 1/4]] o Set x_in = [ zeros(1,10), ones(1, 20), zeros(1,10) ] o Set x_in = 0:39 o Set x_in = (-1).^(0:39) Laboratory Report: For your laboratory report submit the answers to all questions in the laboratory procedure and submit the plots from Part 4.

6 (C) Sally Wood

Figure 1: Block diagram of Digital signal processing

Figure 1: Block diagram of Digital signal processing Experiment 3. Digital Process of Continuous Time Signal. Introduction Discrete time signal processing algorithms are being used to process naturally occurring analog signals (like speech, music and images).

More information

L A B 3 : G E N E R A T I N G S I N U S O I D S

L A B 3 : G E N E R A T I N G S I N U S O I D S L A B 3 : G E N E R A T I N G S I N U S O I D S NAME: DATE OF EXPERIMENT: DATE REPORT SUBMITTED: 1/7 1 THEORY DIGITAL SIGNAL PROCESSING LABORATORY 1.1 GENERATION OF DISCRETE TIME SINUSOIDAL SIGNALS IN

More information

Problem Set 1 (Solutions are due Mon )

Problem Set 1 (Solutions are due Mon ) ECEN 242 Wireless Electronics for Communication Spring 212 1-23-12 P. Mathys Problem Set 1 (Solutions are due Mon. 1-3-12) 1 Introduction The goals of this problem set are to use Matlab to generate and

More information

Fall Music 320A Homework #2 Sinusoids, Complex Sinusoids 145 points Theory and Lab Problems Due Thursday 10/11/2018 before class

Fall Music 320A Homework #2 Sinusoids, Complex Sinusoids 145 points Theory and Lab Problems Due Thursday 10/11/2018 before class Fall 2018 2019 Music 320A Homework #2 Sinusoids, Complex Sinusoids 145 points Theory and Lab Problems Due Thursday 10/11/2018 before class Theory Problems 1. 15 pts) [Sinusoids] Define xt) as xt) = 2sin

More information

DSP First. Laboratory Exercise #2. Introduction to Complex Exponentials

DSP First. Laboratory Exercise #2. Introduction to Complex Exponentials DSP First Laboratory Exercise #2 Introduction to Complex Exponentials The goal of this laboratory is gain familiarity with complex numbers and their use in representing sinusoidal signals as complex exponentials.

More information

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback PURPOSE This lab will introduce you to the laboratory equipment and the software that allows you to link your computer to the hardware.

More information

Lab 4 Fourier Series and the Gibbs Phenomenon

Lab 4 Fourier Series and the Gibbs Phenomenon Lab 4 Fourier Series and the Gibbs Phenomenon EE 235: Continuous-Time Linear Systems Department of Electrical Engineering University of Washington This work 1 was written by Amittai Axelrod, Jayson Bowen,

More information

Basic Signals and Systems

Basic Signals and Systems Chapter 2 Basic Signals and Systems A large part of this chapter is taken from: C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H. W. Schüssler: Computer-based exercises for

More information

Fourier Series and Gibbs Phenomenon

Fourier Series and Gibbs Phenomenon Fourier Series and Gibbs Phenomenon University Of Washington, Department of Electrical Engineering This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises Digital Video and Audio Processing Winter term 2002/ 2003 Computer-based exercises Rudolf Mester Institut für Angewandte Physik Johann Wolfgang Goethe-Universität Frankfurt am Main 6th November 2002 Chapter

More information

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class Description In this project, MATLAB and Simulink are used to construct a system experiment. The experiment

More information

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering EIE2106 Signal and System Analysis Lab 2 Fourier series 1. Objective The goal of this laboratory exercise is to

More information

LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS

LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS INTRODUCTION The objective of this lab is to explore many issues involved in sampling and reconstructing signals, including analysis of the frequency

More information

SIGNALS AND SYSTEMS LABORATORY 3: Construction of Signals in MATLAB

SIGNALS AND SYSTEMS LABORATORY 3: Construction of Signals in MATLAB SIGNALS AND SYSTEMS LABORATORY 3: Construction of Signals in MATLAB INTRODUCTION Signals are functions of time, denoted x(t). For simulation, with computers and digital signal processing hardware, one

More information

Electrical & Computer Engineering Technology

Electrical & Computer Engineering Technology Electrical & Computer Engineering Technology EET 419C Digital Signal Processing Laboratory Experiments by Masood Ejaz Experiment # 1 Quantization of Analog Signals and Calculation of Quantized noise Objective:

More information

Additive Synthesis OBJECTIVES BACKGROUND

Additive Synthesis OBJECTIVES BACKGROUND Additive Synthesis SIGNALS & SYSTEMS IN MUSIC CREATED BY P. MEASE, 2011 OBJECTIVES In this lab, you will construct your very first synthesizer using only pure sinusoids! This will give you firsthand experience

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals DSP First Laboratory Exercise #7 Everyday Sinusoidal Signals This lab introduces two practical applications where sinusoidal signals are used to transmit information: a touch-tone dialer and amplitude

More information

DSP First Lab 03: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: k=1

DSP First Lab 03: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: k=1 DSP First Lab 03: AM and FM Sinusoidal Signals Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section before

More information

Matlab for CS6320 Beginners

Matlab for CS6320 Beginners Matlab for CS6320 Beginners Basics: Starting Matlab o CADE Lab remote access o Student version on your own computer Change the Current Folder to the directory where your programs, images, etc. will be

More information

STANFORD UNIVERSITY. DEPARTMENT of ELECTRICAL ENGINEERING. EE 102B Spring 2013 Lab #05: Generating DTMF Signals

STANFORD UNIVERSITY. DEPARTMENT of ELECTRICAL ENGINEERING. EE 102B Spring 2013 Lab #05: Generating DTMF Signals STANFORD UNIVERSITY DEPARTMENT of ELECTRICAL ENGINEERING EE 102B Spring 2013 Lab #05: Generating DTMF Signals Assigned: May 3, 2013 Due Date: May 17, 2013 Remember that you are bound by the Stanford University

More information

ECE 5650/4650 MATLAB Project 1

ECE 5650/4650 MATLAB Project 1 This project is to be treated as a take-home exam, meaning each student is to due his/her own work. The project due date is 4:30 PM Tuesday, October 18, 2011. To work the project you will need access to

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ECE1020 COMPUTING ASSIGNMENT 3 N. E. COTTER MATLAB ARRAYS: RECEIVED SIGNALS PLUS NOISE READING Matlab Student Version: learning Matlab

More information

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA Department of Electrical and Computer Engineering ELEC 423 Digital Signal Processing Project 2 Due date: November 12 th, 2013 I) Introduction In ELEC

More information

Lecture 7 Frequency Modulation

Lecture 7 Frequency Modulation Lecture 7 Frequency Modulation Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/15 1 Time-Frequency Spectrum We have seen that a wide range of interesting waveforms can be synthesized

More information

Complex Numbers in Electronics

Complex Numbers in Electronics P5 Computing, Extra Practice After Session 1 Complex Numbers in Electronics You would expect the square root of negative numbers, known as complex numbers, to be only of interest to pure mathematicians.

More information

ELT COMMUNICATION THEORY

ELT COMMUNICATION THEORY ELT 41307 COMMUNICATION THEORY Matlab Exercise #1 Sampling, Fourier transform, Spectral illustrations, and Linear filtering 1 SAMPLING The modeled signals and systems in this course are mostly analog (continuous

More information

Armstrong Atlantic State University Engineering Studies MATLAB Marina Sound Processing Primer

Armstrong Atlantic State University Engineering Studies MATLAB Marina Sound Processing Primer Armstrong Atlantic State University Engineering Studies MATLAB Marina Sound Processing Primer Prerequisites The Sound Processing Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic operations,

More information

LAB 4 GENERATION OF ASK MODULATION SIGNAL

LAB 4 GENERATION OF ASK MODULATION SIGNAL Total Marks: / LAB 4 GENERATION OF ASK MODULATION SIGNAL Student Name:... Metrics Num:... Date:... Instructor Name:... Faculty of Engineering Technology (BTECH), Universiti Malaysia Perlis SUBMITTED Signature

More information

Introduction to Simulink Assignment Companion Document

Introduction to Simulink Assignment Companion Document Introduction to Simulink Assignment Companion Document Implementing a DSB-SC AM Modulator in Simulink The purpose of this exercise is to explore SIMULINK by implementing a DSB-SC AM modulator. DSB-SC AM

More information

Experiments #6. Convolution and Linear Time Invariant Systems

Experiments #6. Convolution and Linear Time Invariant Systems Experiments #6 Convolution and Linear Time Invariant Systems 1) Introduction: In this lab we will explain how to use computer programs to perform a convolution operation on continuous time systems and

More information

Signal Processing. Introduction

Signal Processing. Introduction Signal Processing 0 Introduction One of the premiere uses of MATLAB is in the analysis of signal processing and control systems. In this chapter we consider signal processing. The final chapter of the

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 2016 Laboratory Project #4 Assigned: Week of March 14, 2016 Due Date: Laboratory Section, Week of April 4, 2016 Report Format and Guidelines for Laboratory

More information

1. page xviii, line 23:... conventional. Part of the reason for this...

1. page xviii, line 23:... conventional. Part of the reason for this... DSP First ERRATA. These are mostly typos, double words, misspellings, etc. Underline is not used in the book, so I ve used it to denote changes. JMcClellan, February 22, 2002 1. page xviii, line 23:...

More information

Signal Processing First Lab 02: Introduction to Complex Exponentials Multipath. x(t) = A cos(ωt + φ) = Re{Ae jφ e jωt }

Signal Processing First Lab 02: Introduction to Complex Exponentials Multipath. x(t) = A cos(ωt + φ) = Re{Ae jφ e jωt } Signal Processing First Lab 02: Introduction to Complex Exponentials Multipath Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises

More information

EGR 111 Audio Processing

EGR 111 Audio Processing EGR 111 Audio Processing This lab shows how to load, play, create, and filter sounds and music with MATLAB. Resources (available on course website): speech1.wav, birds_jet_noise.wav New MATLAB commands:

More information

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM Department of Electrical and Computer Engineering Missouri University of Science and Technology Page 1 Table of Contents Introduction...Page

More information

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 1 Introduction

More information

Experiment 8: Sampling

Experiment 8: Sampling Prepared By: 1 Experiment 8: Sampling Objective The objective of this Lab is to understand concepts and observe the effects of periodically sampling a continuous signal at different sampling rates, changing

More information

Spectrum Analysis: The FFT Display

Spectrum Analysis: The FFT Display Spectrum Analysis: The FFT Display Equipment: Capstone, voltage sensor 1 Introduction It is often useful to represent a function by a series expansion, such as a Taylor series. There are other series representations

More information

Here are some of Matlab s complex number operators: conj Complex conjugate abs Magnitude. Angle (or phase) in radians

Here are some of Matlab s complex number operators: conj Complex conjugate abs Magnitude. Angle (or phase) in radians Lab #2: Complex Exponentials Adding Sinusoids Warm-Up/Pre-Lab (section 2): You may do these warm-up exercises at the start of the lab period, or you may do them in advance before coming to the lab. You

More information

George Mason University ECE 201: Introduction to Signal Analysis Spring 2017

George Mason University ECE 201: Introduction to Signal Analysis Spring 2017 Assigned: March 7, 017 Due Date: Week of April 10, 017 George Mason University ECE 01: Introduction to Signal Analysis Spring 017 Laboratory Project #7 Due Date Your lab report must be submitted on blackboard

More information

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT-based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed by Friday, March 14, at 3 PM or the lab will be marked

More information

EE 5410 Signal Processing

EE 5410 Signal Processing EE 54 Signal Processing MATLAB Exercise Telephone Touch-Tone Signal Encoding and Decoding Intended Learning Outcomes: On completion of this MATLAB laboratory exercise, you should be able to Generate and

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

DSP First. Laboratory Exercise #11. Extracting Frequencies of Musical Tones

DSP First. Laboratory Exercise #11. Extracting Frequencies of Musical Tones DSP First Laboratory Exercise #11 Extracting Frequencies of Musical Tones This lab is built around a single project that involves the implementation of a system for automatically writing a musical score

More information

Set-up. Equipment required: Your issued Laptop MATLAB ( if you don t already have it on your laptop)

Set-up. Equipment required: Your issued Laptop MATLAB ( if you don t already have it on your laptop) All signals found in nature are analog they re smooth and continuously varying, from the sound of an orchestra to the acceleration of your car to the clouds moving through the sky. An excerpt from http://www.netguru.net/ntc/ntcc5.htm

More information

Lab 3 FFT based Spectrum Analyzer

Lab 3 FFT based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed prior to the beginning of class on the lab book submission

More information

Lab P-4: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: ) X

Lab P-4: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: ) X DSP First, 2e Signal Processing First Lab P-4: AM and FM Sinusoidal Signals Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises

More information

Experiment 1 Introduction to MATLAB and Simulink

Experiment 1 Introduction to MATLAB and Simulink Experiment 1 Introduction to MATLAB and Simulink INTRODUCTION MATLAB s Simulink is a powerful modeling tool capable of simulating complex digital communications systems under realistic conditions. It includes

More information

SIGNALS AND SYSTEMS: 3C1 LABORATORY 1. 1 Dr. David Corrigan Electronic and Electrical Engineering Dept.

SIGNALS AND SYSTEMS: 3C1 LABORATORY 1. 1 Dr. David Corrigan Electronic and Electrical Engineering Dept. 2012 Signals and Systems: Laboratory 1 1 SIGNALS AND SYSTEMS: 3C1 LABORATORY 1. 1 Dr. David Corrigan Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad The aims of this

More information

Lab 6: Sampling, Convolution, and FIR Filtering

Lab 6: Sampling, Convolution, and FIR Filtering Lab 6: Sampling, Convolution, and FIR Filtering Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section prior

More information

1 Introduction and Overview

1 Introduction and Overview GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING ECE 2026 Summer 2018 Lab #2: Using Complex Exponentials Date: 31 May. 2018 Pre-Lab: You should read the Pre-Lab section of

More information

CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 16, 2006 1 Continuous vs. Discrete

More information

Signal Processing First Lab 02: Introduction to Complex Exponentials Direction Finding. x(t) = A cos(ωt + φ) = Re{Ae jφ e jωt }

Signal Processing First Lab 02: Introduction to Complex Exponentials Direction Finding. x(t) = A cos(ωt + φ) = Re{Ae jφ e jωt } Signal Processing First Lab 02: Introduction to Complex Exponentials Direction Finding Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

The Formula for Sinusoidal Signals

The Formula for Sinusoidal Signals The Formula for I The general formula for a sinusoidal signal is x(t) =A cos(2pft + f). I A, f, and f are parameters that characterize the sinusoidal sinal. I A - Amplitude: determines the height of the

More information

Continuous vs. Discrete signals. Sampling. Analog to Digital Conversion. CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals

Continuous vs. Discrete signals. Sampling. Analog to Digital Conversion. CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Continuous vs. Discrete signals CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 22,

More information

Signal Processing First Lab 20: Extracting Frequencies of Musical Tones

Signal Processing First Lab 20: Extracting Frequencies of Musical Tones Signal Processing First Lab 20: Extracting Frequencies of Musical Tones Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in

More information

Lab S-4: Convolution & FIR Filters. Please read through the information below prior to attending your lab.

Lab S-4: Convolution & FIR Filters. Please read through the information below prior to attending your lab. DSP First, 2e Signal Processing First Lab S-4: Convolution & FIR Filters Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab. Verification: The Exercise section

More information

EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY

EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY NAME:. STUDENT ID:.. ROOM: INTRODUCTION TO AMPLITUDE MODULATION Purpose: The objectives of this laboratory are:. To introduce the spectrum

More information

DFT: Discrete Fourier Transform & Linear Signal Processing

DFT: Discrete Fourier Transform & Linear Signal Processing DFT: Discrete Fourier Transform & Linear Signal Processing 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Textbooks... 3 Recommended

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 01 Introduction 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Introduction. A Simple Example. 3. fo = 4; %frequency of the sine wave. 4. Fs = 100; %sampling rate. 5. Ts = 1/Fs; %sampling time interval

Introduction. A Simple Example. 3. fo = 4; %frequency of the sine wave. 4. Fs = 100; %sampling rate. 5. Ts = 1/Fs; %sampling time interval Introduction In this tutorial, we will discuss how to use the fft (Fast Fourier Transform) command within MATLAB. The fft command is in itself pretty simple, but takes a little bit of getting used to in

More information

Digital Signal Processing ETI

Digital Signal Processing ETI 2012 Digital Signal Processing ETI265 2012 Introduction In the course we have 2 laboratory works for 2012. Each laboratory work is a 3 hours lesson. We will use MATLAB for illustrate some features in digital

More information

Digital Signal Processing ETI

Digital Signal Processing ETI 2011 Digital Signal Processing ETI265 2011 Introduction In the course we have 2 laboratory works for 2011. Each laboratory work is a 3 hours lesson. We will use MATLAB for illustrate some features in digital

More information

1 Introduction and Overview

1 Introduction and Overview DSP First, 2e Lab S-0: Complex Exponentials Adding Sinusoids Signal Processing First Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab. Verification: The

More information

C.8 Comb filters 462 APPENDIX C. LABORATORY EXERCISES

C.8 Comb filters 462 APPENDIX C. LABORATORY EXERCISES 462 APPENDIX C. LABORATORY EXERCISES C.8 Comb filters The purpose of this lab is to use a kind of filter called a comb filter to deeply explore concepts of impulse response and frequency response. The

More information

ECE411 - Laboratory Exercise #1

ECE411 - Laboratory Exercise #1 ECE411 - Laboratory Exercise #1 Introduction to Matlab/Simulink This laboratory exercise is intended to provide a tutorial introduction to Matlab/Simulink. Simulink is a Matlab toolbox for analysis/simulation

More information

ECE 3500: Fundamentals of Signals and Systems (Fall 2014) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation

ECE 3500: Fundamentals of Signals and Systems (Fall 2014) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation ECE 3500: Fundamentals of Signals and Systems (Fall 2014) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation Files necessary to complete this assignment: none Deliverables Due: Before your assigned

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, 2007 6.082 Introduction to EECS 2 Lab #1: Matlab and Control of PC Hardware Goal:... 2 Instructions:...

More information

ECE 2713 Homework 7 DUE: 05/1/2018, 11:59 PM

ECE 2713 Homework 7 DUE: 05/1/2018, 11:59 PM Spring 2018 What to Turn In: ECE 2713 Homework 7 DUE: 05/1/2018, 11:59 PM Dr. Havlicek Submit your solution for this assignment electronically on Canvas by uploading a file to ECE-2713-001 > Assignments

More information

1.5 The voltage V is given as V=RI, where R and I are resistance matrix and I current vector. Evaluate V given that

1.5 The voltage V is given as V=RI, where R and I are resistance matrix and I current vector. Evaluate V given that Sheet (1) 1.1 The voltage across a discharging capacitor is v(t)=10(1 e 0.2t ) Generate a table of voltage, v(t), versus time, t, for t = 0 to 50 seconds with increment of 5 s. 1.2 Use MATLAB to evaluate

More information

GE U111 HTT&TL, Lab 1: The Speed of Sound in Air, Acoustic Distance Measurement & Basic Concepts in MATLAB

GE U111 HTT&TL, Lab 1: The Speed of Sound in Air, Acoustic Distance Measurement & Basic Concepts in MATLAB GE U111 HTT&TL, Lab 1: The Speed of Sound in Air, Acoustic Distance Measurement & Basic Concepts in MATLAB Contents 1 Preview: Programming & Experiments Goals 2 2 Homework Assignment 3 3 Measuring The

More information

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011 Islamic University of Gaza Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#4 Sampling and Quantization OBJECTIVES: When you have completed this assignment,

More information

Project I: Phase Tracking and Baud Timing Correction Systems

Project I: Phase Tracking and Baud Timing Correction Systems Project I: Phase Tracking and Baud Timing Correction Systems ECES 631, Prof. John MacLaren Walsh, Ph. D. 1 Purpose In this lab you will encounter the utility of the fundamental Fourier and z-transform

More information

Introduction to Digital Signal Processing (Discrete-time Signal Processing)

Introduction to Digital Signal Processing (Discrete-time Signal Processing) Introduction to Digital Signal Processing (Discrete-time Signal Processing) Prof. Chu-Song Chen Research Center for Info. Tech. Innovation, Academia Sinica, Taiwan Dept. CSIE & GINM National Taiwan University

More information

Experiment # 4. Frequency Modulation

Experiment # 4. Frequency Modulation ECE 416 Fall 2002 Experiment # 4 Frequency Modulation 1 Purpose In Experiment # 3, a modulator and demodulator for AM were designed and built. In this experiment, another widely used modulation technique

More information

ECE 3500: Fundamentals of Signals and Systems (Fall 2015) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation

ECE 3500: Fundamentals of Signals and Systems (Fall 2015) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation ECE 500: Fundamentals of Signals and Systems (Fall 2015) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation Files necessary to complete this assignment: none Deliverables Due: Before Dec. 18th

More information

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu Lecture 2: SIGNALS 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Signals and the classification of signals Sine wave Time and frequency domains Composite signals Signal bandwidth Digital signal Signal

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Class #16: Experiment Matlab and Data Analysis

Class #16: Experiment Matlab and Data Analysis Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, 2007 6.082 Introduction to EECS 2 Lab #3: Modulation and Filtering Goal:... 2 Instructions:...

More information

Waveshaping Synthesis. Indexing. Waveshaper. CMPT 468: Waveshaping Synthesis

Waveshaping Synthesis. Indexing. Waveshaper. CMPT 468: Waveshaping Synthesis Waveshaping Synthesis CMPT 468: Waveshaping Synthesis Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 8, 23 In waveshaping, it is possible to change the spectrum

More information

DSP First. Laboratory Exercise #4. AM and FM Sinusoidal Signals

DSP First. Laboratory Exercise #4. AM and FM Sinusoidal Signals DSP First Laboratory Exercise #4 AM and FM Sinusoidal Signals The objective of this lab is to introduce more complicated signals that are related to the basic sinusoid. These are signals which implement

More information

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 1: DISCRETE TIME SIGNALS IN THE TIME DOMAIN

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 1: DISCRETE TIME SIGNALS IN THE TIME DOMAIN Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 1: DISCRETE TIME SIGNALS IN THE TIME DOMAIN Pusat Pengajian Kejuruteraan Komputer Dan Perhubungan Universiti Malaysia Perlis

More information

Brief Introduction to Signals & Systems. Phani Chavali

Brief Introduction to Signals & Systems. Phani Chavali Brief Introduction to Signals & Systems Phani Chavali Outline Signals & Systems Continuous and discrete time signals Properties of Systems Input- Output relation : Convolution Frequency domain representation

More information

1. In the command window, type "help conv" and press [enter]. Read the information displayed.

1. In the command window, type help conv and press [enter]. Read the information displayed. ECE 317 Experiment 0 The purpose of this experiment is to understand how to represent signals in MATLAB, perform the convolution of signals, and study some simple LTI systems. Please answer all questions

More information

FACULTY OF ENGINEERING LAB SHEET ETN3046 ANALOG AND DIGITAL COMMUNICATIONS TRIMESTER 1 (2018/2019) ADC2 Digital Carrier Modulation

FACULTY OF ENGINEERING LAB SHEET ETN3046 ANALOG AND DIGITAL COMMUNICATIONS TRIMESTER 1 (2018/2019) ADC2 Digital Carrier Modulation FACULTY OF ENGINEERING LAB SHEET ETN3046 ANALOG AND DIGITAL COMMUNICATIONS TRIMESTER 1 (2018/2019) ADC2 Digital Carrier Modulation TC Chuah (2018 July) Page 1 ADC2 Digital Carrier Modulation with MATLAB

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad EXPERIMENT #2 UNDERSTANDING TELEPHONE BASICS Telephone components: 1. Handset containing

More information

Lab 8. Signal Analysis Using Matlab Simulink

Lab 8. Signal Analysis Using Matlab Simulink E E 2 7 5 Lab June 30, 2006 Lab 8. Signal Analysis Using Matlab Simulink Introduction The Matlab Simulink software allows you to model digital signals, examine power spectra of digital signals, represent

More information

University of Bahrain

University of Bahrain University of Bahrain College of Engineering Dept of Electrical and Electronics Engineering Experiment 5 EEG 453 Multimedia Audio processing Objectives This experiment demonstrates different Audio processing

More information

Modelling and Simulation of a DC Motor Drive

Modelling and Simulation of a DC Motor Drive Modelling and Simulation of a DC Motor Drive 1 Introduction A simulation model of the DC motor drive will be built using the Matlab/Simulink environment. This assignment aims to familiarise you with basic

More information

Introduction to DSP ECE-S352 Fall Quarter 2000 Matlab Project 1

Introduction to DSP ECE-S352 Fall Quarter 2000 Matlab Project 1 Objective: Introduction to DSP ECE-S352 Fall Quarter 2000 Matlab Project 1 This Matlab Project is an extension of the basic correlation theory presented in the course. It shows a practical application

More information

Laboration Exercises in Digital Signal Processing

Laboration Exercises in Digital Signal Processing Laboration Exercises in Digital Signal Processing Mikael Swartling Department of Electrical and Information Technology Lund Institute of Technology revision 215 Introduction Introduction The traditional

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 3 FIR Filters Written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 19, 2015 Objectives:

More information

George Mason University ECE 201: Introduction to Signal Analysis

George Mason University ECE 201: Introduction to Signal Analysis Due Date: Week of May 01, 2017 1 George Mason University ECE 201: Introduction to Signal Analysis Computer Project Part II Project Description Due to the length and scope of this project, it will be broken

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Lab #2: Time-Frequency Analysis Goal:... 3 Instructions:... 3

More information

ME 365 EXPERIMENT 8 FREQUENCY ANALYSIS

ME 365 EXPERIMENT 8 FREQUENCY ANALYSIS ME 365 EXPERIMENT 8 FREQUENCY ANALYSIS Objectives: There are two goals in this laboratory exercise. The first is to reinforce the Fourier series analysis you have done in the lecture portion of this course.

More information