Using 1 GHz GainMaker Amplifiers in an 870 MHz System Application Note

Size: px
Start display at page:

Download "Using 1 GHz GainMaker Amplifiers in an 870 MHz System Application Note"

Transcription

1 Using 1 GHz GainMaker Amplifiers in an 870 MHz System Application Note Overview Introduction The move to a 1 GHz cable telecommunications system infrastructure is being driven by the increasing need for additional bandwidth. Cable system operators are exploring the options available to add channels to their systems. One of these options is an expansion of the current operating bandwidth. An easy way to facilitate this bandwidth expansion is a simple drop-in of higher bandwidth amplifiers into the system. These amplifiers are positioned in the same locations as the previous lower bandwidth amplifiers. This drop-in scenario minimizes the cost of labor involved since minimal or no re-splicing of equipment is required. In locations where the base portion of the housing is compatible with the new amplifier module, the old module is simply exchanged with a new higher bandwidth amplifier module. In these cases no re-splicing of housings is required. In situations where the housing base is not compatible with the new higher bandwidth amplifier module, the old amplifier station is removed and a new higher bandwidth amplifier station is spliced in. Labor costs are again minimized since the new higher bandwidth station is replacing the old station in the same location. There is no need for re-routing of cables or addition of new cable; both of which can be costly. Discussion Cisco has developed 1 GHz GainMaker amplifiers that exhibit the specifications required to drop-in to the locations of lower bandwidth amplifiers. Numerous design studies have taken place proving this capability. In existing 870 MHz GainMaker systems where additional bandwidth is not required, the GainMaker 1 GHz amplifiers are backwards compatible with the GainMaker 870 MHz amplifiers. They can be used in place of the 870 MHz amplifiers along with the existing 870 MHz accessories.

2 Overview Moving to higher bandwidth amplifiers in an existing system raises an interesting question among some operators. How will this 1 GHz amplifier work in my 870 MHz system? This paper addresses this concern and shows that a seamless integration can easily take place. Issues such as cable loss, amplifier gains, gain tilt, equalizing, and padding are addressed Rev C

3 EQ, tilt, and gain EQ, tilt, and gain Equalizer value versus tilt Equalizers are designated by stating the loss of the coaxial cable for which they must compensate. 1 The value of the equalizer is based on the amount of cable that produces a loss at the upper most frequency that is equal to the given value. An equalizer is designed to compensate for that amount of cable and it will have characteristics inverse to that of the cable. It will exhibit its highest loss at the lowest frequency and its lowest loss at the highest frequency. The tilt produced by an equalizer is simply the difference in loss between the lowest and highest frequency (or the two frequencies of interest). It is important to note that the equalizer tilt and equalizer value are two distinctly different terms and should not be interchanged. An EQ value X db will produce a tilt of Y db. Gain Amplifier gains are developed to compensate for the loss created by coaxial cable and passive components used in the system. In architectures where the desired effect is to increase the bandwidth of the system without moving amplifier locations, the gain must be such that it will match the loss of the existing spacing at the new higher frequency. The gain of the new higher bandwidth amplifier must be higher than the lower bandwidth amplifier it replaces. Higher gain may also translate to longer spacing between amplifiers. The higher gain can be fully utilized in new or rebuild designs. In an existing system, where amplifier locations are already set, any additional or excess gain is attenuated away. If this additional gain is not too excessive, it can be attenuated at the amplifier inputs without causing any significant impact to the system carrier-to-noise. Gain in an amplifier also exhibits a slope (or tilt). This gain tilt or internal tilt is the difference in gain between the highest and lowest frequency in the downstream passband of the amplifier. Plotting this tilt on a graph provides the ability to determine the gain at other frequencies Rev C 3

4 Gain and cable loss Gain and cable loss 870 MHz Gain in a 1 GHz Amplifier Figures 1 and 2 demonstrate the internal tilts of the GainMaker 1 GHz amplifiers. Figure 1 shows the plot of a 1 GHz station with 15.5 db internal tilt. It can be seen that the gain at 870 MHz will be 1.3 db less than the 1 GHz gain. This is typical of the High Gain Dual (HGD), High Gain Balanced Triple (HGBT), and Unbalanced Triple (UBT) amplifiers. Figure 1. 1 GHz station with 15.5 db internal tilt As seen in Figure 2, a 1 GHz station with 9.5 db of internal tilt will have 0.8 db less gain at 870 MHz. This is seen in the Low Gain Dual (LGD) and Line Extender (LE) amplifiers Rev C

5 Gain and cable loss Figure 2. 1 GHz station with 9.5 db of internal tilt In a 1 GHz GainMaker amplifier, the gain at 870 MHz will be somewhat higher than the 870 MHz version of the same model amplifier. This is brought about by the use of equalizer circuits to create the internal tilt and the increases in gain and tilt designed into the amplifier. Table 1 shows the gains of the various amplifiers in both their 1 GHz and 870 MHz versions. The column to the right shows the difference in 870 MHz gain between the 1 GHz and 870 MHz amplifiers. Table 1. Gains of the various 1 GHz and 870 MHz amplifiers Rev C 5

6 Gain and cable loss Cable loss Signal attenuation through coaxial cable increases at higher frequencies. This increase is not linear. It is a function of the square root of the frequency ratio. That is why, when plotted on a linear graph, cable loss will exhibit a bow shape. Cable equalizers, when plotted on the same linear graph, will exhibit a bow shape inverse to that of the cable. As discussed in the previous section and shown in Figures 1 and 2, this contributes to the additional gain at 870 MHz in a 1 GHz amplifier Rev C

7 Pad and equalizer adjustments Pad and equalizer adjustments Pad and equalizer adjustments when using 870 MHz equalizers Replacing an 870 MHz amplifier with a similar 1 GHz version will require some minor rebalancing of the amp. In a system where 870 MHz equalizers will continue to be used, a higher value input pad and a lower value input EQ are needed to set the station back to its original 870 MHz output levels. This is due to the slight increase in gain and internal tilt. In order to demonstrate the effects on the input pad and equalizer, the example in Figure 3 is provided. In the drawings, the levels and loss above the coax line and the gain preceding the slash (/) are representative of 870 MHz. The levels and losses below the coax line and the gain after the slash (/) are representative of 50 MHz. Figure 3. Pad and equalizer adjustments when using 870 MHz equalizers 870 MHz Amplifiers HGD HGD 10 dbmv Gain = 40/27.5 db 50 dbmv 37.5 dbmv -30 db at 870 MHz -6.9 db at 50 MHz 20 dbmv 30.6 dbmv Gain = 40/27.5 db 50 dbmv 37.5 dbmv 10 dbmv db tilt arriving at amp 0 db input tilt required Select 13.5 db 870 MHz EQ (10.6 db tilt) Select 10 db pad HGD 1 GHz Amplifiers HGD 8.3 dbmv Gain = 41.7/27.5 db 50 dbmv 37.5 dbmv -30 db at 870 MHz -6.9 db at 50 MHz 20 dbmv 30.6 dbmv Gain = 41.7/27.5 db 50 dbmv 37.5 dbmv 10 dbmv TP db tilt arriving at amp -1.7 db input tilt required Select 12.0 db 870 MHz EQ (9.4 db tilt) Select 11.5 db pad Generally, a couple rules of thumb can be applied to the input pad and equalizer selection when using the 870 MHz equalizers. These changes are based on comparison to the existing 870 MHz input pad and equalizer. For the input equalizer - decrease the equalizer one value (-1.5 db). Amplifiers spaced within 2 db of maximum gain may require a two value decrease (-3.0 db) Rev C 7

8 Pad and equalizer adjustments For the input pad - increase the pad 1.5 db for the amplifiers with a 1.7 db gain delta and increase the pad 1.0 db for the amplifiers with a 1.2 db gain delta. See Table 1. Pad and equalizer adjustments when using 1 GHz equalizers In a system where the 1 GHz equalizers will be used, the changes to the pad and EQ values will vary based on the amount of cable being equalized for between any two amplifiers. The key here is to select the 1 GHz EQ based on the tilt created between 50 and 870 MHz. Since the absolute loss changes at 870 MHz based on the EQ value, the pad selection is affected. Remember, there is 1.2 to 1.7 db of excess gain that can be taken up by the additional EQ loss at 870 MHz. After this, the input pad value will need to decrease proportionally to the increase in the 870 MHz loss of the equalizer. In order to demonstrate the effects on the input pad and equalizer, the following example is provided. In the drawings, the levels and loss above the coax line and the gain preceding the slash (/) are representative of 870 MHz. The levels and loss below the coax line and the gain after the slash (/) are representative of 50 MHz. Figure 4. Pad and equalizer adjustments when using 1 GHz equalizers HGD 870 MHz Amplifiers HGD 10 dbmv Gain = 40/27.5 db 50 dbmv 37.5 dbmv -30 db at 870 MHz -6.9 db at 50 MHz 20 dbmv 30.6 dbmv Gain = 40/27.5 db 50 dbmv 37.5 dbmv 10 dbmv db tilt arriving at amp 0 db input tilt required Select 13.5 db 870 MHz EQ (10.6 db tilt) Select 10 db pad HGD 1 GHz Amplifiers HGD 8.3 dbmv Gain = 41.7/27.5 db 50 dbmv 37.5 dbmv -30 db at 870 MHz -6.9 db at 50 MHz 20 dbmv 30.6 dbmv Gain = 41.7/27.5 db 50 dbmv 37.5 dbmv 10 dbmv TP db tilt arriving at amp -1.7 db input tilt required Select 12.0 db 1 GHz EQ (8.7 db tilt) Input padding required = 11.7 db Additional EQ loss = 0.9 db at 870 MHz Subtract additional EQ loss Select 11 db pad Rev C

9 Pad and equalizer adjustments Here again, a couple rules of thumb can be applied to the pad and equalizer selection when using the 1 GHz equalizers. These changes are based on comparison to the existing 870 MHz input pad and equalizer. For the input equalizer - decrease the equalizer one value (-1.5 db). In some cases, the equalizer value may not need to change for amplifiers spaced within 2 db of maximum gain. For the input pad - increase the pad 1.0 db for the amplifiers with a 1.7 db gain delta and increase the pad 0.5 db for the amplifiers with a 1.2 db gain delta. See Table 1. The 1 GHz equalizer has additional loss at 870 MHz. As seen in the previous section, when 870 MHz equalizers were used, the input pad was used to offset the increased gain. Now the additional equalizer loss offsets some of that increased gain. Amplifiers spaced within 2 db of maximum gain are unlikely to require a change to the input pad Rev C 9

10 Cascade performance Cascade performance An example of noise and distortion calculations for a cascade is a clear way to show the impacts of the slight additional gain at 870 MHz. Assuming a cascade of a node plus 6 amplifiers with a preceding fiber link, the carrier to noise and distortion ratios can be calculated and compared. In this example, the node and amplifiers are operating at 50 dbmv output at 870 MHz with a 12.5 db output tilt. The node is a GainMaker High Gain Balanced Triple followed by three High Gain Duals and three Line Extenders. The 1 GHz node and amplifiers are modeled with the additional gain at 870 MHz that would be expected (see Table 1). The performance numbers in Table 2 show the end-of-line (EOL) results for each of two scenarios. The first is the original 870 MHz cascade. The second is the same cascade after replacing the node and each amplifier with a 1 GHz version of each unit. The calculations for the 1 GHz model are based on operation to 870 MHz for an even comparison. Table 2. End-of-line results As can be seen in the table above, there is a negligible degradation to the carrier to noise performance. When we examine the performance of the RF section (Node + Amps), there is a 0.3 to 0.4 db change to CTN. Once the fiber link performance is added in, this change is diluted to 0.1 db in each case since the fiber link is the dominant CTN contributor. Other nodes, cascades, levels, etc. can be considered in a comparison model like this. It is not expected to see anything greater than 0.5 db degradation to the EOL CTN. A benefit to the cascade performance can be seen in the distortion performance. The improvement in the station distortion performance of the 1 GHz products is reflected in the EOL performance Rev C

11 Summary Summary Migrating to a 1 GHz node and amplifier platform should be viewed as an easy and beneficial move. The benefits in performance and bandwidth enhancement capability far outweigh any negatives. There is no additional cost to deploy the higher bandwidth equipment when compared to deploying the same model lower bandwidth equipment. Optimizing the 1 GHz equipment for the existing 870 MHz bandwidth is a straightforward process. There are minimal changes required to the input pad and equalizer regardless of whether the 870 MHz or 1 GHz equalizers are used to maintain the existing 870 MHz system. From an operational standpoint, it is easier to make those changes at the amplifier input rather than trying to re-configure the inter-stage losses to change the gains and tilts. As shown in the performance calculations, there isn't any significant degradation to the system performance. On the other hand, setting the stage for a 1 GHz bandwidth expansion does require some pre-engineering and analysis of the existing system and levels. The only decision will be whether to limit the new equipment to the existing lower operating bandwidth or set it up initially for the capability to operate at its full bandwidth Rev C 11

12 Loss tables Loss tables Table 3. Forward Cable Equalizers MHz - Loss Table EQ Value (db) Part Number Typical Insertion Loss (db) at Various Frequencies (MHz) Rev C

13 Loss tables Table 4. Forward Cable Equalizers - 1 GHz - Loss Table EQ Value (db) Part Number Typical Insertion Loss (db) at Various Frequencies (MHz) Rev C 13

14 For Information For Information Support Telephone Numbers If you have technical questions, call Cisco Services for assistance. Follow the menu options to speak with a service engineer Rev C

15

16 Cisco Systems, Inc Sugarloaf Parkway, Box Lawrenceville, GA Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Product and service availability are subject to change without notice. 2008, 2012 Cisco and/or its affiliates. All rights reserved. August 2012 Printed in USA Part Number Rev C

GainMaker Node SMC Status Monitor Transponder Installation Instructions

GainMaker Node SMC Status Monitor Transponder Installation Instructions GainMaker Node SMC Status Monitor Transponder Installation Instructions Overview Introduction The GainMaker Node System Monitoring and Control (SMC) Transponder (part number 744234) is designed to be installed

More information

GainMaker High Output HGBT System Amplifier 5-40/ MHz

GainMaker High Output HGBT System Amplifier 5-40/ MHz RF Electronics GainMaker High Output HGBT System Amplifier 5-40/52-1002 MHz Description The GainMaker Broadband Amplifier Platform includes a variety of RF amplifiers that address the divergent needs of

More information

GS7000 and GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System

GS7000 and GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System GS7000 and GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System The bdr Digital Reverse 2:1 Multiplexing System expands the functionality of the GS7000 and GainMaker Reverse Segmentable

More information

GainMaker High Output Reverse Segmentable Node with 40/52 MHz Split

GainMaker High Output Reverse Segmentable Node with 40/52 MHz Split Data Sheet GainMaker High Output Reverse Segmentable Node with 40/52 MHz Split The GainMaker High Output Reverse Segmentable (RS) Node is designed to serve as an integral part of today s network architectures.

More information

GainMaker High Output 4-Port Node

GainMaker High Output 4-Port Node GainMaker 1 GHz High Output 4-Port Node with 42/54 MHz Split The GainMaker High Output 4-Port Node is designed to serve as an integral part of today s network architectures. The GainMaker High Output 4-Port

More information

GainMaker Optoelectronic Node 1 GHz with 40/52 MHz Split and RF Redundancy

GainMaker Optoelectronic Node 1 GHz with 40/52 MHz Split and RF Redundancy Optoelectronics GainMaker Optoelectronic Node 1 GHz with 40/52 MHz Split and RF Redundancy Description The GainMaker Node is designed to serve as the cornerstone of today s emerging fiber deeper network

More information

GainStar 1 GHz Node with 42/54 MHz Split

GainStar 1 GHz Node with 42/54 MHz Split GainStar 1 GHz Node with 42/54 MHz Split The 1 GHz GainStar Node (GSN) is specifically designed to serve in HFC networks. With its modular design of Optics and RF amplifier electronics, the GSN can provide

More information

GainMaker High Gain Balanced Triple System Amplifier 1 GHz with 40/52 MHz Split

GainMaker High Gain Balanced Triple System Amplifier 1 GHz with 40/52 MHz Split RF Electronics GainMaker High Gain Balanced Triple System Amplifier 1 GHz with 40/52 MHz Split Description The GainMaker Broadband Amplifier Platform includes a variety of RF amplifiers that address the

More information

GainMaker High Output Node 5-40/ MHz

GainMaker High Output Node 5-40/ MHz Optoelectronics GainMaker High Output Node 5-40/52-1002 MHz Description The GainMaker High Output Node is designed to serve as an integral part of today s network architectures, and combines the superior

More information

GainMaker Low Gain Dual System Amplifier 1 GHz with 55/70 MHz Split

GainMaker Low Gain Dual System Amplifier 1 GHz with 55/70 MHz Split RF Electronics GainMaker Low Gain Dual System Amplifier 1 GHz with 55/70 MHz Split Description The GainMaker Broadband Amplifier Platform includes a variety of RF amplifiers that address the divergent

More information

GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split

GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split Optoelectronics GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split Description The GainMaker Node is designed to serve as the cornerstone of today s emerging fiber deeper network architectures. The

More information

Mounting Instruction. Compact Mini EGC Amplifier and Application

Mounting Instruction. Compact Mini EGC Amplifier and Application Mounting Instruction Compact Mini EGC Amplifier 93230 and 93240 Application The Compact Mini EGC Amplifier type 93230 and type 93240 has one active output and is mainly used as distribution amplifier.

More information

Cisco GainMaker High Output High Gain Balanced Triple 1 GHz System Amplifier 5-85/ MHz

Cisco GainMaker High Output High Gain Balanced Triple 1 GHz System Amplifier 5-85/ MHz Data Sheet Cisco GainMaker High Output High Gain Balanced Triple 1 GHz System Amplifier 5-85/102-1002 MHz Consumer bandwidth demand continues to grow at a rapid rate every year. As a result, cable operators

More information

GainMaker Unbalanced Triple System Amplifier 1 GHz with 42/54 MHz Split

GainMaker Unbalanced Triple System Amplifier 1 GHz with 42/54 MHz Split Optoelectronics GainMaker Unbalanced Triple System Amplifier 1 GHz with 42/54 MHz Split Description The GainMaker Broadband Amplifier Platform includes a variety of RF amplifiers that address the divergent

More information

GainMaker Line Extender 1 GHz with 42/54 MHz Split

GainMaker Line Extender 1 GHz with 42/54 MHz Split RF Electronics GainMaker Line Extender 1 GHz with 42/54 MHz Split Description The GainMaker Broadband Amplifier Platform includes a variety of RF amplifiers that address the divergent needs of today s

More information

Prisma II 1 GHz SuperQAM Full Spectrum Transmitter

Prisma II 1 GHz SuperQAM Full Spectrum Transmitter Prisma II 1 GHz SuperQAM Full Spectrum Transmitter The Prisma II optical networks allow for best in class architectures with increased reliability, scalability, and cost-effectiveness. The Prisma II 1

More information

GainMaker Unbalanced Triple System Amplifier 870 MHz with 40/52 MHz Split

GainMaker Unbalanced Triple System Amplifier 870 MHz with 40/52 MHz Split RF Electronics GainMaker Unbalanced Triple System Amplifier 870 MHz with 40/52 MHz Split Description The GainMaker Broadband Amplifier Platform includes a variety of RF amplifiers that address the divergent

More information

Cisco 1218 MHz GainMaker High-Gain Balanced Triple System Amplifier

Cisco 1218 MHz GainMaker High-Gain Balanced Triple System Amplifier Data Sheet Cisco 1218 MHz GainMaker High-Gain Balanced Triple System Amplifier Consumer bandwidth demand continues to grow at a rapid rate every year. As a result, cable operators with DOCSIS-based equipment

More information

GainMaker Line Extender 1 GHz with 65/86 MHz Split

GainMaker Line Extender 1 GHz with 65/86 MHz Split RF Electronics GainMaker Line Extender 1 GHz with 65/86 MHz Split Description The GainMaker Broadband Amplifier Platform includes a variety of RF amplifiers that address the divergent needs of today s

More information

Prisma II 1 GHz SuperQAM Transmitter

Prisma II 1 GHz SuperQAM Transmitter Prisma II 1 GHz SuperQAM Transmitter The Prisma II optical networks allow for best in class architectures with increased reliability, scalability, and cost-effectiveness. The Prisma II 1 GHz SuperQAM Transmitter

More information

Model 6940 Collector/Terminator Three Port Unbalanced Optoelectronic Node 870 MHz with 65/86 MHz Split

Model 6940 Collector/Terminator Three Port Unbalanced Optoelectronic Node 870 MHz with 65/86 MHz Split Optoelectronics Model 6940 Collector/Terminator Three ort Unbalanced Optoelectronic Node 870 MHz with 65/86 MHz Split Description The Model 6940 Collector/Terminator Node is a three port unbalanced node

More information

Cisco 1.2GHz GainMaker Line Extender (GMLE)

Cisco 1.2GHz GainMaker Line Extender (GMLE) Data Sheet Cisco 1.2GHz GainMaker Line Extender (GMLE) The Cisco 1.2GHz GainMaker GaN System Amplifier is the latest-generation broadband amplifier in the Cisco GainMaker platform. Gallium nitride (GaN)

More information

GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split

GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split Optoelectronics GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split Description The GainMaker Node is designed to serve as the cornerstone of today s emerging fiber deeper network architectures. The

More information

Cisco 1218 MHz GainMaker High Gain Dual (HGD) System Amplifier

Cisco 1218 MHz GainMaker High Gain Dual (HGD) System Amplifier Data Sheet Cisco 1218 MHz GainMaker High Gain Dual System Amplifier Consumer bandwidth demand continues to grow at a rapid rate every year. As a result, cable operators with DOCSIS-based equipment will

More information

Cisco Enhanced Digital Return (EDR) 85 System Compact Segmentable Nodes

Cisco Enhanced Digital Return (EDR) 85 System Compact Segmentable Nodes Cisco Enhanced Digital Return (EDR) 85 System Compact Segmentable Nodes The Cisco Enhanced Digital Return (EDR) 85 System expands the functionality of Compact Segmentable Nodes by increasing the performance,

More information

750 MHz Magnamax series

750 MHz Magnamax series 750 MHz Magnamax series MLE3007RMLE Magnamax Line Extender (Legacy RMLE style) Description: The 750 MHz Magnamax series broadband line extender is essentially a drop-in-upgrade module that allows the customer

More information

Model 6942 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split

Model 6942 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split Optoelectronics Model 6942 Four ort Optoelectronic Node 870 MHz with 42/54 MHz Split Description The Model 6942 Node is a high performance, four output optoelectronic node. The Model 6942 Node can be configured

More information

1 GHz SASMAX II series

1 GHz SASMAX II series 1 GHz SASMAX II series SASMAX II Line Extender (Legacy LEII style) Description: The 1 GHz SASMAX II series broadband line extender is essentially a drop-in-upgrade module that allows the customer to perform

More information

ALX. 870 MHz Line Extender

ALX. 870 MHz Line Extender ALX 870 MHz Line Extender Overview ALX 870 MHz 15 amp series of broadband RF amplifiers provide high quality RF distribution for fiber to fiber, HFC (hybrid fiber coaxial), or PDN (power domain node) architectures.

More information

Model 6940 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split

Model 6940 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split Optoelectronics Model 6940 Four ort Optoelectronic Node 870 MHz with 42/54 MHz Split Description The Model 6940 Node is a high performance, four output optoelectronic node. The Model 6940 Node can be configured

More information

GainMaker 1 GHz High Output 4-Port Node with 40/52 MHz Split

GainMaker 1 GHz High Output 4-Port Node with 40/52 MHz Split Data Sheet GainMaker 1 GHz High Output 4-Port Node with 40/52 MHz Split The Cisco GainMaker High Output 4-Port Node with 40/52 MHz Split is designed to serve as an integral part of today s network architectures.

More information

Flex Max RF Amplifiers

Flex Max RF Amplifiers arris.com Flex Max RF Amplifiers FM601e T/B 1 GHz Trunk and Bridger Amplifiers FEATURES Simplify plant upgrades with modular RF design Improve amplifier reach with optional GaN technology and increased

More information

Compact Model Fiber Deep Node 862 MHz with 42/54 MHz Split

Compact Model Fiber Deep Node 862 MHz with 42/54 MHz Split Optoelectronics Compact Model 90090 Fiber Deep Node 862 MHz with 42/54 MHz Split Description The Scientific-Atlanta Compact Model 90090 Fiber Deep Node is a small, low-cost, 110V AC powered node that addresses

More information

ACI SDLA. Miniflex Line Extender 1002 MHz

ACI SDLA. Miniflex Line Extender 1002 MHz ACI SDLA Miniflex Line Extender 1002 MHz Overview SDLA 1002 MHz 15 amp series of broadband RF amplifiers provide high quality RF distribution for fiber-to fiber, HFC (hybrid fiber coaxial), or PDN (power

More information

RF LINK 750 MHz PAL LINE EXTENDER

RF LINK 750 MHz PAL LINE EXTENDER APPLICATION ARRIS series of 750 MHz PAL Line Extenders are typically deployed in the feeder or tapped portion of the RF network. Configurable as either single or dual output devices, these amplifiers provide

More information

GS7000 & GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System

GS7000 & GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System Optoelectronics GS7000 & GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System Description The bdr Digital Reverse 2:1 Multiplexing System expands the functionality of the Scientific-Atlanta

More information

ACI SDAF MHz Miniflex Configurable Bridger Amplifier

ACI SDAF MHz Miniflex Configurable Bridger Amplifier ACI SDAF MHz Miniflex Configurable Bridger Amplifier Overview SDAF MHz 15 amp series of broadband RF amplifiers provide high quality RF distribution for fiber-to fiber, HFC (hybrid fiber coaxial), or PDN

More information

Broadband System - J

Broadband System - J Broadband System - J Satellites are spaced every 2nd degrees above earth "C" Band Toward satellite 6.0 GHz Toward earth 4.0 GHz "L" Band Toward satellite 14.0 GHz Toward earth 12.0 GHz TV TRANSMITTER Headend

More information

Flex Max. RF Amplifiers FM601e T/B. 1 GHz Trunk and Bridger Amplifiers FEATURES PRODUCT OVERVIEW. arris.com

Flex Max. RF Amplifiers FM601e T/B. 1 GHz Trunk and Bridger Amplifiers FEATURES PRODUCT OVERVIEW. arris.com arris.com Flex Max RF Amplifiers FM601e T/B 1 GHz Trunk and Bridger Amplifiers FEATURES Simplify plant upgrades with modular RF design Improve amplifier reach with optional GaN technology and increased

More information

Diamond Line Type 1 and Type 2 Amplifiers

Diamond Line Type 1 and Type 2 Amplifiers TM Diamond Line Type 1 and Type 2 Amplifiers Reference & Installation Manual Part Number: 2244001 Rev. D 06/03 Diamond Line Series Type 1 and Type 2 Amplifiers Reference and Installation Manual 2244001

More information

STARLINE Series BT100

STARLINE Series BT100 STARLINE Series BT100 1 GHz Amplifier FEATURES Simplify plant upgrades with modular RF design and 1.2 GHz capable housing Improve amplifier reach with optional GaN technology and increased station tilt

More information

Diamond Line 3 Single Output Amplifiers

Diamond Line 3 Single Output Amplifiers Diamond Line 3 Single Output Amplifiers About this Section In this section, you will find the following reference information about the Diamond Line 3 single output amplifiers: Item...Page Equipment Description...9

More information

Prisma II 1310 nm High Density Transmitter and Host Module

Prisma II 1310 nm High Density Transmitter and Host Module Optoelectronics Prisma II 13 nm High Density Transmitter and Host Module Description The Prisma II optical network is an advanced transmission system designed to optimize network architecture and increase

More information

rf link 870 mhz mini-bridger

rf link 870 mhz mini-bridger application ANTEC s 870 MHz Mini-Bridger is deployed in the RF network as either a two or three output device. The Mini-Bridger provides a flexible high gain and high level PHD platform that is cost-effective

More information

Opti Max Optical Node Series

Opti Max Optical Node Series arris.com Opti Max Optical Node Series OM6000 1.2 GHz 4x4 HFC Segmentable Node FEATURES Supports 1.2 GHz Downstream and 204 MHz Upstream bandpass for DOCSIS 3.1 migration Integrated segmentation switches

More information

ASEM CISCO 1002 MHz RF UPGRADE MODULES

ASEM CISCO 1002 MHz RF UPGRADE MODULES ASEM- E ASEM- BT, UBT, GD, GD ASEM CISCO 002 Mz UPGRADE MODUES The ACI ASEM CISCO G upgrade modules are now offered with the Gallium Nitride (GaN) hybrid technology that allows for 3 higher output levels

More information

Compact Nodes and 90071

Compact Nodes and 90071 Fiber ptics Compact Nodes 90070 and 90071 Dedicated ptimized Nodes The 90070 receiver node is designed for long distance trunk applications to feed architectures of any density. Dual output with enhanced

More information

Features and Benefits

Features and Benefits Features and Benefits E-Option Plug-In Conditioner Conditioning at the Tap Antronix s patented E-Option conditioning multi-taps accommodate a variety of plug-in modules that provide signal conditioning

More information

RF LINK 750 MHz FLAMETHROWER MINI-BRIDGER

RF LINK 750 MHz FLAMETHROWER MINI-BRIDGER APPLICATION The Flamethrower Mini-Bridger (FTMB) station provides a multi-port 5-1000 MHz platform to support a family of plug-in amplifier modules and associated accessories. Used in bridger applications,

More information

HFDN-40.0 Rev. 2; 08/10

HFDN-40.0 Rev. 2; 08/10 Design Note: HFDN-40.0 Rev. 2; 08/10 Obtaining Larger Output Signals in GPON ONT Video Overlay Applications Using the MAX3654 AVAILABLE Obtaining Large Output Signals in GPON ONT Video Overlay Applications

More information

ADVANCED SYSTEM DESIGN PRODUCT SPECIFICATIONS BT*/* STARLINE Broadband Telecommunications Amplifier

ADVANCED SYSTEM DESIGN PRODUCT SPECIFICATIONS BT*/* STARLINE Broadband Telecommunications Amplifier BT*/* STARLINE Broadband Telecommunications Amplifier FEATURES OF THE BT*/*: 750 MHz or 870 MHz power doubling technology in enhanced GaAs (E-GaAs) or silicon High gain (40 db operational) Five diplex

More information

MODEL BLN GHz FIBER DEEP NODE STARLINE SERIES

MODEL BLN GHz FIBER DEEP NODE STARLINE SERIES MODEL BLN100 1 1 GHz FIBER DEEP NODE STARLINE SERIES The BLN100 optical node is an essential building block in evolving Hybrid Fiber Coaxial (HFC) network architectures enabling amplifier to node conversions.

More information

v Page 1 of 6 Figure 1a: Combining an amplifier and equalizer with the same db slope value to create a flat gain response across frequency.

v Page 1 of 6 Figure 1a: Combining an amplifier and equalizer with the same db slope value to create a flat gain response across frequency. Flattening Negative Gain Slope with MMIC Fixed Equalizers AN-60-106 I. Introduction Equalizers are devices used to compensate for negative gain slope in the frequency response of a wide variety of RF systems.

More information

Program and System Information Protocol Configuration for System Releases 2.5, 2.7, 3.5, 3.7, 4.0, 4.2, and CV 3.4

Program and System Information Protocol Configuration for System Releases 2.5, 2.7, 3.5, 3.7, 4.0, 4.2, and CV 3.4 Program and System Information Protocol Configuration for System Releases 2.5, 2.7, 3.5, 3.7, 4.0, 4.2, and CV 3.4 Overview Introduction Program and System Information Protocol (PSIP) is a type of system

More information

Optiva RF-Over-Fiber Design Tool User s Guide. Revision 1.0 March 27, 2015

Optiva RF-Over-Fiber Design Tool User s Guide. Revision 1.0 March 27, 2015 Optiva RF-Over-Fiber Design Tool User s Guide Revision 1.0 March 27, 2015 2015 Jenco Technologies Inc. All rights reserved. Every attempt has been made to make this material complete, accurate, and up-to-date.

More information

Cisco EDR 85 System: Modules for Cisco GainMaker and GS7000

Cisco EDR 85 System: Modules for Cisco GainMaker and GS7000 Data Sheet Cisco EDR 85 System: Modules for Cisco GainMaker and GS7000 The Cisco Enhanced Digital Return (EDR) 85 System expands the functionality of Cisco GS7000 and Cisco GainMaker Nodes by increasing

More information

Optimize External Mixer Operation for Improved Conversion Loss Performance.

Optimize External Mixer Operation for Improved Conversion Loss Performance. Optimize External Mixer Operation for Improved Conversion Loss Performance. Introduction Harmonic mixers can overcome the inherent microwave limitation in spectrum analyzers for millimeter wave measurements.

More information

Model 6944 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split

Model 6944 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split Optoelectronics Model 6944 Four t Optoelectronic Node 870 MHz with 42/54 MHz Split Description The Model 6944 Node is Scientific-Atlanta s latest generation 870 MHz optical node platfm. This platfm allows

More information

ADVANCED SYSTEM DESIGN PRODUCT SPECIFICATIONS MBE*/*

ADVANCED SYSTEM DESIGN PRODUCT SPECIFICATIONS MBE*/* STARLINE MiniBridger Express Amplifier FEATURES OF THE : 870 MHz bandwidth 28 db operational gain for trunk port, 37 db operational gain for bridger ports 16 db return loss 60/90 V powering Meets Telcordia

More information

Back to. Communication Products Group. Technical Notes. Adjustment and Performance of Variable Equalizers

Back to. Communication Products Group. Technical Notes. Adjustment and Performance of Variable Equalizers Back to Communication Products Group Technical Notes 25T014 Adjustment and Performance of Variable Equalizers MITEQ TECHNICAL NOTE 25TO14 JUNE 1995 REV B ADJUSTMENT AND PERFORMANCE OF VARIABLE EQUALIZERS

More information

MODEL BTN GHz OPTICAL NODE STARLINE SERIES

MODEL BTN GHz OPTICAL NODE STARLINE SERIES MODEL BTN100 1 1 GHz OPTICAL NODE STARLINE SERIES The BTN100 optical node complements evolving fiber-deep networks by providing operators with a low cost amplifier to node drop in conversion with flexibility

More information

Digital Return System

Digital Return System SG4 DRT 2X 85 and MBN DRT 2X 85 Transmitters GX2 DRR 2X 85 and CHP D2RRX 85 Receivers FEATURES Allows return bandwidth expansion up to 85 MHz Easy node segmentation with 2X RF TDM Simplified logistics

More information

Prisma II 1310 nm High Density Transmitter and Host Module

Prisma II 1310 nm High Density Transmitter and Host Module Optoelectronics Prisma II 1310 nm High Density Transmitter and Host Module Description The Prisma II optical network is an advanced transmission system designed to optimize network architecture and increase

More information

ASEM C-Cor /Arris Distribution Amplifiers 1002 MHz

ASEM C-Cor /Arris Distribution Amplifiers 1002 MHz AMF- (1 Output ine Extender) (1 Trunk / 2 Bridger) ASEM C-Cor /Arris Distribution Amplifiers 1002 Mz The ACI ASEM C-Cor /Arris 1G upgrade modules are now offered with the Gallium Nitride (GaN) hybrid technology

More information

INSTALLATION MANUAL. CTA-30RK-550 Rack Mount Distribution Amplifier

INSTALLATION MANUAL. CTA-30RK-550 Rack Mount Distribution Amplifier INSTALLATION MANUAL CTA-30RK-550 Rack Mount Distribution Amplifier 1 PACKAGE CONTENTS This package contains: One CTA-30RK-550 Rack Mount Distribution Amplifier One CTA-30RK-550 instruction manual PRODUCT

More information

The BT87 also offers high gain. This allows the operator to hold existing amplifier locations during system upgrades thereby reducing system costs.

The BT87 also offers high gain. This allows the operator to hold existing amplifier locations during system upgrades thereby reducing system costs. BT87 870 MHz Amplifier STARLINE Series Motorola s STARLINE series amplifier, model BT87*/*, leads the industry in features and performance and is designed to meet the needs of today's expanding broadband

More information

Prisma II Optical Receivers

Prisma II Optical Receivers Optoelectronics Prisma II Optical s Description The Prisma II optical network is an advanced transmission system designed to optimize network architectures and increase reliability, scalability, and cost

More information

Digital Return System

Digital Return System arris.com Digital Return System SG4 DRT 2X 85 and MBN DRT 2X 85 Transmitters GX2 DRR 2X 85 and CHP D2RRX 85 Receivers FEATURES Allows return bandwidth expansion up to 85 MHz Easy node segmentation with

More information

Evaluation Board Analog Output Functions and Characteristics

Evaluation Board Analog Output Functions and Characteristics Evaluation Board Analog Output Functions and Characteristics Application Note July 2002 AN1023 Introduction The ISL5239 Evaluation Board includes the circuit provisions to convert the baseband digital

More information

Increasing the Performance and Capacity of Digital Reverse Systems. A study of system performance using 4:1 bdr technology

Increasing the Performance and Capacity of Digital Reverse Systems. A study of system performance using 4:1 bdr technology Increasing the Performance and Capacity of Digital Reverse Systems A study of system performance using 4:1 bdr technology Notices Trademark Acknowledgments Cisco, the Cisco logo, Cisco Systems, the Cisco

More information

Distribution Amplifiers 1

Distribution Amplifiers 1 Distribution Amplifiers 1-30dB PUT 49-750 MHz 43 db GA POWER DOUBLED P/N: 1002705 REVERSE GA M MAX DESCRIPTION The R.L. DRAKE models DA8642, DA8632,, and DA7533, are broadband distribution amplifiers designed

More information

End of Life. Headend Optics Platform (HLP) SPL7210S/A. HL2 Series SUPRALink High Density DWDM Transmitter FEATURES PRODUCT OVERVIEW. arris.

End of Life. Headend Optics Platform (HLP) SPL7210S/A. HL2 Series SUPRALink High Density DWDM Transmitter FEATURES PRODUCT OVERVIEW. arris. arris.com Headend Optics Platform (HLP) SPL7210S/A HL2 Series SUPRALink High Density DWDM Transmitter FEATURES Compact size enables 20 DFB modules to fit in a 3RU platform DWDM technology optimizes HFC

More information

TELESTE AC AMPLIFIER MODULES

TELESTE AC AMPLIFIER MODULES TELESTE AC AMPLIFIER MODULES AC 6110 INPUT MODULE AC6110 is an input module with 0 db attenuation. Supports frequencies up to 1.2 GHz. 0 db jumper module to be used as an input module in AC-amplifier platform

More information

Prisma II Multi-Wavelength High Density Transmitter

Prisma II Multi-Wavelength High Density Transmitter Prisma II Multi-Wavelength High Density Transmitter Increasing customer demands for advanced services and competitive pressures are causing HFC network operators to consider strategic options. One popular

More information

Improving Amplitude Accuracy with Next-Generation Signal Generators

Improving Amplitude Accuracy with Next-Generation Signal Generators Improving Amplitude Accuracy with Next-Generation Signal Generators Generate True Performance Signal generators offer precise and highly stable test signals for a variety of components and systems test

More information

MBV3 1 GHz Amplifier MODEL

MBV3 1 GHz Amplifier MODEL MBV3 1 GHz Amplifier STARLINE MODEL SERIES Motorola s 1 GHz STARLINE Mini-Bridger series amplifier, model MBV3*, leads the industry in features and performance and is designed to meet the needs of today's

More information

A3422 XMTDR. Digital Return Optical Transmitter Module. Features

A3422 XMTDR. Digital Return Optical Transmitter Module. Features A3422 XMTDR Digital Return Optical Transmitter Module The A3422 XMTDR digital return optical transmitter allows RF reverse path signals to be sent back to headend via a single fiber. The RF signal is routed

More information

SignalOn Series WHITE PAPER. Impact of CCAP on RF Management Isolation. Pat. #s U.S. 6,842,348; 7,043,236; Cdn. 2,404,840; 2,404,844

SignalOn Series WHITE PAPER. Impact of CCAP on RF Management Isolation. Pat. #s U.S. 6,842,348; 7,043,236; Cdn. 2,404,840; 2,404,844 SignalOn Series Pat. #s U.S. 6,84,48; 7,04,6; Cdn.,404,840;,404,844 D. / CCAP Compliant Impact of CCAP on RF Management Isolation Although every effort has been taken to ensure the accuracy of this document

More information

MB100 MODEL. STARLINE MINI-BRIDGER SERIES 1GHz AMPLIFIER.

MB100 MODEL. STARLINE MINI-BRIDGER SERIES 1GHz AMPLIFIER. MODEL MB100 STARLINE MINI-BRIDGER SERIES 1Gz AMPLIFIER Product Overview Motorola s 1 Gz STARLINE MB100 Mini- Bridger Amplifier leads the industry in features and performance. This two-way capable, dual-output

More information

GainMaker Broadband Amplifier Platform System Amplifier Modules and Housing Installation and Operation Guide

GainMaker Broadband Amplifier Platform System Amplifier Modules and Housing Installation and Operation Guide GainMaker Broadband Amplifier Platform System Amplifier Modules and Housing Installation and Operation Guide For Your Safety Explanation of Warning and Caution Icons Avoid personal injury and product

More information

Cisco Compact Micro Amplifier A Installation and Operation Guide

Cisco Compact Micro Amplifier A Installation and Operation Guide Cisco Compact Micro Amplifier A93262 Installation and Operation Guide For Your Safety Explanation of Warning and Caution Icons Avoid personal injury and product damage! Do not proceed beyond any symbol

More information

Voltage Variable Equalizer

Voltage Variable Equalizer Surface Mount Voltage Variable Equalizer 5Ω 95 to 2 MHz The Big Deal Adjustable attenuation slope Supply voltage from + to + IP3 +55 dbm typical Minimal deviation from linear loss, ±.5dB CASE STYLE: HE1354

More information

Frequency Division Multiplexing and Headend Combining Techniques

Frequency Division Multiplexing and Headend Combining Techniques Frequency Division Multiplexing and Headend Combining Techniques In the 3 rd quarter technical report for 2010, I mentioned that the next subject would be wireless link calculations and measurements; however,

More information

ASEM MOTO BLE & MB Distribution Amplifiers 1002 MHz

ASEM MOTO BLE & MB Distribution Amplifiers 1002 MHz BLE (1 Output Line Extender) MB (2 or 3 Output Bridger) ASEM MOTO BLE & MB Distribution Amplifiers 1002 The ACI ASEM Moto BLE and MB 1G RF upgrade modules are now offered with the Gallium Nitride (GaN)

More information

Headend Optics Platform (CH3000)

Headend Optics Platform (CH3000) arris.com Headend Optics Platform (CH3000) HT3580H Series Quad-Density Full Spectrum DWDM Transmitter System FEATURES DWDM transmitter: up to 16 wavelengths on ITU grid Hot plug-in/out, individually replaceable

More information

Cisco Aironet Six-Element Dual-Band MIMO Patch Array Antenna (AIR-ANT25137NP-R)

Cisco Aironet Six-Element Dual-Band MIMO Patch Array Antenna (AIR-ANT25137NP-R) Cisco Aironet Six-Element Dual-Band MIMO Patch Array Antenna (AIR-ANT25137NP-R) August 2, 2013 This document describes the AIR-ANT25137NP-R antenna and provides instructions for mounting it. The antenna

More information

SmartScan. Application Note. Intelligent Frequency Response and Limits in Plant Distribution. VIAVI Solutions

SmartScan. Application Note. Intelligent Frequency Response and Limits in Plant Distribution. VIAVI Solutions Application Note SmartScan Intelligent Frequency Response and Limits in Plant Distribution VIAVI Solutions As signals travel through the coaxial cable network they are attenuated more at higher frequencies.

More information

Fiber Bragg Grating Dispersion Compensation Enables Cost-Efficient Submarine Optical Transport

Fiber Bragg Grating Dispersion Compensation Enables Cost-Efficient Submarine Optical Transport Fiber Bragg Grating Dispersion Compensation Enables Cost-Efficient Submarine Optical Transport By Fredrik Sjostrom, Proximion Fiber Systems Undersea optical transport is an important part of the infrastructure

More information

Prisma II 1 GHz 1550 nm Transmitters

Prisma II 1 GHz 1550 nm Transmitters Optoelectronics Prisma II 1 GHz 1550 nm Transmitters Description The Prisma II optical network is an advanced transmission system designed to optimize network architectures and increase reliability, scalability,

More information

2.5 GHz 75 Ω Multiplexer and SPDT Relay Switches

2.5 GHz 75 Ω Multiplexer and SPDT Relay Switches 2.5 GHz Multiplexer and SPDT Relay Switches NI PXI-255x NEW! 2.5 GHz bandwidth characteristic impedance 30 V max switching voltage 0.5 A max switching current 10 W max switching power Mini SMB direct connectivity

More information

Return Plant Issues SCTE Cascade Range Chapter. Micah Martin January 13, 2008

Return Plant Issues SCTE Cascade Range Chapter. Micah Martin January 13, 2008 Return Plant Issues SCTE Cascade Range Chapter Micah Martin January 13, 2008 1 1 Agenda Experience with DOCSIS upgrade Digital review & digital modulation Carrier to Noise issues Coaxial Plant Optical

More information

Compact Node Optoelectronics

Compact Node Optoelectronics ptoelectronics Compact Node 90075 Description The Compact Model 90075 Node is Scientific-Atlanta s latest addition to its family of Compact nodes. The node offers maximized coverage for network designs

More information

Cisco Prisma II Quad Optical Input Enhanced Digital Return (EDR) Receiver for Compact Segmentable Nodes

Cisco Prisma II Quad Optical Input Enhanced Digital Return (EDR) Receiver for Compact Segmentable Nodes Data Sheet Cisco Prisma II Quad Optical Input Enhanced Digital Return (EDR) Receiver for Compact Segmentable Nodes The Cisco Quad Optical Input Enhanced Digital Return (Q-EDR) 85 Receiver expands the Cisco

More information

VIRTUAL SEGMENTATION. Executive summary. Online. Website: technetix.com

VIRTUAL SEGMENTATION. Executive summary. Online.   Website: technetix.com VIRTUAL SEGMENTATION Executive summary Online Email: info-usa@technetix.com Website: technetix.com Nov/2017 Introduction The steady evolution of the DOCSIS system and Hybrid Fiber Coaxial (HFC) plants

More information

Agilent E2695A SMA Probe Head for InfiniiMax 1130 Series Active Oscilloscope Probes. User s Guide

Agilent E2695A SMA Probe Head for InfiniiMax 1130 Series Active Oscilloscope Probes. User s Guide User s Guide Publication Number E2695-92000 June 2003 Copyright Agilent Technologies 2003 All Rights Reserved. Agilent E2695A SMA Probe Head for InfiniiMax 1130 Series Active Oscilloscope Probes Agilent

More information

v Page 1 of 5 Figure 1a: Combining an amplifier and equalizer with the same db slope value to create a flat gain response across frequency.

v Page 1 of 5 Figure 1a: Combining an amplifier and equalizer with the same db slope value to create a flat gain response across frequency. Flattening Negative Gain Slope with MMIC Fixed Equalizers AN-60-106 I. Introduction Equalizers are devices used to compensate for negative gain slope in the frequency response of a wide variety of RF systems.

More information

Model 6944 and 6940 Node bdr Digital Reverse 4:1 Multiplexing System designed for Prisma II Platform

Model 6944 and 6940 Node bdr Digital Reverse 4:1 Multiplexing System designed for Prisma II Platform Optoelectronics Model 6944 and 6940 Node bdr Digital Reverse 4:1 Multiplexing System designed for Prisma II Platform Description The bdr Digital Reverse 4:1 Multiplexing System expands the functionality

More information

Data Transmission Definition Data Transmission Analog Transmission Digital Transmission

Data Transmission Definition Data Transmission Analog Transmission Digital Transmission Data Transmission Definition Data Transmission Data transmission occurs between transmitter (sender) and receiver over some transmission medium. This transfer of data takes place via some form of transmission

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

RFPD2650 GaAs/GaN Power Doubler Hybrid 45MHz to 1003MHz

RFPD2650 GaAs/GaN Power Doubler Hybrid 45MHz to 1003MHz GaAs/GaN Power Doubler Hybrid 45MHz to 1003MHz The RFPD2650 is a Hybrid Power Doubler amplifier module. The part employs GaAs phemt die and GaN HEMT die, has extremely high output capability, and is operated

More information