Nano-Arch online. Quantum-dot Cellular Automata (QCA)

Size: px
Start display at page:

Download "Nano-Arch online. Quantum-dot Cellular Automata (QCA)"

Transcription

1 Nano-Arch online Quantum-dot Cellular Automata (QCA) 1 Introduction In this chapter you will learn about a promising future nanotechnology for computing. It takes great advantage of a physical effect: the Coulomb force that interacts between electrons. There also exists an alternative implementation that uses magnetic fields, but this practical course will not cover magnetic QCA for now. Though it is still difficult to produce and operate with these devices under typical temperature conditions, simulations predict promising numbers, like theoretical clock rates of several THz. 2 The QCA cell In contrast to electronics based on transistors, QCA does not operate by the transport of electrons, but by the adjustment of electrons in a small limited area of only a few square nanometers. QCA is implemented by quadratic cells, the so-called QCA cells. In these squares, exactly four potential wells are located, one in each corner of the QCA cell (see figure 1). In the QCA cells, exactly two electrons are locked in. They can only reside in the potential wells. The potential wells are connected with electron tunnel junctions. They can be opened for the electrons to travel through them under a particular condition, by a clock signal. A later chapter will cover this in more detail. Without any interaction from outside, the two electrons will try to separate from each other as far as possible, due to the Coulomb force that interacts between them. As a result, they will reside in diagonally located potential wells, because the diagonal is the largest possible distance for them to reside (see figure 2 ). Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 1

2 Potential well Electron tunnel junction Cell substrate Figure 1: Anatomy of a QCA cell Electron in potential well Figure 2: Electrons in potential wells Empty potential well There are two diagonals in a square, which means the electrons can reside in exactly two possible adjustments in the QCA cell. Regarding these two arrangements, they are interpreted as a binary '0' and binary '1', i.e. each cell can be in two states. The state '0' and the state '1', as shown in figure 3. A binary system is something familiar, as boolean logic is used already in today's computers. There, a high voltage is often interpreted as binary '1' and a low voltage as binary '0'. Binary 0 Binary 1 Figure 3: Binary interpretation of adjustments Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 2

3 3 Information and data propagation If two QCA cells are placed next to each other, it is possible to exchange their states, i.e. the adjustments of the electrons in them. The QCA cell that should transfer its state to a neighboring cell must have its tunnel junctions closed, the tunnel junctions in the neighboring cell have to be open, to allow the electrons to travel through the tunnel junctions between the potential wells. As soon as they open, the electrons in the neighboring cell are pushed by the Coulomb force of the original cell as far away as possible. As they also are pushed away from each other, they will travel into the same potential wells as in the original cell. As soon as the tunnel junctions are closed again, the transfer of the state is completed. The state of a cell can also be transferred to multiple neighboring cells. It works the very same way as with a single neighbor cell, but the tunnel junctions of all the sequentially neighboring cells should be open at the same time, which makes the transfer much faster then transferring the state cell by cell. This allows us to build wires, made of QCA cells, to transport information over larger distances. 4 Basic QCA elements and gates So far, we know how to interpret and transport information with QCA cells, but yet we lack the possibility for computations. For QCA cells the basic gate is a three-input majority voter. It is built from five cells, arranged as a cross. Input A Adjusts to majority of surrounding Coulomb forces Input B Majority output Input C Figure 4: QCA majority voter Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 3

4 4.1 QCA Majority voter From physics, it is know that the Coulomb forces of several electrons sum up. The majority voter takes advantage of this effect. The cells on top, at the left and at the bottom work as input connection cells. As the Coulomb forces of the electrons of all input cells sum up, the middle cell adjusts to the majority of adjustments of the input connection cells. Finally the output cell adjusts to the middle cell and the resulting state of the majority vote can be obtained from the output cell. 4.2 QCA AND gate As we work in the field of QCA with the known binary representation, it is preferable to have further logic gates we are already familiar with. By a slight modification, it is possible to turn the majority voter into an AND gate. The boolean AND outputs 1 if all inputs are 1, otherwise 0. Regarding two inputs of the majority voter, as the inputs of an AND gate, and the voter should not output 1 if only one of the two inputs is one, a fixed cell is added as third input, that always is in the 0 state. If both AND inputs are 1, the two 1s sum up to a stronger Coulomb force than the single fixed 0 cell and the majority voter is turned into a two-input AND gate (see figure 5). The fixed cell can be obtained by setting it to the 0 state and never open the electron tunnel junctions. Input A Input B AND output Fixed 0 Figure 5: QCA AND gate Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 4

5 4.3 QCA OR gate The OR gate is built almost exactly like the AND gate, but instead of a fixed 0, a fixed 1 QCA cell must be attached as one input. The fixed 1 cell sums up to a stronger Coulomb force with a single other input being adjusted to 1, so that the OR gate will output 1, if one of the free inputs is 1. Input A Input B AND output Fixed 0 Figure 6: QCA OR gate 4.4 QCA NOT gate It is also possible to build a QCA NOT gate. The implementation in QCA takes advantage of geometry of cell adjustments. One QCA wire is forked to two wires, the switch of the cell adjustment takes place by putting the output cell next to the forked wires so that only corners are touching. Since only cell corners are touching right of the fork and the cells at the end of the fork will have the same adjustment and the cell on the right of the fork will not adjust with an electron close to an electron at the corner at the end of the fork, the adjustment right of the fork will be inverted. This makes a 1 at the input a 0 at the output and vice versa. Inversion of the data Input 0 Output 1 Figure 7: QCA NOT gate Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 5

6 5 Symmetric cells and special cell arrangements During the design of a QCA circuit, the situation is likely to occur, that QCA wires have to be crossed. In contrast to classic transistor technology, where wires can only cross on by inserting another layer, QCA wires can be crossed in the same layer. This works by introducing a QCA cell type, where the four potential wells are not in the corners of the cell but in the middle of the edges (see figure 8). 0 1 Figure 8: Symmetric adjustable QCA cell If several of these QCA cells are put together to form a wire, the adjustment of the succeeding cell is the inverted to its predecessor and so on. The advantage of this type of QCA cell originates from its symmetric effect of Coulomb force on regular cells. Though the electrons indeed interact with electrons in neighboring regular QCA cells, but by the symmetry they do not push the electrons in regular QCA cells to a particular adjustment. In the other direction, electrons in a regular cell do not push the electrons in a symmetric cell into a particular potential well. This allows building wire crossings of these QCA cells with regular ones. A crossing is built by a continuous wire of special cells, building a gap in across a wire of regular cells. 0 1 Figure 9: QCA wire crossing 1 0 Of course, it has to be possible to connect symmetric QCA cells to regular ones and vice versa. This works by putting a regular cell as a neighbor of two symmetric cells near the beginning or end of a wire of symmetric cells. One has to take car which two symmetric Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 6

7 cells are chosen, as neighbors of this type are in the inverted adjustment, depending on the needed adjustment, the original or the inverted one (see figure 10). Output 1 Input 0 Figure 10: Connections between symmetric and regular QCA cells 6 Clock zones Clock zones are a tricky challenge of QCA. They avoid random adjustments of QCA cells and guide the information flow, in particular the data propagation, through QCA circuits. In contrast to transistor-based circuits, one clock cycle consists of four clock signals, which are delayed by ¼ of the whole clock cycle among each other, as depicted in figure 11. Clock 0 Clock 1 Clock 2 Clock 3 Figure 11: The four shifted clock signals The figures in this chapter will always show clock zones like clock 0, clock 1 and so on. This is for convenience, of course you can also read it as clock n, clock n+1, clock n+2. Important is, that particular groups of QCA cells are in different clock zones. When the clock signal is high, it opens the electron tunnel junctions in QCA cells. Opened tunnel junctions allow the two electrons in a QCA cell to travel between potential wells. Depending on the surrounding Coulomb forces around the QCA cell, the electrons will travel to respective potential wells. Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 7

8 To successfully propagate data through a QCA wire, the clock zones in the wire must be connected to successive clock signals in the direction of the wanted data propagation (see figure 12). This allows the QCA circuit designer to guide information in a controlled manner through the circuit. Clock 0 No shift Clock 1 Shifted by 1/4 Clock 2 Shifted by 1/2 Clock 3 Shifted by 3/4 Figure 12: Controlling data propagation in a QCA wire There is a rough upper limit for the size of one clock zone. In QCA wires with almost no other QCA cells near the wire, i.e. with no Coulomb force noise from the surrounding, clock zones can be large. In areas with QCA cells around the wire, the clock zones must be smaller. There is no strict rule for the size of a clock zone dependent on the surrounding noise, but in general it turns out that in noisy areas clock zones might have to be as small as only two QCA cells. In areas with almost no noise, clock zones can be built as large as QCA cells. Though there are no strict rules where to begin and end a clock zone, there is some bestpractice, how to put clock zones around the basic gates, presented in the previous chapters. When you design QCA circuits, we strongly recommend to stick to these clock zones, there exist only very rare cases where clock zones around the basic gates can differ without affecting a reliable data propagation. 6.1 NOT gate clock zones Since the NOT gate has a slightly critical zone of arranged QCA cells, it's important to put the cells in the proper clock zones to avoid randomly flipped adjustments of electrons near the forking wire. The clock zone of the input should end at the beginning of the fork. The complete fork itself, i.e. the U-shaped wire, should be in the subsequent clock zone of the input and the output should be in the subsequent clock zone of the fork. Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 8

9 Input Output Clock 0 Clock 2 Clock 1 Figure 13: QCA NOT gate clock zones Input A Clock 0 Input B Clock 1 Clock 2 Output Input C Figure 14: QCA majority voter clock zones 6.2 Majority voter clock zones For the majority voter it is important, that all cells are in the same clock zone. Putting some cells in different clock zones can lead to wrong results. The center cell and the three input plus the output cell have to be in the same clock zone. 6.3 Wire crossing clock zones Though it was mentioned before, that the symmetric special QCA cells do not affect regular ones in a wire crossing, this is only true when special cells are in a stable state, i.e. the clock signal is low and both electrons reside in potential wells. If the electrons are traveling through the tunnel junctions, they may have an asymmetric effect on neighboring Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 9

10 regular QCA cells, potentially pushing them into a wrong adjustment. To avoid this effect, crossing wires should be in different clock zones. Clock 1 Clock 0 Clock 0 Figure 15: QCA wire crossing clock zones Figure 16: 1 bit adder implemented in QCA Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 10

11 7 QCA circuit design QCA is a technology, not yet being ready for the market. As a result, you will design and simulate QCA circuits. For this, you will use the QCADesigner software which allows design of circuits with an easy to use graphical user interface. The simulation is also done with QCADesigner. We chose QCADesigner, as it is the most realistic simulator from a physical point of view, so your simulations will be very exact. The very realistic simulation allows you to detect disturbances of neighboring QCA cells or cell areas that should not interact with each other. As a first example for a complete QCA circuit, we begin with a 1 bit adder as shown in figure 16. Different colors mean different clock zones, beginning with green, cyan, light blue and white. The blue QCA cells, labeled A and B, are input cells of the adder. As you can see, both type of cells, symmetric and regular ones, are used in this circuit, because it requires wire crossings. The four orange cells are fixed cells to build AND and OR gates from majority voters. The yellow cells are output cells, labeled S for sum and C for the carry bit. If you follow the clock zones in each path of the circuit, you will see, that the adder needs 2 ¼ clock cycles to display the result at the output cells, i.e. the data in each path travels through 9 sequential clock signals. It is also possible to verify that the QCA adder is correct. A simple 1 bit adder can be described by these two formulas: S= A B A B and C= A B. This means that the output S should become 1 when either A is 0 but B is 1 or when A is 1 but B is 0. C should become 1 when A and B are 1. These formulas are implemented in our QCA 1 bit adder. If one follows the inputs to the top half of the circuit, there once A, once B, are negated and connected to the not negated other input in an AND gate. Near the output S is the OR gate. C can be verified easily, the inputs are connected in the AND gate at the bottom of the circuit. Copyright 2012 University of Erlangen-Nürnberg. All rights reserved. 11

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata Int. J. Nanosci. Nanotechnol., Vol. 10, No. 2, June 2014, pp. 117-126 Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata M. Kianpour 1, R. Sabbaghi-Nadooshan 2 1- Electrical Engineering

More information

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata International Conference on Communication and Signal Processing, April 6-8, 2016, India Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata Ashvin Chudasama,

More information

Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures

Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures Dr. E.N.Ganesh, 2 R.Kaushik Ragavan, M.Krishna Kumar and V.Krishnan Abstract Quantum cellular automata (QCA) is a new technology

More information

Design and Analysis of Decoder Circuit Using Quantum Dot Cellular Automata (QCA)

Design and Analysis of Decoder Circuit Using Quantum Dot Cellular Automata (QCA) Design and Analysis of Decoder Circuit Using Quantum Dot Cellular Automata (QCA) M. Prabakaran 1, N.Indhumathi 2, R.Vennila 3 and T.Kowsalya 4 PG Scholars, Department of E.C.E, Muthayammal Engineering

More information

Five-Input Majority Gate Based QCA Decoder

Five-Input Majority Gate Based QCA Decoder , pp.95-99 http://dx.doi.org/10.14257/astl.2016.122.18 Five-Input Majority Gate Based QCA Decoder Jun-Cheol Jeon Department of Computer Engineering at Kumoh National Institute of Technology, Gumi, Korea

More information

QCA Based Design of Serial Adder

QCA Based Design of Serial Adder QCA Based Design of Serial Adder Tina Suratkar Department of Electronics & Telecommunication, Yeshwantrao Chavan College of Engineering, Nagpur, India E-mail : tina_suratkar@rediffmail.com Abstract - This

More information

Binary Adder- Subtracter in QCA

Binary Adder- Subtracter in QCA Binary Adder- Subtracter in QCA Kalahasti. Tanmaya Krishna Electronics and communication Engineering Sri Vishnu Engineering College for Women Bhimavaram, India Abstract: In VLSI fabrication, the chip size

More information

Novel Efficient Designs for QCA JK Flip flop Without Wirecrossing

Novel Efficient Designs for QCA JK Flip flop Without Wirecrossing International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 2, 2016, pp. 93-101. ISSN 2454-3896 International Academic Journal of Science

More information

Implementation of Quantum dot Cellular Automata based Multiplexer on FPGA

Implementation of Quantum dot Cellular Automata based Multiplexer on FPGA Implementation of Quantum dot Cellular Automata based Multiplexer on FPGA B.Ramesh 1, Dr. M. Asha Rani 2 1 Associate Professor, 2 Professor, Department of ECE Kamala Institute of Technology & Science,

More information

Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata

Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata Journal of Computer Science 7 (7): 1072-1079, 2011 ISSN 1549-3636 2011 Science Publications Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata 1 S. Karthigai Lakshmi

More information

TIME EFFICIENT PARITY GENERATOR BASED ON QUANTUM-DOT CELLULAR AUTOMATA

TIME EFFICIENT PARITY GENERATOR BASED ON QUANTUM-DOT CELLULAR AUTOMATA International Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 02, February 2019, pp. 715-723, Article ID: IJCIET_10_02_069 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=10&itype=02

More information

QUANTUM-dot Cellular Automata (QCA) is a promising. Programmable Crossbar Quantum-dot Cellular Automata Circuits

QUANTUM-dot Cellular Automata (QCA) is a promising. Programmable Crossbar Quantum-dot Cellular Automata Circuits 1 Programmable Crossbar Quantum-dot Cellular Automata Circuits Vicky S. Kalogeiton, Member, IEEE Dim P. Papadopoulos, Member, IEEE Orestis Liolis, Member, IEEE Vassilios A. Mardiris, Member, IEEE Georgios

More information

Robust Adders Based on Quantum-Dot Cellular Automata

Robust Adders Based on Quantum-Dot Cellular Automata Robust Adders Based on Quantum-Dot Cellular Automata Ismo Hänninen and Jarmo Takala Institute of Digital and Computer Systems Tampere University of Technology PL 553, 33101 Tampere, Finland [ismo.hanninen,

More information

Area Delay Efficient Novel Adder By QCA Technology

Area Delay Efficient Novel Adder By QCA Technology Area Delay Efficient Novel Adder By QCA Technology 1 Mohammad Mahad, 2 Manisha Waje 1 Research Student, Department of ETC, G.H.Raisoni College of Engineering, Pune, India 2 Assistant Professor, Department

More information

A Novel Architecture for Quantum-Dot Cellular Automata Multiplexer

A Novel Architecture for Quantum-Dot Cellular Automata Multiplexer www.ijcsi.org 55 A Novel Architecture for Quantum-Dot Cellular Automata Multiplexer Arman Roohi 1, Hossein Khademolhosseini 2, Samira Sayedsalehi 3, Keivan Navi 4 1,2,3 Department of Computer Engineering,

More information

Trends in the Research on Single Electron Electronics

Trends in the Research on Single Electron Electronics 5 Trends in the Research on Single Electron Electronics Is it possible to break through the limits of semiconductor integrated circuits? NOBUYUKI KOGUCHI (Affiliated Fellow) AND JUN-ICHIRO TAKANO Materials

More information

Design and simulation of a QCA 2 to 1 multiplexer

Design and simulation of a QCA 2 to 1 multiplexer Design and simulation of a QCA 2 to 1 multiplexer V. MARDIRIS, Ch. MIZAS, L. FRAGIDIS and V. CHATZIS Information Management Department Technological Educational Institute of Kavala GR-65404 Kavala GREECE

More information

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay)   CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 6 (31 Jan 2008) 1 Announcement 2 1 Reminder A logic circuit is composed of: Inputs Outputs Functional specification

More information

Combinational Circuit Design using Advanced Quantum Dot Cellular Automata

Combinational Circuit Design using Advanced Quantum Dot Cellular Automata Combinational Circuit Design using Advanced Quantum Dot Cellular Automata Aditi Dhingra, Aprana Goel, Gourav Verma, Rashmi Chawla Department of Electronics and Communication Engineering YMCAUST, Faridabad

More information

Implementation of Code Converters in QCAD Pallavi A 1 N. Moorthy Muthukrishnan 2

Implementation of Code Converters in QCAD Pallavi A 1 N. Moorthy Muthukrishnan 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 6, 214 ISSN (online): 2321-613 Implementation of Code Converters in QCAD Pallavi A 1 N. Moorthy Muthukrishnan 2 1 Student

More information

Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate

Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate Int. J. Nanosci. Nanotechnol., Vol. 12, No. 1, March. 2016, pp. 55-69 Short Communication Presenting a New Efficient QCA Full Adder Based on Suggested MV2 Gate A. Safavi and M. Mosleh* Department of Computer

More information

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Serial Parallel ultiplier Design in Quantum-dot Cellular Automata Heumpil Cho Qualcomm, Inc. 5775 orehouse Dr. San Diego, California 92121 Email: hpcho@qualcomm.com Earl E. Swartzlander, Jr. Department

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 90 CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 5.1 INTRODUCTION A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

Implementation of multi-clb designs using quantum-dot cellular automata

Implementation of multi-clb designs using quantum-dot cellular automata Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2010 Implementation of multi-clb designs using quantum-dot cellular automata Chia-Ching Tung Follow this and additional

More information

A Novel 128-Bit QCA Adder

A Novel 128-Bit QCA Adder International Journal of Emerging Engineering Research and Technology Volume 2, Issue 5, August 2014, PP 81-88 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) A Novel 128-Bit QCA Adder V Ravichandran

More information

Analysis and Design of Modified Parity Generator and Parity Checker using Quantum Dot Cellular Automata

Analysis and Design of Modified Parity Generator and Parity Checker using Quantum Dot Cellular Automata Analysis and Design of odified Parity Generator and Parity Checker using Quantum Dot Cellular Automata P.Ilanchezhian Associate Professor, Department of IT, Sona College of Technology, Salem Dr.R..S.Parvathi

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Study of Quantum Cellular Automata Faults

Study of Quantum Cellular Automata Faults ISSN 2229-5518 1478 Study of Quantum Cellular Automata Faults Deepak Joseph Department of VLSI Design, Jansons Institute of technology, Anna University Chennai deepak.crux@gmail.com Abstract -The Quantum

More information

A Structured Ultra-Dense QCA One-Bit Full-Adder Cell

A Structured Ultra-Dense QCA One-Bit Full-Adder Cell RESEARCH ARTICLE Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Quantum Matter Vol. 4, 1 6, 2015 A Structured Ultra-Dense QCA One-Bit Full-Adder

More information

A two-stage shift register for clocked Quantum-dot Cellular Automata

A two-stage shift register for clocked Quantum-dot Cellular Automata A two-stage shift register for clocked Quantum-dot Cellular Automata Alexei O. Orlov, Ravi Kummamuru, R. Ramasubramaniam, Craig S. Lent, Gary H. Bernstein, and Gregory L. Snider. Dept. of Electrical Engineering,

More information

DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER

DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER 1 K.RAVITHEJA, 2 G.VASANTHA, 3 I.SUNEETHA 1 student, Dept of Electronics & Communication Engineering, Annamacharya Institute of

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

The Ring of Cellular Automata 256 Elementary Rules

The Ring of Cellular Automata 256 Elementary Rules The Ring of Cellular Automata 256 Elementary Rules Serge Patlavskiy a physicist (L'viv National University), founder and director of the Institute for Theoretical Problems of Interdisciplinary Investigations,

More information

Computer-Based Project on VLSI Design Co 3/8

Computer-Based Project on VLSI Design Co 3/8 Computer-Based Project on VLSI Design Co 3/8 This pamphlet describes a laboratory activity based on a former third year EIST experiment. Its purpose is the measurement of the switching speed of some CMOS

More information

Digital Systems Principles and Applications TWELFTH EDITION. 3-3 OR Operation With OR Gates. 3-4 AND Operations with AND gates

Digital Systems Principles and Applications TWELFTH EDITION. 3-3 OR Operation With OR Gates. 3-4 AND Operations with AND gates Digital Systems Principles and Applications TWELFTH EDITION CHAPTER 3 Describing Logic Circuits Part -2 J. Bernardini 3-3 OR Operation With OR Gates An OR gate is a circuit with two or more inputs, whose

More information

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output.

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two

More information

SUDOKU1 Challenge 2013 TWINS MADNESS

SUDOKU1 Challenge 2013 TWINS MADNESS Sudoku1 by Nkh Sudoku1 Challenge 2013 Page 1 SUDOKU1 Challenge 2013 TWINS MADNESS Author : JM Nakache The First Sudoku1 Challenge is based on Variants type from various SUDOKU Championships. The most difficult

More information

Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata Tóth and Lent 1

Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata Tóth and Lent 1 Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata Géza Tóth and Craig S. Lent Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 submitted to the

More information

SMART CITIES SMART NETWORK

SMART CITIES SMART NETWORK World Robot Olympiad 2019 Regular Category Senior SMART CITIES SMART NETWORK Version: January 15 th WRO International Premium Partners Table of Contents 1. Introduction... 2 2. Game Field... 3 3. Game

More information

DESIGNING DIGITAL SYSTEMS IN QUANTUM CELLULAR AUTOMATA. A Thesis. Submitted to the Graduate School. of the University of Notre Dame

DESIGNING DIGITAL SYSTEMS IN QUANTUM CELLULAR AUTOMATA. A Thesis. Submitted to the Graduate School. of the University of Notre Dame DESIGNING DIGITAL SYSTEMS IN QUANTUM CELLULAR AUTOMATA A Thesis Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Masters of

More information

Techniques for Generating Sudoku Instances

Techniques for Generating Sudoku Instances Chapter Techniques for Generating Sudoku Instances Overview Sudoku puzzles become worldwide popular among many players in different intellectual levels. In this chapter, we are going to discuss different

More information

A NOVEL QUANTUM-DOT CELLULAR AUTOMATA FOR PARITY BIT GENERATOR AND PARITY CHECKER

A NOVEL QUANTUM-DOT CELLULAR AUTOMATA FOR PARITY BIT GENERATOR AND PARITY CHECKER A NOVEL QUANTUM-DOT CELLULAR AUTOMATA FOR PARITY BIT GENERATOR AND PARITY CHECKER NANDINI RAO G¹, DR.P.C SRIKANTH², DR.PREETA SHARAN³ ¹Post Graduate Student, Department of Electronics and Communication,MCE,Hassan,

More information

Novel Code Converters Based On Quantum-dot Cellular Automata (QCA)

Novel Code Converters Based On Quantum-dot Cellular Automata (QCA) Novel Code Converters Based On Quantum-dot Cellular Automata (QCA) Firdous Ahmad 1, GM Bhat 2 1,2 Department of Electronics & IT, University of Kashmir, (J&K) India 190006 Abstract: Quantum-dot cellular

More information

Computer-Based Project on VLSI Design Co 3/7

Computer-Based Project on VLSI Design Co 3/7 Computer-Based Project on VLSI Design Co 3/7 Electrical Characterisation of CMOS Ring Oscillator This pamphlet describes a laboratory activity based on an integrated circuit originally designed and tested

More information

DESIGN OF HYBRID ADDER USING QCA WITH IMPLEMENTATION OF WALLACE TREE MULTIPLIER

DESIGN OF HYBRID ADDER USING QCA WITH IMPLEMENTATION OF WALLACE TREE MULTIPLIER DESIGN OF HYBRID ADDER USING QCA WITH IMPLEMENTATION OF WALLACE TREE MULTIPLIER Vijayalakshmi.P 1 and Kirthika.N 2 1 PG Scholar & 2 Assistant Professor, Deptt. of VLSI Design, Sri Ramakrishna Engg. College,

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS 1. Analog signal varies continuously between two amplitudes over the given interval of time. Between these limits of amplitude and time, the signal

More information

Sensors & Transducers 2014 by IFSA Publishing, S. L.

Sensors & Transducers 2014 by IFSA Publishing, S. L. Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Neural Circuitry Based on Single Electron Transistors and Single Electron Memories Aïmen BOUBAKER and Adel KALBOUSSI Faculty

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/21 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Objectives In this chapter, you will learn about The binary numbering system Boolean logic and gates Building computer circuits

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2): 48 million IBM PowerPC 75FX (22): 38 million IBM/Apple PowerPC

More information

Efficient Design of Exclusive-Or Gate using 5-Input Majority Gate in QCA

Efficient Design of Exclusive-Or Gate using 5-Input Majority Gate in QCA IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Efficient Design of Exclusive-Or Gate using 5-Input Majority Gate in QCA To cite this article: Ramanand Jaiswal and Trailokya

More information

Electronics Basic CMOS digital circuits

Electronics Basic CMOS digital circuits Electronics Basic CMOS digital circuits Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED October 21, 2014 1 / 30 Introduction The topics covered today: The inverter: the simplest

More information

Patterns and Graphing Year 10

Patterns and Graphing Year 10 Patterns and Graphing Year 10 While students may be shown various different types of patterns in the classroom, they will be tested on simple ones, with each term of the pattern an equal difference from

More information

Area-Delay Efficient Binary Adders in QCA

Area-Delay Efficient Binary Adders in QCA RESEARCH ARTICLE OPEN ACCESS Area-Delay Efficient Binary Adders in QCA Vikram. Gowda Research Scholar, Dept of ECE, KMM Institute of Technology and Science, Tirupathi, AP, India. ABSTRACT In this paper,

More information

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VII (Mar - Apr. 2014), PP 14-18 High Speed, Low power and Area Efficient

More information

#1 rule with nonlinearcircuits panels. blue = input. red = output. You can connect one output to several inputs, but do not connect outputs together

#1 rule with nonlinearcircuits panels. blue = input. red = output. You can connect one output to several inputs, but do not connect outputs together CELLULAR AUTOMATA SEQUENCER USERS GUIDE nonlinearcircuits #1 rule with nonlinearcircuits panels blue = input red = output You can connect one output to several inputs, but do not connect outputs together

More information

NanoFabrics: : Spatial Computing Using Molecular Electronics

NanoFabrics: : Spatial Computing Using Molecular Electronics NanoFabrics: : Spatial Computing Using Molecular Electronics Seth Copen Goldstein and Mihai Budiu Computer Architecture, 2001. Proceedings. 28th Annual International Symposium on 30 June-4 4 July 2001

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2

An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2 An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2 1 M.Tech student, ECE, Sri Indu College of Engineering and Technology,

More information

CAN YOU FIX THE ROBOT BRAIN?

CAN YOU FIX THE ROBOT BRAIN? CAN YOU FIX THE BRAIN? Click here for lesson plan In, you are a Cybernetics Specialist tasked with repairing a fleet of personal assistant robots. Each robot is reprogrammed by a different Activating the

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Randy H. Katz University of California, erkeley May 993 ฉ R.H. Katz Transparency No. - The Elements of Modern Design Representations, Circuit Technologies, Rapid Prototyping ehaviors locks

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

Single-Electron Logic Systems Based on a Graphical Representation of Digital Functions

Single-Electron Logic Systems Based on a Graphical Representation of Digital Functions 1504 IEICE TRANS. ELECTRON., VOL.E89 C, NO.11 NOVEMBER 2006 INVITED PAPER Special Section on Novel Device Architectures and System Integration Technologies Single-Electron Logic Systems Based on a Graphical

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 13 Building Blocks (Multipliers) Register Adder Shift Register Adib Abrishamifar EE Department IUST Acknowledgement This lecture note has been summarized and categorized

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

5. (Adapted from 3.25)

5. (Adapted from 3.25) Homework02 1. According to the following equations, draw the circuits and write the matching truth tables.the circuits can be drawn either in transistor-level or symbols. a. X = NOT (NOT(A) OR (A AND B

More information

E2.11/ISE2.22 Digital Electronics II

E2.11/ISE2.22 Digital Electronics II E2.11/ISE2.22 Digital Electronics II roblem Sheet 6 (uestion ratings: A=Easy,, E=Hard. All students should do questions rated A, B or C as a minimum) 1B+ A full-adder is a symmetric function of its inputs

More information

SMART CITIES SMART LIGHTING

SMART CITIES SMART LIGHTING World Robot Olympiad 2019 Regular Category Junior SMART CITIES SMART LIGHTING Version: January 15 th WRO International Premium Partners Table of Contents 1. Introduction... 2 2. Game Field... 3 3. Game

More information

EXPERIMENT NO 1 TRUTH TABLE (1)

EXPERIMENT NO 1 TRUTH TABLE (1) EPERIMENT NO AIM: To verify the Demorgan s theorems. APPARATUS REQUIRED: THEORY: Digital logic trainer and Patch cords. The digital signals are discrete in nature and can only assume one of the two values

More information

Modeling and Controlling Electron Movement in a Ballistic Deflection Transistor. Logan Toops. Webster Thomas High School.

Modeling and Controlling Electron Movement in a Ballistic Deflection Transistor. Logan Toops. Webster Thomas High School. Modeling and Controlling Electron Movement in a Ballistic Deflection Transistor Logan Toops Webster Thomas High School Webster, New York Advisors: Roman Sobolewski, Yunus Akbas Laboratory for Laser Energetics

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as BioE 1310 - Review 5 - Digital 1/16/2017 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in the corresponding numbered

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

Mind Ninja The Game of Boundless Forms

Mind Ninja The Game of Boundless Forms Mind Ninja The Game of Boundless Forms Nick Bentley 2007-2008. email: nickobento@gmail.com Overview Mind Ninja is a deep board game for two players. It is 2007 winner of the prestigious international board

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/15 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad University of California,

More information

Advanced Digital Design

Advanced Digital Design Advanced Digital Design The Need for a Design Style by A. Steininger Vienna University of Technology Outline Skew versus consistency The need for a design style Hazards, Glitches & Runts Lecture "Advanced

More information

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting Student Information First Name School of Computer Science Faculty of Engineering and Computer Science Last Name Student ID Number Lab Cover Page Please complete all (empty) fields: Course Name: DIGITAL

More information

Chapter 3 Describing Logic Circuits Dr. Xu

Chapter 3 Describing Logic Circuits Dr. Xu Chapter 3 Describing Logic Circuits Dr. Xu Chapter 3 Objectives Selected areas covered in this chapter: Operation of truth tables for AND, NAND, OR, and NOR gates, and the NOT (INVERTER) circuit. Boolean

More information

Physics 309 Lab 3 Bipolar junction transistor

Physics 309 Lab 3 Bipolar junction transistor Physics 39 Lab 3 Bipolar junction transistor The purpose of this third lab is to learn the principles of operation of a bipolar junction transistor, how to characterize its performances, and how to use

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2000): 48 million IBM PowerPC 750FX (2002): 38 million IBM/Apple

More information

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part II First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Combinational Circuits Flips Flops Flops Sequential Circuits 204231: Computer

More information

Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse 1 K.Bala. 2

Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse 1 K.Bala. 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online): 2321-0613 Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse

More information

A Design of and Design Tools for a Novel Quantum Dot Based Microprocessor

A Design of and Design Tools for a Novel Quantum Dot Based Microprocessor A Design of and Design Tools for a Novel Quantum Dot Based Microprocessor Michael T. Niemier University of Notre Dame Department of Computer Science and Engineering Notre Dame, IN 46545 mniemier@nd.edu

More information

LOW LEAKAGE CNTFET FULL ADDERS

LOW LEAKAGE CNTFET FULL ADDERS LOW LEAKAGE CNTFET FULL ADDERS Rajendra Prasad Somineni srprasad447@gmail.com Y Padma Sai S Naga Leela Abstract As the technology scales down to 32nm or below, the leakage power starts dominating the total

More information

Module -18 Flip flops

Module -18 Flip flops 1 Module -18 Flip flops 1. Introduction 2. Comparison of latches and flip flops. 3. Clock the trigger signal 4. Flip flops 4.1. Level triggered flip flops SR, D and JK flip flops 4.2. Edge triggered flip

More information

Name EET 1131 Lab #2 Oscilloscope and Multisim

Name EET 1131 Lab #2 Oscilloscope and Multisim Name EET 1131 Lab #2 Oscilloscope and Multisim Section 1. Oscilloscope Introduction Equipment and Components Safety glasses Logic probe ETS-7000 Digital-Analog Training System Fluke 45 Digital Multimeter

More information

Towards Designing Robust QCA Architectures in the Presence of Sneak Noise Paths

Towards Designing Robust QCA Architectures in the Presence of Sneak Noise Paths Towards Designing Robust Q rchitectures in the Presence of Sneak Noise Paths Kyosun Kim, Kaijie Wu 2, Ramesh Karri 3 Department of Electronic Engineering, University of Incheon, Incheon, Korea kkim@incheon.ac.kr

More information

AN EFFICIENT APPROACH TO MINIMIZE POWER AND AREA IN CARRY SELECT ADDER USING BINARY TO EXCESS ONE CONVERTER

AN EFFICIENT APPROACH TO MINIMIZE POWER AND AREA IN CARRY SELECT ADDER USING BINARY TO EXCESS ONE CONVERTER AN EFFICIENT APPROACH TO MINIMIZE POWER AND AREA IN CARRY SELECT ADDER USING BINARY TO EXCESS ONE CONVERTER K. RAMAMOORTHY 1 T. CHELLADURAI 2 V. MANIKANDAN 3 1 Department of Electronics and Communication

More information

ENGG1015: lab 3. Sequential Logic

ENGG1015: lab 3. Sequential Logic ENGG1015: lab 3 Sequential Logic 1 st Semester 2012-13 This lab explores the world of sequential logic design. By the end of this lab, you will have implemented a working prototype of a Ball ounter that

More information

Strategy for Robo-Kabaddi

Strategy for Robo-Kabaddi Strategy for Robo-Kabaddi Two Strategies are required One for raiding the opponent. Another, while the opponent is raiding us. Aggressive/Defensive Stance Initial Configuration By intuition & with out

More information

A NOVEL DESIGN OF GRAY CODE CONVERTER WITH QUANTUM DOT CELLULAR AUTOMATA 1

A NOVEL DESIGN OF GRAY CODE CONVERTER WITH QUANTUM DOT CELLULAR AUTOMATA 1 A NOVEL DESIGN OF GRAY CODE CONVERTER WITH QUANTUM DOT CELLULAR AUTOMATA 1 Bhupendra Kumar Aroliya, 2 Kapil Sen, 3 Umesh Barahdiya 4 Abhilash Mishra 1 Research Scholar, Electronics and Communication Engineering

More information

EE351 Laboratory Exercise 4 Field Effect Transistors

EE351 Laboratory Exercise 4 Field Effect Transistors Oct. 28, 2007, rev. July 26, 2009 Introduction The purpose of this laboratory exercise is for students to gain experience making measurements on Junction (JFET) to confirm mathematical models and to gain

More information

YGE ProgCard II - Programming Card

YGE ProgCard II - Programming Card YGE ProgCard II - Programming Card With the programming card, we offer an easy to use programming unit, with which all our ProgCard II capable speed controllers can have their individual functions changed.

More information

MAS336 Computational Problem Solving. Problem 3: Eight Queens

MAS336 Computational Problem Solving. Problem 3: Eight Queens MAS336 Computational Problem Solving Problem 3: Eight Queens Introduction Francis J. Wright, 2007 Topics: arrays, recursion, plotting, symmetry The problem is to find all the distinct ways of choosing

More information

DESIGN OF 4 BIT BINARY ARITHMETIC CIRCUIT USING 1 S COMPLEMENT METHOD

DESIGN OF 4 BIT BINARY ARITHMETIC CIRCUIT USING 1 S COMPLEMENT METHOD e-issn 2455 1392 Volume 2 Issue 4, April 2016 pp. 176-187 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com DESIGN OF 4 BIT BINARY ARITHMETIC CIRCUIT USING 1 S COMPLEMENT METHOD Dhrubojyoti

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 11

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 11 EECS 70 Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 11 Counting As we saw in our discussion for uniform discrete probability, being able to count the number of elements of

More information

The patterns considered here are black and white and represented by a rectangular grid of cells. Here is a typical pattern: [Redundant]

The patterns considered here are black and white and represented by a rectangular grid of cells. Here is a typical pattern: [Redundant] Pattern Tours The patterns considered here are black and white and represented by a rectangular grid of cells. Here is a typical pattern: [Redundant] A sequence of cell locations is called a path. A path

More information