Argos: Practical Base Stations for Large-scale Beamforming. Clayton W. Shepard

Size: px
Start display at page:

Download "Argos: Practical Base Stations for Large-scale Beamforming. Clayton W. Shepard"

Transcription

1 Argos: Practical Base Stations for Large-scale Beamforming Clayton W. Shepard

2 Collaborators Hang Yu Narendra Anand Erran Li Thomas Marzetta Richard Yang Lin Zhong 2

3 = Background Beamforming Power Gain Adjust phase ( beamweights ) Leverages Interference = Open-loop Pre-compute weights to specify direction Closed-loop (adaptive) Use channel state information (CSI) to target receivers 3

4 Background Single-user beamforming (SUBF) W SUBF c H * Multi-user beamforming (MUBF) W MUBF c H * ( H T H * ) 1 4

5 Background: Channel Estimation For Due Path uplink, to Effects environment send (Walls) a pilot and from terminal the The Align CSI the is phases calculated the receiver at the to A terminal mobility pilot is sent estimation then Uplink? from each has CSI to BS occur antenna at BS terminal ensure (Channels quickly constructive and are periodically sent notback reciprocal) interference to the BS Tx Rx Tx BS Rx Tx + + = Tx Rx Rx 5

6 MUBF linear pre-coding: downlink K K K K M 6

7 MUBF linear pre-coding: uplink K K K K M 7

8 Our vision 8

9 Prior Work Large-scale beamforming theory T.L. Marzetta. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, Nov Fredrik Rusek and Daniel Persson and Buon Kiong Lau and Erik G. Larsson and Thomas L. Marzetta and Ove Edfors and Fredrik Tufvesson Scaling up MIMO: Opportunities and Challenges with Very Large Arrays. arxiv, Jan Real-world beamforming E. Aryafar, N. Anand, T. Salonidis, and E. Knightly. Design and Experimental Evaluation of Multi-userBeamforming in Wireless LANs. In Proceedings of MobiCom, 2010 Reciprocal calibration F. Kaltenberger, H. Jiang, M. Guillaud, R. Knopp. Relative channel reciprocity calibration in MIMO/TDD systems. Future Network and Mobile Summit, June

10 First large-scale beamforming base station 10

11 11

12 12

13 Overview of contributions Scalable architecture Internal reciprocity calibration Novel fully distributed beamforming method 13

14 Can beamforming scale with the number of base station antennas? 14

15 Not with current techniques! CSI acquisition Typically requires # of base station (BS) antennas (M) + # of terminals (K) pilots Weight calculation All existing methods have centralized data dependency Requires M*K channel estimates and produces M*K weight values Linear pre-coding Produces M data streams 15

16 With careful design and new techniques it can! CSI Acquisition Leverage TDD reciprocity to limit pilots to K Requires calibration Weight Calculation Novel decentralized weight calculation Linear Pre-coding Apply weights at radio For uplink combine streams any time they meet 16

17 Scalable linear pre-coding Common Databus! K K K K M 17

18 MUBF linear pre-coding: uplink K K K K M 18

19 Scalable linear pre-coding Constant Bandwidth! K K K K M 19

20 Ramifications CSI and weights are computed and applied (linear pre-coding) locally at each BS radio No overhead for additional BS radios No central data dependency No latency from data transport No stringent latency requirements Constant data rate common bus (no switching!) Unlimited scalability! 20

21 Design goals Scalable Support thousands of BS antennas??? Cost-effective Cost scales linearly with # of antennas Reliable 21

22 How do we design it? Daisy-chain (series) Unreliable Large end to end latency Flat structure Un-scalable Expensive, with large fixed cost Token-ring / Interconnected Not amenable to linear pre-coding Variable Latency Routing overhead 22

23 Solution: Argos Modular Daisy-chainable 1 or more radios Central Controller Argos Hub Argos Hub Data Backhaul Argos Hub Hierarchal Increases Reliability Constrains Latency Cost-effective Module Module Module Module Module Module Radio Radio Radio 23

24 Scalability of Argos Scalable in 4 directions: # of Radios per Module # of Modules per Chain # of ports per Hub # of Hubs (and levels) Reliable Branches can fail without affecting other branches Central hubs can be easily made redundant Accommodates linear pre-coding Add samples together at every junction 24

25 Ethernet Implementation Central Controller (Host PC w/matlab) Argos Hub Data Switch (Ethernet) Sync Pulse (WARP Board) Clock Distribution (AD9523) FPGA FPGA FPGA FPGA (controlled by XPS) (controlled by XPS) (controlled Power by XPS) PC (controlled Power (C by code XPS) PC Target) Power (C code PC Target) Power (C code FPGA PC Target) Fabric (C code FPGA Target) Fabric Argos Argos Argos Peripherals FPGA and Fabric Hardware Model Argos Interconnect Interconnect Interconnect Peripherals FPGA Other and I/O Fabric Hardware (SimuLink) Model Interconnect Peripherals Other and I/O Hardware (SimuLink) Model Peripherals Other and I/O Hardware (SimuLink) Model Other I/O (SimuLink) Clock Board Clock Board Clock Board Clock Board WARP Module WARP Module WARP Module Daughter WARP Module Daughter Cards Daughter Cards Daughter Cards Radio 1 Cards Radio 1 Radio 1 Radio 1Radio 2 Radio 2 Radio 2 Radio 2Radio 3 Radio 3 Radio 3 Radio 3Radio 4 Radio 4 Radio 4 Radio

26 Central Controller WARP Modules Argos Interconnects Sync Distribution Argos Hub Clock Distribution Ethernet Switch 26

27 Overview of contributions Scalable architecture Internal reciprocity calibration Novel fully distributed beamforming method 27

28 Channel reciprocity h i j tx i crx j tx i hi j rx j c h ji tx j crx i rx i hj i tx j Transciever i Wireless Channel Transciever j 28

29 Calibration coefficients Given the complete channel: We define a calibration coefficient as: Thus: i j j i j i h h A j i j i rx c tx h i j j i j i h A h i j j i A A A 1 1 and 29 i j i j j i A rx tx rx tx 1 i j j i rx c tx rx c tx

30 Applying to large-scale BS Find A between each BS antenna and a reference antenna (1) A 1m Every BS radio listens to terminal pilot ht m Find A between reference and terminal A 1t We can derive A mt A A 1t 1m Now every h can be found via h mt A mt h tm 30

31 Key observation But this requires K+1 pilots Even worse, it requires feedback A constant phase shift across the entire array does not alter the beampattern! h mt A mt h tm A A 1t 1m h tm 1 A 1m h tm Assuming A1 t 1 results in a constant phase offset, and thus does not affect radiation pattern 31

32 Internal calibration We find all A 1m offline They are static, and can be found quickly Send K orthogonal pilots to find all Used for uplink beamforming directly h m t k Use h h tm mt A1 m for downlink beamforming 32

33 Overview of contributions Scalable architecture Internal reciprocity calibration Novel fully distributed beamforming method 33

34 Problem with existing methods Central data dependency Transport latency causes capacity loss Can not scale Becomes exorbitantly expensive then infeasible 34

35 Conjugate beamforming Requires global power scaling by constant: Where, e.g.: This creates a central data dependency 35

36 Local conjugate beamforming Scale power locally: Maximizes utilization of every radio More appropriate for real-world deployments Quickly approaches optimal as K increases Channels are independent and uncorrelated 36

37 Capacity Gain Results Huge Capacity Gains Capacity Gain for M = 64 Local Conj. Global Conj. 8 Zeroforcing Performance linear with M and K 0 Same Power 1/64th Power Channel Calibration Stable Local conjugate indistinguishable from global Approaches optimality quickly with K 37

38 Results: scaling M Capacity vs. M, with K = 15 38

39 Results: scaling K Capacity vs. K, with M = 64 39

40 Results: scaling K Capacity vs. K, with M = 16 40

41 Results: low power Capacity vs. K, with M = 16 41

42 Results: calibration stability 42

43 Results: local conjugate 43

44 Future directions Find optimal tradeoff between zeroforcing and conjugate Demonstrate network optimality Lower power reduces other-cell interference Leverage cooperative beamforming Investigate promising match with full duplex Leverage huge EIRP gains 44

45 Conclusion First large-scale beamforming platform Real-world demonstration of manyfold capacity increase Devised novel architecture and techniques Unlimited Scalability 45

46 Acknowledgements Theoretical Discussion and Background Ashutosh Sabharwal WARP Support Patrick Murphy, Gaurav Patel, Chris Hunter, Sidharth Gupta Platform Construction Nathan Zuege, Chris Harris, Azalia Mirhoseini, Danny Eaton, Paul Williams 46

Many-antenna base stations are interesting systems. Lin Zhong

Many-antenna base stations are interesting systems. Lin Zhong Many-antenna base stations are interesting systems Lin Zhong http://recg.org 2 How we got started Why many-antenna base station What we have learned What we are doing now 3 How we started Why a mobile

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave?

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? Robert W. Heath Jr. The University of Texas at Austin Wireless Networking and Communications Group www.profheath.org

More information

Practical Performance of MU-MIMO Precoding in Many-Antenna Base Stations

Practical Performance of MU-MIMO Precoding in Many-Antenna Base Stations Practical Performance of MU-MIMO Precoding in Many-Antenna Base Stations Clayton Shepard, Narendra Anand, and Lin Zhong Rice University, Houston, TX {cws, nanand, lzhong}@rice.edu Equal Contribution ABSTRACT

More information

Beamforming on mobile devices: A first study

Beamforming on mobile devices: A first study Beamforming on mobile devices: A first study Hang Yu, Lin Zhong, Ashutosh Sabharwal, David Kao http://www.recg.org Two invariants for wireless Spectrum is scarce Hardware is cheap and getting cheaper 2

More information

Antenna Selection in Massive MIMO System

Antenna Selection in Massive MIMO System Antenna Selection in Massive MIMO System Nayan A. Patadiya 1, Prof. Saurabh M. Patel 2 PG Student, Department of E & C, Sardar Vallabhbhai Patel Institute of Technology, Vasad, Gujarat, India 1 Assistant

More information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 3 Issue 12 ǁ December. 2015 ǁ PP.14-19 Performance Analysis of Massive MIMO

More information

Massive MIMO Full-duplex: Theory and Experiments

Massive MIMO Full-duplex: Theory and Experiments Massive MIMO Full-duplex: Theory and Experiments Ashu Sabharwal Joint work with Evan Everett, Clay Shepard and Prof. Lin Zhong Data Rate Through Generations Gains from Spectrum, Densification & Spectral

More information

Reciprocity calibration methods for Massive MIMO based on antenna coupling

Reciprocity calibration methods for Massive MIMO based on antenna coupling Reciprocity calibration methods for Massive MIMO based on antenna coupling Vieira, Joao; Rusek, Fredrik; Tufvesson, Fredrik 24 Link to publication Citation for published version (APA): Vieira, J., Rusek,

More information

ArgosNet: A Multi-Cell Many-Antenna MU-MIMO Platform

ArgosNet: A Multi-Cell Many-Antenna MU-MIMO Platform ArgosNet: A Multi-Cell Many-Antenna MU-MIMO Platform Clayton Shepard, Rahman Doost-Mohammady, Jian Ding, Ryan E. Guerra, and Lin Zhong Department of Electrical and Computer Engineering, Rice University,

More information

Wireless InSite. Simulation of MIMO Antennas for 5G Telecommunications. Copyright Remcom Inc. All rights reserved.

Wireless InSite. Simulation of MIMO Antennas for 5G Telecommunications. Copyright Remcom Inc. All rights reserved. Wireless InSite Simulation of MIMO Antennas for 5G Telecommunications Overview To keep up with rising demand and new technologies, the wireless industry is researching a wide array of solutions for 5G,

More information

Bringing the Magic of Asymptotic Analysis to Wireless Networks

Bringing the Magic of Asymptotic Analysis to Wireless Networks Massive MIMO Bringing the Magic of Asymptotic Analysis to Wireless Networks Dr. Emil Björnson Department of Electrical Engineering (ISY) Linköping University, Linköping, Sweden International Workshop on

More information

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEM 2017, VOLUME: 08, ISSUE: 03 DOI: 10.21917/ijct.2017.0228 ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM

More information

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison Prof. Xinyu Zhang Dept. of Electrical and Computer Engineering University of Wisconsin-Madison 1" Overview of MIMO communications Single-user MIMO Multi-user MIMO Network MIMO 3" MIMO (Multiple-Input Multiple-Output)

More information

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM An LTE compatible massive MIMO testbed based on OpenAirInterface Xiwen JIANG, Florian Kaltenberger EURECOM Testbed Overview Open source platform Based on OAI hardware and software 3GPP LTE compatible Incorporate

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica 5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica! 2015.05.29 Key Trend (2013-2025) Exponential traffic growth! Wireless traffic dominated by video multimedia! Expectation of ubiquitous broadband

More information

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Saransh Malik, Sangmi Moon, Hun Choi, Cheolhong Kim. Daeijin Kim, and Intae Hwang, Non-Member, IEEE Abstract Massive MIMO (also

More information

A low-complex peak-to-average power reduction scheme for OFDM based massive MIMO systems

A low-complex peak-to-average power reduction scheme for OFDM based massive MIMO systems A low-complex peak-to-average power reduction scheme for OFDM based massive MIMO systems Prabhu, Hemanth; Edfors, Ove; Rodrigues, Joachim; Liu, Liang; Rusek, Fredrik Published in: 2014 6th International

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

Novel Detection Scheme for LSAS Multi User Scenario with LTE-A and MMB Channels

Novel Detection Scheme for LSAS Multi User Scenario with LTE-A and MMB Channels Novel Detection Scheme for LSAS Multi User Scenario with LTE-A MMB Channels Saransh Malik, Sangmi Moon, Hun Choi, Cheolhong Kim. Daeijin Kim, Intae Hwang, Non-Member, IEEE Abstract In this paper, we analyze

More information

Control Channel Design for Many-Antenna MU-MIMO

Control Channel Design for Many-Antenna MU-MIMO Control Channel Design for Many-Antenna MU-MIMO Clayton Shepard, Abeer Javed, and Lin Zhong Department of Electrical and Computer Engineering Rice University, Houston, TX {cws, abeer.javed, lzhong}@rice.edu

More information

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Abhishek Thakur 1 1Student, Dept. of Electronics & Communication Engineering, IIIT Manipur ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Performance Evaluation of Massive MIMO in terms of capacity

Performance Evaluation of Massive MIMO in terms of capacity IJSRD National Conference on Advances in Computer Science Engineering & Technology May 2017 ISSN: 2321-0613 Performance Evaluation of Massive MIMO in terms of capacity Nikhil Chauhan 1 Dr. Kiran Parmar

More information

Larsson, Erik G.; Edfors, Ove; Tufvesson, Fredrik; Marzetta, Thomas L.

Larsson, Erik G.; Edfors, Ove; Tufvesson, Fredrik; Marzetta, Thomas L. Massive MIMO for Next Generation Wireless Systems Larsson, Erik G.; Edfors, Ove; Tufvesson, Fredrik; Marzetta, Thomas L. Published in: IEEE Communications Magazine Published: 2014-01-01 Link to publication

More information

Analysis of massive MIMO networks using stochastic geometry

Analysis of massive MIMO networks using stochastic geometry Analysis of massive MIMO networks using stochastic geometry Tianyang Bai and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

From massive MIMO to C-RAN: the OpenAirInterface 5G testbed

From massive MIMO to C-RAN: the OpenAirInterface 5G testbed From massive MIMO to C-RAN: the OpenAirInterface 5G testbed Florian Kaltenberger, Xiwen Jiang, Raymond Knopp EURECOM, Campus SophiaTech, 06410 Biot, France firstnamelastname@eurecomfr Abstract 5G will

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment

Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment Majid Nasiri Khormuji Huawei Technologies Sweden AB, Stockholm Email: majid.n.k@ieee.org Abstract We propose a pilot decontamination

More information

Design of mmwave massive MIMO cellular systems

Design of mmwave massive MIMO cellular systems Design of mmwave massive MIMO cellular systems Abbas Kazerouni and Mainak Chowdhury Faculty mentor: Andrea Goldsmith Wireless Systems Lab, Stanford University March 23, 2015 Future cellular networks Higher

More information

MIMO: State of the Art, and the Future in Focus Mboli Sechang Julius

MIMO: State of the Art, and the Future in Focus Mboli Sechang Julius MIMO: State of the Art, and the Future in Focus Mboli Sechang Julius Abstract-Antennas of transmitters and receivers have been manipulated to increase the capacity of transmission and reception of signals.

More information

Measured propagation characteristics for very-large MIMO at 2.6 GHz

Measured propagation characteristics for very-large MIMO at 2.6 GHz Measured propagation characteristics for very-large MIMO at 2.6 GHz Gao, Xiang; Tufvesson, Fredrik; Edfors, Ove; Rusek, Fredrik Published in: [Host publication title missing] Published: 2012-01-01 Link

More information

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol., 1 6 Experimental evaluation of massive MIMO at GHz

More information

Next Generation Mobile Communication. Michael Liao

Next Generation Mobile Communication. Michael Liao Next Generation Mobile Communication Channel State Information (CSI) Acquisition for mmwave MIMO Systems Michael Liao Advisor : Andy Wu Graduate Institute of Electronics Engineering National Taiwan University

More information

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Real-time Distributed MIMO Systems Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Dense Wireless Networks Stadiums Concerts Airports Malls Interference Limits Wireless Throughput APs

More information

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017 Ettus Research USRP Tom Tsou tom.tsou@ettus.com 3rd OpenAirInterface Workshop April 28, 2017 Agenda Company Overview USRP Software Ecosystem Product Line B-Series (Bus) N-Series (Network) X-Series (High

More information

NI Technical Symposium ni.com

NI Technical Symposium ni.com NI Technical Symposium 2016 1 Build 5G Systems Today Avichal Kulshrestha 2 How We Consume Data is Changing 3 Where We Are Today Explosion of wireless data and connected devices Last year s mobile data

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

S. Mohammad Razavizadeh. Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST)

S. Mohammad Razavizadeh. Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST) S. Mohammad Razavizadeh Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST) 2 Evolution of Wireless Networks AMPS GSM GPRS EDGE UMTS HSDPA HSUPA HSPA+ LTE LTE-A

More information

Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges

Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges Vincent Lau Dept of ECE, Hong Kong University of Science and Technology Background 2 Traditional Interference

More information

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom Amr El-Keyi and Halim Yanikomeroglu Outline Introduction Full-duplex system Cooperative system

More information

Understanding Real Many-Antenna. MU-MIMO channels.

Understanding Real Many-Antenna. MU-MIMO channels. Understanding Real Many-Antenna MU-MIMO Channels Clayton Shepard, Jian Ding, Ryan E. Guerra, and Lin Zhong Department of Electrical and Computer Engineering Rice University, Houston, TX Skylark Wireless

More information

SourceSync. Exploiting Sender Diversity

SourceSync. Exploiting Sender Diversity SourceSync Exploiting Sender Diversity Why Develop SourceSync? Wireless diversity is intrinsic to wireless networks Many distributed protocols exploit receiver diversity Sender diversity is a largely unexplored

More information

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC MIMO in 4G Wireless Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC About the presenter: Iqbal is the founder of training and consulting firm USPurtek LLC, which specializes

More information

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Li Tian 1 1 Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand Abstract Abstract

More information

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20 Challenges of 5G mmwave RF Module Ren-Jr Chen rjchen@itri.org.tw M300/ICL/ITRI 2018/06/20 Agenda 5G Vision and Scenarios mmwave RF module considerations mmwave RF module solution for OAI Conclusion 2 5G

More information

Xiao Yang 1 The Institute of Microelectronics, Tsinghua University, Beijing,100084, China

Xiao Yang 1 The Institute of Microelectronics, Tsinghua University, Beijing,100084, China Inversion Selection Method for Linear Data Detection in the Massive Multiple Input Multiple Output Uplink with Reconfigurable Implementation Results 1 The Institute of Microelectronics, Tsinghua University,

More information

Precoding and Massive MIMO

Precoding and Massive MIMO Precoding and Massive MIMO Jinho Choi School of Information and Communications GIST October 2013 1 / 64 1. Introduction 2. Overview of Beamforming Techniques 3. Cooperative (Network) MIMO 3.1 Multicell

More information

MIMO I: Spatial Diversity

MIMO I: Spatial Diversity MIMO I: Spatial Diversity COS 463: Wireless Networks Lecture 16 Kyle Jamieson [Parts adapted from D. Halperin et al., T. Rappaport] What is MIMO, and why? Multiple-Input, Multiple-Output (MIMO) communications

More information

Channel Modelling ETI 085. Antennas Multiple antenna systems. Antennas in real channels. Lecture no: Important antenna parameters

Channel Modelling ETI 085. Antennas Multiple antenna systems. Antennas in real channels. Lecture no: Important antenna parameters Channel Modelling ETI 085 Lecture no: 8 Antennas Multiple antenna systems Antennas in real channels One important aspect is how the channel and antenna interact The antenna pattern determines what the

More information

Antennas Multiple antenna systems

Antennas Multiple antenna systems Channel Modelling ETIM10 Lecture no: 8 Antennas Multiple antenna systems Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-13

More information

MU-MIMO with Fixed Beamforming for

MU-MIMO with Fixed Beamforming for MU-MIMO with Fixed Beamforming for FDD Systems Manfred Litzenburger, Thorsten Wild, Michael Ohm Alcatel-Lucent R&I Stuttgart, Germany MU-MIMO - Motivation MU-MIMO Supporting multiple users in a cell on

More information

A SURVEY ON MIMO FOR ENERGY EFFICIENT WIRELESS COMMUNICATION SYSTEM

A SURVEY ON MIMO FOR ENERGY EFFICIENT WIRELESS COMMUNICATION SYSTEM A SURVEY ON MIMO FOR ENERGY EFFICIENT WIRELESS COMMUNICATION SYSTEM Gopesh Sharma 1, Lokesh Tharani 2, Praval Kumar Udaniya 3 1,2,3 Department of Electronics engineering, Rajasthan Technical University,

More information

Design, Simulation & Concept Verification of 4 4, 8 8 MIMO With ZF, MMSE and BF Detection Schemes

Design, Simulation & Concept Verification of 4 4, 8 8 MIMO With ZF, MMSE and BF Detection Schemes ISSN 2255-9159 (online) ISSN 2255-9140 (print) 2017, vol. 13, pp. 69 74 doi: 10.1515/ecce-2017-0010 https://www.degruyter.com/view/j/ecce Design, Simulation & Concept Verification of 4 4, 8 8 MIMO With

More information

A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array

A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array Progress In Electromagnetics Research Letters, Vol. 65, 15 21, 2017 A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array Hong-Wei Yuan 1, 2, *, Guan-Feng Cui 3, and Jing Fan 4 Abstract

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

AN OVERVIEW OF MASSIVE MIMO SYSTEM IN 5G

AN OVERVIEW OF MASSIVE MIMO SYSTEM IN 5G I J C T A, 9(11) 2016, pp. 4957-4968 International Science Press AN OVERVIEW OF MASSIVE MIMO SYSTEM IN 5G Sk. Saddam Hussain *, Shaik Mohammed Yaseen 2 and Koushik Barman 3 Abstract: 4G is proving good

More information

A Mutual Coupling Model for Massive MIMO Applied to the 3GPP 3D Channel Model

A Mutual Coupling Model for Massive MIMO Applied to the 3GPP 3D Channel Model 207 25th European Signal Processing Conference (EUSIPCO) A Mutual Coupling Model for Massive MIMO Applied to the 3GPP 3D Channel Model Stefan Pratschner, Sebastian Caban, Stefan Schwarz and Markus Rupp

More information

Assignment Scheme for Maximizing the Network. Capacity in the Massive MIMO

Assignment Scheme for Maximizing the Network. Capacity in the Massive MIMO Contemporary Engineering Sciences, Vol. 7, 2014, no. 31, 1699-1705 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.411228 Assignment Scheme for Maximizing the Network Capacity in the Massive

More information

Experimental and Analytical Evaluation of Multi-User Beamforming in Wireless LANs

Experimental and Analytical Evaluation of Multi-User Beamforming in Wireless LANs RICE UNIVERSITY Experimental and Analytical Evaluation of Multi-User Beamforming in Wireless LANs by Ehsan Aryafar A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

PAFD: Phased Array Full-Duplex

PAFD: Phased Array Full-Duplex PAFD: Phased Array Full-Duplex Ehsan Aryafar 1 and Alireza Keshavarz-Haddad 2 1 Portland State University, Department of Computer Science, Portland, OR, 97201 2 Shiraz University, School of Electrical

More information

All Beamforming Solutions Are Not Equal

All Beamforming Solutions Are Not Equal White Paper All Beamforming Solutions Are Not Equal Executive Summary This white paper compares and contrasts the two major implementations of beamforming found in the market today: Switched array beamforming

More information

UHF Phased Array Ground Stations for Cubesat Applications

UHF Phased Array Ground Stations for Cubesat Applications UHF Phased Array Ground Stations for Cubesat Applications Colin Sheldon, Justin Bradfield, Erika Sanchez, Jeffrey Boye, David Copeland and Norman Adams 10 August 2016 Colin Sheldon, PhD 240-228-8519 Colin.Sheldon@jhuapl.edu

More information

Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs

Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs Ehsan Aryafar 1, Narendra Anand 1, Theodoros Salonidis 2, and Edward W. Knightly 1 1 Rice University, Houston, TX, USA 2 Technicolor,

More information

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX OBJECTIVES Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX INTRODUCTION WIMAX the Worldwide Interoperability for Microwave Access, is a telecommunications

More information

On the Complementary Benefits of Massive MIMO, Small Cells, and TDD

On the Complementary Benefits of Massive MIMO, Small Cells, and TDD On the Complementary Benefits of Massive MIMO, Small Cells, and TDD Jakob Hoydis (joint work with K. Hosseini, S. ten Brink, M. Debbah) Bell Laboratories, Alcatel-Lucent, Germany Alcatel-Lucent Chair on

More information

Potential Throughput Improvement of FD MIMO in Practical Systems

Potential Throughput Improvement of FD MIMO in Practical Systems 2014 UKSim-AMSS 8th European Modelling Symposium Potential Throughput Improvement of FD MIMO in Practical Systems Fangze Tu, Yuan Zhu, Hongwen Yang Mobile and Communications Group, Intel Corporation Beijing

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Fredrik Athley, Giuseppe Durisi 2, Ulf Gustavsson Ericsson Research, Ericsson AB, Gothenburg, Sweden 2 Dept. of Signals and

More information

Opportunistic Channel Estimation for Implicit af MU-MIMO

Opportunistic Channel Estimation for Implicit af MU-MIMO Opportunistic Channel Estimation for Implicit 2.11af MU-MIMO Ryan E. Guerra Rice University ryan@guerra.rocks Narendra Anand Cisco Systems, Inc. nareanan@cisco.com Clayton Shepard Rice University cws@rice.edu

More information

Decentralized Data Detection for Massive MU-MIMO on a Xeon Phi Cluster

Decentralized Data Detection for Massive MU-MIMO on a Xeon Phi Cluster Decentralized Data Detection for Massive MU-MIMO on a Xeon Phi Cluster Kaipeng Li 1, Yujun Chen 1, Rishi Sharan 2, Tom Goldstein 3, Joseph R. Cavallaro 1, and Christoph Studer 2 1 Department of Electrical

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

MATLAB COMMUNICATION TITLES

MATLAB COMMUNICATION TITLES MATLAB COMMUNICATION TITLES -2018 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING(OFDM) 1 ITCM01 New PTS Schemes For PAPR Reduction Of OFDM Signals Without Side Information 2 ITCM02 Design Space-Time Trellis

More information

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Gabor Fodor Ericsson Research Royal Institute of Technology 5G: Scenarios & Requirements Traffic

More information

5G Outlook Test and Measurement Aspects Mark Bailey

5G Outlook Test and Measurement Aspects Mark Bailey 5G Outlook Test and Measurement Aspects Mark Bailey mark.bailey@rohde-schwarz.com Application Development Rohde & Schwarz Outline ı Introduction ı Prospective 5G requirements ı Global 5G activities and

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW In this section, a brief review of literature on Performance of Antenna Diversity Techniques, Alamouti Coding Scheme, WiMAX Broadband Wireless Access Technology, Mobile WiMAX Technology,

More information

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Saeid Haghighatshoar Communications and Information Theory Group (CommIT) Technische Universität Berlin CoSIP Winter Retreat Berlin,

More information

MIDU: Enabling MIMO Full Duplex

MIDU: Enabling MIMO Full Duplex MIDU: Enabling MIMO Full Duplex Ehsan Aryafar Princeton NEC Labs Karthik Sundaresan NEC Labs Sampath Rangarajan NEC Labs Mung Chiang Princeton ACM MobiCom 2012 Background AP Current wireless radios are

More information

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 ATHEROS COMMUNICATIONS, INC. Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 By Winston Sun, Ph.D. Member of Technical Staff May 2006 Introduction The recent approval of the draft 802.11n specification

More information

Backward Compatible MIMO Techniques in a Massive MIMO Test-bed for Long Term Evolution (LTE) Mobile Systems

Backward Compatible MIMO Techniques in a Massive MIMO Test-bed for Long Term Evolution (LTE) Mobile Systems Backward Compatible MIMO Techniques in a Massive MIMO Test-bed for Long Term Evolution (LTE) Mobile Systems Seok Ho Won, Saeyoung Cho, and Jaewook Shin Mobile Communication Division, ETRI (Electronics

More information

Mission Critical DAS Solution

Mission Critical DAS Solution Mission Critical DAS Solution In-Building Cellular Satellite Phone Coverage Mission Critical DAS solution for In-Building Systems provides a simple, low-cost, limitless bandwidth method to distribute multi-channel,

More information

4G TDD MIMO OFDM Network

4G TDD MIMO OFDM Network 4G TDD MIMO OFDM Network 4G TDD 移动通信网 Prof. TAO Xiaofeng Wireless Technology Innovation Institute (WTI) Beijing University of Posts & Telecommunications (BUPT) Beijing China 北京邮电大学无线新技术研究所陶小峰 1 Background:

More information

Measured Channel Hardening in an Indoor Multiband Scenario

Measured Channel Hardening in an Indoor Multiband Scenario Measured Channel Hardening in an Indoor Multiband Scenario Golsa Ghiaasi, Jens Abraham, Egil Eide and Torbjörn Ekman Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim,

More information

An Overview of Massive MIMO Technology Components in METIS

An Overview of Massive MIMO Technology Components in METIS An Overview of Massive MIMO Technology Components in METIS Gábor Fodor tt, Nandana Rajatheva D, Wolfgang Zirwas, Lars Thiele H, Martin Kurras H, Kaifeng Guo, Antti Tölli D, Jesper H. Sorensen q, Elisabeth

More information

Massive MIMO Systems: Signal Processing Challenges and Research Trends

Massive MIMO Systems: Signal Processing Challenges and Research Trends Massive MIMO Systems: Signal Processing Challenges and Research Trends Rodrigo C. de Lamare CETUC, PUC-Rio, Brazil Communications Research Group, Department of Electronics, University of York, U.K. delamare@cetuc.puc-rio.br

More information

Division Free Duplex in Small Form Factors. Leo Laughlin,ChunqingZhang, Mark Beach, Kevin Morris, and John Haine

Division Free Duplex in Small Form Factors. Leo Laughlin,ChunqingZhang, Mark Beach, Kevin Morris, and John Haine Division Free Duplex in Small Form Factors Leo Laughlin,ChunqingZhang, Mark Beach, Kevin Morris, and John Haine Outline Duplexing Electrical Balance duplexers Active self-interference cancellation Electrical

More information

Hang Yu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE. Master of Science

Hang Yu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE. Master of Science RICE UNIVERSITY Beamforming on Mobile Devices: A First Study by Hang Yu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE Master of Science APPROVED, THESIS COMMITTEE: Lin Zhong,

More information

MIMO and Beamforming in the 5G Context SBrT 2017

MIMO and Beamforming in the 5G Context SBrT 2017 MIMO and Beamforming in the 5G Context SBrT 2017 05/09/2017 Created by Will Sitch Presented by Bruno Duarte A Brief History of Keysight 1939 1998: Hewlett-Packard years A company founded on electronic

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed?

Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed? Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed? Ahmed Alkhateeb*, Geert Leus #, and Robert W. Heath Jr.* * Wireless Networking and Communications Group, Department

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

Canadian Evaluation Group

Canadian Evaluation Group IEEE L802.16-10/0061 Canadian Evaluation Group Raouia Nasri, Shiguang Guo, Ven Sampath Canadian Evaluation Group (CEG) www.imt-advanced.ca Overview What the CEG evaluated Compliance tables Services Spectrum

More information

E7220: Radio Resource and Spectrum Management. Lecture 4: MIMO

E7220: Radio Resource and Spectrum Management. Lecture 4: MIMO E7220: Radio Resource and Spectrum Management Lecture 4: MIMO 1 Timeline: Radio Resource and Spectrum Management (5cr) L1: Random Access L2: Scheduling and Fairness L3: Energy Efficiency L4: MIMO L5: UDN

More information

Design and Analysis of Compact 108 Element Multimode Antenna Array for Massive MIMO Base Station

Design and Analysis of Compact 108 Element Multimode Antenna Array for Massive MIMO Base Station Progress In Electromagnetics Research C, Vol. 61, 179 184, 2016 Design and Analysis of Compact 108 Element Multimode Antenna Array for Massive MIMO Base Station Akshay Jain 1, * and Sandeep K. Yadav 2

More information

802.16s SOFTWARE PLATFORM

802.16s SOFTWARE PLATFORM General Software s 802.16s SOFTWARE PLATFORM Architecture Operation system Embedded Linux 1. MAC layer application running on ARM processor 2. PHY layer application running on DSP Application software

More information

On the Performance of Cell-Free Massive MIMO with Short-Term Power Constraints

On the Performance of Cell-Free Massive MIMO with Short-Term Power Constraints On the Performance of Cell-Free assive IO with Short-Term Power Constraints Giovanni Interdonato, Hien Quoc Ngo, Erik G. Larsson, Pål Frenger Ericsson Research, Wireless Access Networks, 58 2 Linköping,

More information