Navigational Echo Sounder

Size: px
Start display at page:

Download "Navigational Echo Sounder"

Transcription

1 Navigational Echo Sounder Collected By: Hassan Abedinia Oct 2013

2 Navigational echo sounder SONAR (Sound and Navigational Ranging) This term is used to identify the equipment which works on the principle of reflected acoustic energy from sea bed or sea water such as Echo Sounder, Speed Log and fish finder. Characteristic of sound in sea water a) Speed of sound: The speed of sound in sea water varies throughout the world with temperature, pressure due to depth, and salinity. An increase in any of these factors will cause an increase in speed of sound and vice versa. Even in the same place, temperature and salinity vary not only with depth but also from hour to hour. The speed of sound can vary from about 1445 m/s to 1535 m/s. A precise knowledge of speed of sound is only needed for precision depth sounding, which is not a need for the merchant marine. Most echo sounding equipment is calibrated at 1500 m/s and this ensures that recorded depths will lie within the performance specification (DTP= Department of Transport). If necessary the depths can be corrected for true depths from tables of the velocity of sound in pure water and sea water. Most Doppler speed logs incorporate a technique to automatically compensate for changes in speed of sound due to temperature. A manual correction to the indicated speed is applied when the log is to be operated in fresh water. b) Spreading loss of sound in sea water: When sound is propagated into sea water the intensity decreases due to spreading. The actual intensity corresponds to power per unit area of cross section of wave front. The beam spreads out according to an inverse square rule. Intensity ~ 1/R 2 where R is the range The echo similarly falls in strength on its return to the receiver such that the received echo intensity is proportional to 1/R 4. Received echo intensity ~ 1/R 4 In practice the energy is beamed to maximize range, typically 30 for an echo sounder transmission and 3 for a Doppler speed and distance log transmission. c) Attenuation (Absorption of sound in sea water): As an acoustic wave propagates through sea water all of its energy ultimately converts to the heat due to viscosity and relaxation efforts. The loss in sea water is primarily due to the presence of Magnesium Solphid and is 30 times greater 1

3 than in pure water. Attenuation increases with frequency and dramatically above 100 KHz. d) Volume reverberation: When acoustic energy is propagated into sea water continuous returned echoes at the same frequency as the transmission are produced by back scattering from minute air bubbles, planktons, pollution, suspended sand and other discontinuities in the water. This is termed a volume reverberation signal and its magnitude increases dramatically with frequency. The magnitude is proportional to the forth power of the frequency. If the frequency is doubled the reverberation signal magnitude increases 16 times. In coastal regions the volume reverberation signal is high due to large concentrations of continental dust, pollution, plankton and small air bubbles. In mid ocean regions the scarcity of dust and pollution gives a reduced volume reverberation signal. In tropical mid ocean regions the disappearance of plankton results in a very low volume reverberation signal. In a navigational echo sounder, and ground speed Doppler log system, the volume reverberation signal is the limiting factor for maximum range performance. The returned signal has to be detected in the reverberation signal level, and is consequently termed volume reverberation noise. The volume reverberation signal is utilized in water speed Doppler systems, and is maximized by employing a high transmission frequency. Factors affecting choose of frequency 1) Size and cost: Lower the frequency, larger and costlier the transducer. 2) Minimum attenuation (absorption): Higher the frequency (especially greater than 100 khz), greater amount of absorption. 3) Minimum volume reverberation (for echo sounders) and more volume reverberation (for Doppler water speed logs): Higher frequency, greater amount of reverberation. 4) Free from ship noise (self-noise and ambient noise): Amount of noise is more at lower frequencies. Navigational Echo sounder The navigational echo sounder employs the transmission and reflection of a pulse of acoustic energy in its operating principle. When an acoustic wave encounters with another medium it is partially reflected or back scattered, and the distance is determined from the time lapse which occurs. 2

4 The display may include a mechanical time base where the traverse of the stylus and instant of the transmission pulse are synchronized. Where: d: depth below the keel (transducer) in meter c: speed of sound in sea water (1500 m/s) t: time lapse in seconds Example 1: Calculate the depth of water beneath the transducer if the time interval between transmission and received bottom echo signal is 0.1 second. Take C as 1500 m/s. Answer: 75 m Note that if the speed of propagation at the point of measurement is not 1500 m/s, then an inaccuracy is present in the indicated depth. Example 2: Calculate the time taken for the stylus to traverse the scale length calibrated: a) 0 40 m b) m Answer: a) t = 53 ms b) t = 533 ms Example 3: For above question calculate the stylus traversing speed on each range if the paper width is 200 mm. Answer: A) t = 53 ms, X = 200mm X=V.t V= X/t = 0.2 / = 3.77 m/s 3

5 B) t = 553 ms, X= 200 mm V= 0.2 / 0.53 = m/s Choice of operating frequency a) A low frequency will ensure negligible absorption loss; this can be serious at high frequencies. b) A low frequency will ensure that volume reverberation noise is small, this can be intense (serious) at high frequencies. c) The transducer is physically smaller at high frequencies and therefore chipper to manufacture. d) A higher frequency will give better selectivity from ship s noise, sometimes termed self-noise, which is relatively high at frequencies below 15 KHz. This is the noise produced by turbines, pumps, blowers and most rotating parts. A compromised frequency in the range of 10 KHz to 300 KHz is chosen after the above considerations. Standards of 50 KHz, 100 KHz and 200 KHz have been developed. Hydrographic survey vessels can/may use 10 KHz for very large depths and 300 KHz for very shallow depths. Choice of pulse length a) Short pulse duration will ensure good minimum depth resolution, since the pulse length determines the minimum depth which can be measured. In a single transducer system, echoes can t be detected until the transmission ends (terminates). Example 4: Determine the minimum indicated depth if the pulse length is 1 ms. Answer: 0.75 m b) At high transmission powers, approximately above 1 KW, water vapor bubbles are produced on the face of transducer. This is termed Cavitation and can totally mask the soundings. The detection probability for large depths is improved by increasing the total energy during transmission which can be obtained by increasing the pulse duration. A compromised pulse length in the range of 0.2 ms to 5 ms is chosen after the above considerations. A general marine echo sounder uses a typical pulse length of 1 ms which may increase to 5 ms if very large depth scale is used, and two typically 0.2 ms to 0.5 ms for shallow depths. 4

6 Choice of pulse rate a) This should be enough such that at the depth considered an echo can return before transmission of the following pulse. b) This should be high enough to give a complete picture in the presence of noise or in rolling/pitching vessel when echo returns can be missed. When interpreting a paper recorder display without a conscious effort the eye of the viewer, rejects the spurious readings which are obviously incorrect, and extrapolates over gaps in the bottom mark of the record. This is termed trace to trace correlation and enables the viewer to discern seabed in the adverse weather conditions. The pulse repetition rate is typically 20 pulses per minute for large depths and 300 pulses per minute for shallow depths. False echoes a) Multiple echoes: Multiple echoes can occur in shallow waters at multiples of the actual depth and are caused by pulse energy being reflected a number of times between the ship s bottom and the sea bed. b) Second trace echoes: A second trace echo occurs when an echo returns to the receiver after the next pulse has been transmitted. A dead time reduces the probability of second trace echoes appearing on the recording paper and is the time the stylus is off the recording paper. Example 5: An echo sounder is switched to the 0 40 m range and has a pulse rate of 330 pulses per minute (ppm). Calculate the bottom depth if a second trace echo is displayed at 20 m depth. Answer: 330 ppm Time interval between successive pulses= 60s/330 5

7 = = m Depth equivalent to the time interval between pulses Actual depth = displayed depth = = m Inaccuracy of displayed depth The recorded depth will not be a true depth: 1) If the speed of sound at the operating location is not 1500 m/s. 2) If the transmission mark is not aligned with zero point on the scale. 3) If the stylus speed is incorrect. 4) If the write and read clock frequencies are not correct for echo sounders which uses retimed technique in the display section. Consideration in receiver design The receiver bandwidth must be large enough to amplify the received pulse of energy with minimum distortion but narrow enough to limit the noise at the receiver from ship s noise and ambient noise. Ambient noise is the noise which is independent of the vessel and includes sea noise (wave action), biological noise, man-made noise (shore installations) and rain. Ship s noise and ambient noise are together termed Background noise. The noise in the input receiver due to thermal agitation is negligible. The bandwidth employed is within the range of 1/T to 2/T where T is the transmission duration in seconds. The first stage of the receiver is a tuned amplifier with a tuned circuit to give this bandwidth. The transducer must have a bandwidth which is given by larger than the receiver bandwidth. and must be Example 6: An echo sounder operates at 24 KHz and employs a magneto-strictive transducer having a Q factor of 5. Is this system adequate for transmission pulse of 1 ms duration? 6

8 Answer: Receiver bandwidth = 1/T to 2/T = 1/1ms to 2/1ms = 1 KHz to 2 KHz Transducer bandwidth = = = 4.8 KHz Since transducer bandwidth > receiver bandwidth system is adequate. Transducer sitting considerations 1) A place which is free of aeration 2) At least 2-3 meters away from speed log transducer 3) Sitting of transducer assembly to be horizontal 4) Minimum cable length 5) Access for maintenance Transducers A transducer is a converter of energy. RF energy, when applied to a transducer assembly, will cause the unit to oscillate at its natural resonant frequency. If the transmitting face of the unit is placed in contact with, or close to, seawater the oscillations will cause acoustic waves to be transmitted in the water. Any reflected acoustic energy will cause a reciprocal action at the transducer. If the reflected energy comes into contact with the transducer face natural resonant oscillations will again be produced. These oscillations will in turn cause a minute electromotive force (E.M.F) to be created which is then processed by the receiver to produce the necessary data for display. Three types of transducer construction are available; electrostrictive, piezoelectric resonator, and magnetostrictive. Both the electrostrictive and the piezoelectric resonator types are constructed from piezoelectric ceramic materials and the two should not be confused. Electrostrictive transducers Certain materials, such as Rochelle salt and quartz, exhibit pressure electric effects when they are subjected to mechanical stress. This phenomenon is particularly outstanding in the element lead zirconatetitanate, a material widely used for the construction of the sensitive element in modern electrostrictive transducers. Such a material is termed ferro-electric because of its similarity to ferro- magnetic materials. The ceramic material contains random electric domains which when subjected to mechanical stress will line up to produce a potential difference (p.d.) across the two plate ends of the material section. Alternatively, if a voltage is applied across the plate ends of the ceramic crystal section its length will be varied. The natural resonant frequency of the crystal slice is inversely proportional to its thickness. At high 7

9 frequencies therefore the crystal slice becomes brittle; making its use in areas subjected to great stress forces impossible. This is a problem if the transducer is to be mounted in the forward section of a large merchant vessel where pressure stress can be intolerable. The fragility of the crystal also imposes limits on the transmitter power that may be applied because mechanical stress is directly related to power. The power restraints thus established make the electrostrictive transducer unsuitable for use in depth sounding apparatus where great depths need to be indicated. In addition, the low transmission frequency requirement of an echo sounder means that such a transducer crystal slice would be excessively thick and require massive transmitter peak power to cause it to oscillate. The crystal slice is stressed by a voltage applied across its ends, thus the thicker the crystal slice, the greater is the power needed to stress it. The electrostrictive transducer is only fitted on large merchant vessels when the power transmitted is low and the frequency is high, a combination of factors present in Doppler speed logging systems. Such a transducer is manufactured by mounting two crystal slices in a sandwich of two stainless steel cylinders. The whole unit is pre-stressed by inserting a stainless steel bolt through the center of the active unit as shown in Figure above. If a voltage is applied across the ends of the unit, it will be made to vary in length. The bolt is insulated from the crystal slices by means of a PVC collar and the whole cylindrical section is made waterproof by means of a flexible seal. The bolt tightens against a compression spring permitting the crystal slices to vary in length, under the influence of the RF energy, whilst still remaining mechanically stressed. This method of construction is widely found on the electrostrictive transducers used in the Merchant Navy. For smaller vessels, where the external stresses are not so severe, the simpler piezoelectric resonator is used. 8

10 Piezoelectric resonator This type of transducer makes use of the flexible qualities of a crystal slice. If the ceramic crystal slice is mounted so that it is able to flex at its natural resonant frequency, acoustic oscillations can be produced. The action is again reciprocal. If the ceramic crystal slice is mounted at its corners only, and is caused to flex by an external force, a small p.d. will be developed across the ends of the element. This phenomenon is widely used in industry for producing such things as electronic cigarette lighters and fundamental crystal oscillator units for digital watches. However, a ceramic crystal slice used in this way is subject to the same mechanical laws as have previously been stated. The higher the frequency of oscillation, the thinner the slice needs to be and the greater the risk of fracture due to external stress or overdriving. For these reasons, piezoelectric resonators are rarely used at sea. Magnetostrictive transducers Figure shows a bar of ferromagnetic material around which is wound a coil. If the bar is held rigid and a large current is passed through the coil, the resulting magnetic field produced will cause the bar to change in length. This slight change may be an increase or a decrease depending upon the material used for construction. For maximum change of length for a given input signal, annealed nickel has been found to be the optimum material and consequently this is used extensively in the construction of marine transducers. As the a.c. through the coil increases to a maximum in one direction, the annealed nickel bar will reach its maximum construction length (l+l). With the a.c. at zero the bar returns to normal (l). The current now increases in the opposite direction and the bar once again constricts (l l). The frequencyof resonance is therefore twice that of the applied a.c. This frequency doubling action is counteracted by applying a permanent magnet bias field produced by an in-built permanent magnet. The phenomenon that causes the bar to change in length under the influence of a magnetic field is called magnetostriction, and in common with most mechanical laws possesses the reciprocal quality. When acoustic vibrations cause the bar to constrict, at its natural resonant frequency, an alternating magnetic field is produced around the coil. A minute alternating current is caused to flow in the coil and a small e.m.f. is generated. This is then amplified and processed by the receiver as the returned echo. To limit the effects of magnetic hysteresis and eddy current losses common in low frequency transformer 9

11 construction, the annealed nickel bar is made of laminated strips bonded together with an insulating material. Below figure illustrates the construction of a typical magnetostrictive transducer unit. The transmitting face is at the base of the diagram. Magnetostrictive transducers are extremely robust which makes them ideal for use in large vessels where heavy sea pounding could destroy an unprotected electrostrictive type. They are extensively used with depth sounding apparatus because at the low frequencies used they can be constructed to an acceptable size and will handle the large power requirement of a deep sounding system. However,magnetic losses increase with frequency, and above 100 khz the efficiency of magnetostrictive transducers falls to below the normal 40%. Above this frequency electrostrictive transducers are normally used. 10

12 Q.1) a) With the aid of a block diagram, describe the principle of operation of marine general type echo sounder equipment which is used on board merchant ships. b) What considerations should be taken into account when selecting a proper operating frequency for depth sounding at ranges of meter? Q.2) Draw the block diagram of marine type general echo sounding equipment with chart recording system, and briefly describe each block. Q.3) Figure Q.3 shows the STC circuit employed in the receiver section of a marine type echo sounder. a) Describe the action of the circuit. b) Draw the output pulse at point "A" in time relation to input pulse. c) State the function of potentiometer RV3 in the circuit. Figure Q.3 11

13 Q.4) Figure Q.4 shows the circuit of a part of transmission unit employed in marine echo sounding equipment. Figure Q.4 a) Draw the output waveform in time relation to input pulse at point "H" and describe the action of circuit in general. b) Explain clearly the effects of potentiometer RV4 and switch S4 on the output pulse of the Q.5) Figure Q.5 shows the circuit of a part of transmission unit employed in marine echo sounding equipment. a) Describe the action of transistors TR603, TR601 and IC1 in the circuit. b) State the function of potentiometer RV4 and switch S4. 12

14 Q.6) Figure Q. 5 a) What is the purpose of STC circuit in a marine type echo sounder? b) Draw the block diagram of an echo sounder receiver and show clearly where STC signal is applied. Q.7) With reference to a marine type echo sounding system: a) Describe the principles of an echo sounder employing a chart recording display. b) State the minimum standards which should be fulfilled when the paper chart recording system is replaced with a LCD monitor. 13

15 Q.8) a) Explain why the transmitted frequency of an echo sounder operating on the m range would be of the order of 24 KHz. b) State suitable values of pulse repetition frequency and pulse length for the equipment on this range. c) Explain the considerations to be taken into account when designing the receiver of an echo sounder. Q.9) a) Explain the advantages of an electro-strictive transducer over magneto-strictive. b) Explain the two main advantages of a pierced hull fitted transducer compared with an internally fitted transducer. c) Describe four factors which determine the siting of an echo sounder transducer. Q.10) a) Describe, with the aid of proper sketches, the construction and principle of a magnetostrictive transducer employed in the marine echo sounding equipment on board merchant ships. b) What are the advantages and disadvantages of a gate valve type echo sounder over flush mount type? Q.11) a) Explain the factors affecting the choice of operating frequency in marine general type echo sounder. b) State suitable values of operating frequency for general purpose marine echo sounder operating on the ranges of 0 to 400 m. c) Describe four factors that determine the siting of an echo sounder transducer. Q.12) a) Describe the factors which may affect the accuracy of displayed depth in an echo sounder. b) Explain the cause and effect of following false echoes in echo sounder: i) Second trace echo, ii) Multiple echoes. Suggest a method for minimizing their effects. 14

16 Q.13) a) Discuss about the considerations in receiver design which are needed to be taken into account with regards to its band width. b) An echo sounder operates at 24 KHz and employs a magneto-strictive transducer having a Q factor of 5. Determine if this system is adequate for a transmission pulse of 1 milisecond? Q.14) a) What will be the effect of aeration around transducer face on the operation of echo sounder? What could be the factors which make such aeration? b) State the precautions to be considered when mounting transducer of echo sounder. What are the best positions for installing the transducer after considering above mentioned precautions? Discuss about your answer. Q.15) a) Explain clearly what is meant by the term "cavitation" with regard to echo sounder. b) Describe the factors affecting the choice of pulse length in a marine general type echo sounder on board ocean going vessels. c) State typical values for pulse length of transmitted wave when echo sounder is operating at range of: i) Shallow 0-40 m, ii) Medium m, iii) Deep 0-400m. Q.16) a) Explain clearly what is meant by the term "trace to trace correlation" with regards to an analogue paper chart display of an echo sounder. b) Describe the factors which determine the choice of pulse rate in a general type echo sounder. c) State typical values of pulse rate for an echo sounder operating at range of: i) Shallow 0-40m, ii) Deep 0-400m. Q.17) a) State the minimum performance specification of a general type marine echo sounder with regards to its "Range Scales", "Accuracy of Measurement" and "Time Marks" intervals as per IMO regulations. 15

17 b) Explain the cause of noise and reverberation in an echo sounder. c) What is the purpose of AGC and STC in an echo sounder receiver? Q.18) a) Explain clearly what is meant by the term "Dead Time" as used in marine With reference to a block diagram, describe with the aid of time related diagrams the operation of a "sea bed only" echo sounder. b) State the purpose of utilizing a variable speed dc motor for driving paper of recording display in an echo sounder. Q.19) a) State the minimum performance standards of an echo sounder with regards to "Main Display" (either Paper type or LCD type), "Pulse Repetition Rate", "Data Storage" and "Roll and Pitch" as per IMO regulations. b) A fault condition in a chart recording echo sounder results in an inability to distinguish the sea bed trace. Increasing the gain results in excessive "noise" and weak echoes on the output chart. Name two possible fault conditions and explain what action may be taken to investigate and localize the fault. 16

Sonic Distance Sensors

Sonic Distance Sensors Sonic Distance Sensors Introduction - Sound is transmitted through the propagation of pressure in the air. - The speed of sound in the air is normally 331m/sec at 0 o C. - Two of the important characteristics

More information

The Physics of Echo. The Physics of Echo. The Physics of Echo Is there pericardial calcification? 9/30/13

The Physics of Echo. The Physics of Echo. The Physics of Echo Is there pericardial calcification? 9/30/13 Basic Ultrasound Physics Kirk Spencer MD Speaker has no disclosures to make Sound Audible range 20Khz Medical ultrasound Megahertz range Advantages of imaging with ultrasound Directed as a beam Tomographic

More information

INTRODUCING AN OPERATIONAL MULTI-BEAM ARRAY SONAR

INTRODUCING AN OPERATIONAL MULTI-BEAM ARRAY SONAR INTRODUCING AN OPERATIONAL MULTI-BEAM ARRAY SONAR b y Morris F. G l e n n Oceanographer U.S. Naval Oceanographic Office PRECIS The Multi-Beam Array Sonar Survey System is a revolutionary new bathymetric

More information

27/11/2013' OCEANOGRAPHIC APPLICATIONS. Acoustic Current Meters

27/11/2013' OCEANOGRAPHIC APPLICATIONS. Acoustic Current Meters egm502 seafloor mapping lecture 17 water column applications OCEANOGRAPHIC APPLICATIONS Acoustic Current Meters An acoustic current meter is a set of transducers fixed in a frame. Acoustic current meters

More information

PRINCIPLE OF SEISMIC SURVEY

PRINCIPLE OF SEISMIC SURVEY PRINCIPLE OF SEISMIC SURVEY MARINE INSTITUTE Galway, Ireland 29th April 2016 Laurent MATTIO Contents 2 Principle of seismic survey Objective of seismic survey Acquisition chain Wave propagation Different

More information

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES Unit III ULTRASONICS

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES Unit III ULTRASONICS A1 A2 A3 A4 A5 A6 A7 A8 A9 BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES Unit III ULTRASONICS Multiple Choice Questions Loudspeaker cannot produce ultrasonic waves

More information

Simrad SX90 Long range high definition sonar system

Simrad SX90 Long range high definition sonar system Simrad SX90 Long range high definition sonar system 360 omnidirectional sonar 90 vertical tip mode 20 to 30 KHz operational frequency Narrow beams Selectable beam width Hyperbolic FM Large dynamic range

More information

EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS. C. Ceretta, R. Gobbo, G. Pesavento

EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS. C. Ceretta, R. Gobbo, G. Pesavento Sept. 22-24, 28, Florence, Italy EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS C. Ceretta, R. Gobbo, G. Pesavento Dept. of Electrical Engineering University of

More information

UNIT 26 ELECTRONIC AIDS TO NAVIGATION

UNIT 26 ELECTRONIC AIDS TO NAVIGATION UNIT 26 ELECTRONIC AIDS TO NAVIGATION Basic terms aid to navigation >Loran-C >Omega >Transit satellite >GPS >hyperbolic systems > satellite navigation system >fix accuracy small-screen >satnav receiver

More information

INTRODUCTION. Have applications for imaging, detection and navigation.

INTRODUCTION. Have applications for imaging, detection and navigation. ULTRASONICS INTRODUCTION The word ultrasonic combines the Latin roots ultra - beyond sonic - sound. Having frequencies above the audible range i.e. above 20000Hz Have applications for imaging, detection

More information

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Diagnosis TTE TEE ICE 3D 4D Evaluation of Cardiac Anatomy Hemodynamic

More information

EK60. SCIENTIFIC SOUNDER SCIENTIFIC ECHO SOUNDER

EK60. SCIENTIFIC SOUNDER  SCIENTIFIC ECHO SOUNDER EK60 SCIENTIFIC ECHO SOUNDER HIGH DYNAMIC RANGE RAW DATA RECORDING LOW SELF NOISE HIGH PING RATE MULTI FREQUENCY APPLICATION FOR SPECIES ID SEVERAL FREQUENCIES COVERING SAME SAMPLE VOLUME REMOTE CONTROL

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

DSTS-3B DEPTHSOUNDER TEST SET OPERATOR S MANUAL

DSTS-3B DEPTHSOUNDER TEST SET OPERATOR S MANUAL Page 1 1.0 INTRODUCTION DSTS-3B DEPTHSOUNDER TEST SET OPERATOR S MANUAL The DSTS-3B is a full-featured test set designed for use with all types of echo sounders from small flashers to large commercial

More information

Ultrasonic Machining. 1 Dr.Ravinder Kumar

Ultrasonic Machining. 1 Dr.Ravinder Kumar Ultrasonic Machining 1 Dr.Ravinder Kumar Why Nontraditional Processes? New Materials (1940 s) Stronger Tougher Harder Applications Cut tough materials Finish complex surface geometry Surface finish requirements

More information

High Frequency Acoustical Propagation and Scattering in Coastal Waters

High Frequency Acoustical Propagation and Scattering in Coastal Waters High Frequency Acoustical Propagation and Scattering in Coastal Waters David M. Farmer Graduate School of Oceanography (educational) University of Rhode Island Narragansett, RI 02882 Phone: (401) 874-6222

More information

, where I 0 is the. From the definition of intensity level, I I

, where I 0 is the. From the definition of intensity level, I I Acoustics of buildings Obtaining right amount of reverberation is the secret of good acoustics Topics: Applied acoustics: Sound transducers and their characteristics. Recording and reproduction of sound.

More information

Sonar advancements for coastal and maritime surveys

Sonar advancements for coastal and maritime surveys ConférenceMéditerranéenneCôtièreetMaritime EDITION1,HAMMAMET,TUNISIE(2009) CoastalandMaritimeMediterraneanConference Disponibleenligne http://www.paralia.fr Availableonline Sonar advancements for coastal

More information

NOTICE. The above identified patent application is available for licensing. Requests for information should be addressed to:

NOTICE. The above identified patent application is available for licensing. Requests for information should be addressed to: Serial Number 09/548.387 Filing Date 11 April 2000 Inventor Theodore R. Anderson Edward R. Javor NOTICE The above identified patent application is available for licensing. Requests for information should

More information

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

Technology. Construction of magnetic buzzer. Construction of magnetic buzzer. Operation principles and construction

Technology. Construction of magnetic buzzer. Construction of magnetic buzzer. Operation principles and construction Technology 5 Construction of magnetic buzzer Operation principles and construction These types of electro magnetic transduceras Fig.1contain coils which are would in such a manner to produce L1 for driving,

More information

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014 A Study on channel modeling of underwater acoustic communication K. Saraswathi, Netravathi K A., Dr. S Ravishankar Asst Prof, Professor RV College of Engineering, Bangalore ksaraswathi@rvce.edu.in, netravathika@rvce.edu.in,

More information

describe sound as the transmission of energy via longitudinal pressure waves;

describe sound as the transmission of energy via longitudinal pressure waves; 1 Sound-Detailed Study Study Design 2009 2012 Unit 4 Detailed Study: Sound describe sound as the transmission of energy via longitudinal pressure waves; analyse sound using wavelength, frequency and speed

More information

Chapter 4. Pulse Echo Imaging. where: d = distance v = velocity t = time

Chapter 4. Pulse Echo Imaging. where: d = distance v = velocity t = time Chapter 4 Pulse Echo Imaging Ultrasound imaging systems are based on the principle of pulse echo imaging. These systems require the use of short pulses of ultrasound to create two-dimensional, sectional

More information

HANDBOOK OF ACOUSTIC SIGNAL PROCESSING. BAW Delay Lines

HANDBOOK OF ACOUSTIC SIGNAL PROCESSING. BAW Delay Lines HANDBOOK OF ACOUSTIC SIGNAL PROCESSING BAW Delay Lines Introduction: Andersen Bulk Acoustic Wave (BAW) delay lines offer a very simple yet reliable means of time delaying a video or RF signal with more

More information

Dr. P. SREENIVASULU REDDY 2

Dr. P. SREENIVASULU REDDY   2 ENGINEERING PHYSICS UNIT II - ULTRASONICS SV COLLEGE OF ENGINEERING, KADAPA Syllabus: - Introduction - Production of ultrasonic's by piezoelectric method - Properties and detection Applications in non-destructive

More information

Wimborne Publishing, reproduce for personal use only

Wimborne Publishing, reproduce for personal use only In part 1 we looked at some of the principles involved with measuring magnetic fields. This time, we take a more practical approach and look at some experimental circuits. The circuits illustrated are

More information

Geophysical Applications Seismic Reflection Surveying

Geophysical Applications Seismic Reflection Surveying Seismic sources and receivers Basic requirements for a seismic source Typical sources on land and on water Basic impact assessment environmental and social concerns EPS435-Potential-08-01 Basic requirements

More information

HIGH ENERGY RATE FORMING PROCESSES

HIGH ENERGY RATE FORMING PROCESSES HIGH ENERGY RATE FORMING PROCESSES In these forming processes large amount of energy is applied for a very short interval of time. Many metals tend to deform more readily under extra fast application of

More information

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear?

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear? Intext Exercise 1 How does the sound produced by a vibrating object in a medium reach your ear? When an vibrating object vibrates, it forces the neighbouring particles of the medium to vibrate. These vibrating

More information

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR Technician License Course Chapter 4 Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR The Antenna System Antenna: Transforms current into radio waves (transmit) and vice versa (receive). Feed

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT III TUNED AMPLIFIERS PART A (2 Marks) 1. What is meant by tuned amplifiers? Tuned amplifiers are amplifiers that are designed to reject a certain

More information

Estimating Fish Densities from Single Fish Echo Traces

Estimating Fish Densities from Single Fish Echo Traces The Open Ocean Engineering Journal, 2009, 2, 17-32 17 Estimating Fish Densities from Single Fish Echo Traces Open Access Magnar Aksland * University of Bergen, Department of Biology, P.O. Box 7800, N-5020

More information

Acoustic Transducers

Acoustic Transducers Acoustic Transducers Fateme Mohandespour Amirkabir University of Technology Autumn2003 Overview Sound to voltage transducers Voltage to sound transducers Ultrasound as an instance References 2 Sound to

More information

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT Ashley I. Larsson 1* and Chris Gillard 1 (1) Maritime Operations Division, Defence Science and Technology Organisation, Edinburgh, Australia Abstract

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

Section 7 - Measurement of Transient Pressure Pulses

Section 7 - Measurement of Transient Pressure Pulses Section 7 - Measurement of Transient Pressure Pulses Special problems are encountered in transient pressure pulse measurement, which place stringent requirements on the measuring system. Some of these

More information

The Discussion of this exercise covers the following points: Introduction How a tuning fork works Industrial applications. How a tuning fork works

The Discussion of this exercise covers the following points: Introduction How a tuning fork works Industrial applications. How a tuning fork works Exercise 3 Vibrating Level Switch EXERCISE OBJECTIVE Learn the working principle of vibrating level switches and learn how to use the vibrating level switch, Model 46933. DISCUSSION OUTLINE The Discussion

More information

Effect of coupling conditions on ultrasonic echo parameters

Effect of coupling conditions on ultrasonic echo parameters J. Pure Appl. Ultrason. 27 (2005) pp. 70-79 Effect of coupling conditions on ultrasonic echo parameters ASHOK KUMAR, NIDHI GUPTA, REETA GUPTA and YUDHISTHER KUMAR Ultrasonic Standards, National Physical

More information

Ultrasonic Level Detection Technology. ultra-wave

Ultrasonic Level Detection Technology. ultra-wave Ultrasonic Level Detection Technology ultra-wave 1 Definitions Sound - The propagation of pressure waves through air or other media Medium - A material through which sound can travel Vacuum - The absence

More information

Pressure Transducer Handbook

Pressure Transducer Handbook 123 Pressure Transducer Handbook Date: February 2004 TABLE OF CONTENTS SECTION 1 - Introduction 1.1 Introduction 1.2 Product Overview SECTION 2 - Kulite Sensing Technology 2.1 Pressure Transducers 2.2

More information

EMAT Application on Incoloy furnace Tubing Ramamohan Reddy M (ASNT Level III UT, PCN Level III UT,PAUT&TOFD)

EMAT Application on Incoloy furnace Tubing Ramamohan Reddy M (ASNT Level III UT, PCN Level III UT,PAUT&TOFD) EMAT Application on Incoloy furnace Tubing By Ramamohan Reddy M (ASNT Level III UT, PCN Level III UT,PAUT&TOFD) Outlines 1. Introduction EMAT 2. EMAT- Ultrasound waves 3. EMAT-Surface waves 4. EMAT-Guided

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

Definitions. Spectrum Analyzer

Definitions. Spectrum Analyzer SIGNAL ANALYZERS Spectrum Analyzer Definitions A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure

More information

PH 0101 UNIT 1 LECTURE 6

PH 0101 UNIT 1 LECTURE 6 PH 0101 UNIT 1 LECTURE 6 Introduction to Ultrasonics Properties of Ultrasonic waves Ultrasonic Production- Magnetostriction Method Ultrasonic Production- Piezo Electric Method Applications of Ultrasonics

More information

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS Exercise 1-4 The Radar Equation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the different parameters in the radar equation, and with the interaction between these

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 14 EXAMINATION Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 14 EXAMINATION Model Answer MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC 27001 2005 Certified) SUMMER 14 EXAMINATION Model Answer Subject Code : 17317 Page No: 1 Important Instructions to examiners: 1) The

More information

Method for the Generation of Broadband Acoustic Signals

Method for the Generation of Broadband Acoustic Signals Proceedings of Acoustics - Fremantle -3 November, Fremantle, Australia Method for the Generation of Broadband Acoustic Signals Paul Swincer (), Binh Nguyen () and Shane Wood () () School of Electrical

More information

CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS

CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS 35 CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS 3.1 INTRODUCTION This chapter deals with the details of the design and construction of transmission loss suite, measurement details

More information

Written by Hans Summers Tuesday, 27 January :44 - Last Updated Wednesday, 27 November :09

Written by Hans Summers Tuesday, 27 January :44 - Last Updated Wednesday, 27 November :09 Voyager is a sea-going QRSS beacon project named after the famous Voyager space probes. The plan is to build at least two Voyagers and launch them into the North Sea from the East UK coast a few weeks

More information

SYSTEM 5900 SIDE SCAN SONAR

SYSTEM 5900 SIDE SCAN SONAR SYSTEM 5900 SIDE SCAN SONAR HIGH-RESOLUTION, DYNAMICALLY FOCUSED, MULTI-BEAM SIDE SCAN SONAR Klein Marine System s 5900 sonar is the flagship in our exclusive family of multi-beam technology-based side

More information

DP Operator Course Training Manual HPR

DP Operator Course Training Manual HPR - Hydroacoustic Position Reference System consists of transducer(s) onboard a vessel communicating with transponder(s) placed on the seabed. The transducers are lowered beneath the hull, and when a transponder

More information

FLOW SWITCH 600 Series Velocity Flow Sensor. Instruction Manual

FLOW SWITCH 600 Series Velocity Flow Sensor. Instruction Manual SWITCH 600 Series Velocity Flow Sensor Instruction Manual Ultrasonic Velocity Sensor using Doppler Technology Model: FS-600 Manual Release Date: November, 2009 ECHO Process Instrumentation, Inc. CONTENTS

More information

Ongoing Developments in Side Scan Sonar The pursuit of better Range, Resolution and Speed

Ongoing Developments in Side Scan Sonar The pursuit of better Range, Resolution and Speed Ongoing Developments in Side Scan Sonar The pursuit of better Range, Resolution and Speed Nick Lawrence EdgeTech Advances in Seafloor-mapping Sonar Conference 30 th November 2009 Company Profile EdgeTech

More information

Lesson 02: Sound Wave Production. This lesson contains 24 slides plus 11 multiple-choice questions.

Lesson 02: Sound Wave Production. This lesson contains 24 slides plus 11 multiple-choice questions. Lesson 02: Sound Wave Production This lesson contains 24 slides plus 11 multiple-choice questions. Accompanying text for the slides in this lesson can be found on pages 2 through 7 in the textbook: ULTRASOUND

More information

An instrument for detecting corrosion in anchorage zones of bridge cables using guided waves

An instrument for detecting corrosion in anchorage zones of bridge cables using guided waves 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa An instrument for detecting corrosion in anchorage zones of bridge cables using guided waves Jiang XU, Xinjun WU,

More information

Capacitive Versus Thermal MEMS for High-Vibration Applications James Fennelly

Capacitive Versus Thermal MEMS for High-Vibration Applications James Fennelly Capacitive Versus Thermal MEMS for High-Vibration Applications James Fennelly Design engineers involved in the development of heavy equipment that operate in high shock and vibration environments need

More information

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave.

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave. SOUND - we can distinguish three aspects of any sound. First, there must be a source for a sound. As with any wave, the source of a sound wave is a vibrating object. Second, the energy is transferred from

More information

Bio-Alpha off the West Coast

Bio-Alpha off the West Coast DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Bio-Alpha off the West Coast Dr. Orest Diachok Johns Hopkins University Applied Physics Laboratory Laurel MD20723-6099

More information

This tutorial describes the principles of 24-bit recording systems and clarifies some common mis-conceptions regarding these systems.

This tutorial describes the principles of 24-bit recording systems and clarifies some common mis-conceptions regarding these systems. This tutorial describes the principles of 24-bit recording systems and clarifies some common mis-conceptions regarding these systems. This is a general treatment of the subject and applies to I/O System

More information

Final Publishable Summary

Final Publishable Summary Final Publishable Summary Task Manager: Dr. Piotr Klimczyk Project Coordinator: Mr. Stefan Siebert Dr. Brockhaus Messtechnik GmbH & Co. KG Gustav-Adolf-Str. 4 D-58507 Lüdenscheid +49 (0)2351 3644-0 +49

More information

Inductors & Resonance

Inductors & Resonance Inductors & Resonance The Inductor This figure shows a conductor carrying a current. A magnetic field is set up around the conductor as concentric circles. If a coil of wire has a current flowing through

More information

Definitions of Technical Terms

Definitions of Technical Terms Definitions of Technical Terms Terms Ammeter Amperes, Amps Band Capacitor Carrier Squelch Diode Dipole Definitions How is an ammeter usually connected = In series with the circuit What instrument is used

More information

RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE

RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE D. MacLauchlan, S. Clark, B. Cox, T. Doyle, B. Grimmett, J. Hancock, K. Hour, C. Rutherford BWXT Services, Non Destructive Evaluation and Inspection

More information

Frequency Agility and Barrage Noise Jamming

Frequency Agility and Barrage Noise Jamming Exercise 1-3 Frequency Agility and Barrage Noise Jamming EXERCISE OBJECTIVE To demonstrate frequency agility, a radar electronic protection is used against spot noise jamming. To justify the use of barrage

More information

Section 6 - Electronics

Section 6 - Electronics Section 6 - Electronics 6.1. Power for Excitation Piezoresistive transducers are passive devices and require an external power supply to provide the necessary current (I x ) or voltage excitation (E x

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point. Terminology (1) Chapter 3 Data Transmission Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Spring 2012 03-1 Spring 2012 03-2 Terminology

More information

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2 Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

Characteristics of Crystal. Piezoelectric effect of Quartz Crystal

Characteristics of Crystal. Piezoelectric effect of Quartz Crystal Characteristics of Crystal Piezoelectric effect of Quartz Crystal The quartz crystal has a character when the pressure is applied to the direction of the crystal axis, the electric change generates on

More information

Ultrasonic Cleaning: How to select the best option

Ultrasonic Cleaning: How to select the best option Ultrasonic Cleaning: How to select the best option Marais 36 Phone/Fax: +41- (0)-32-9314045 2400, Le Locle email: mpi@mpi-ultrasonics.com Switzerland http://www.mpi-ultrasonics.com mpi@bluewin.ch http://mastersonic.com

More information

4. Digital Measurement of Electrical Quantities

4. Digital Measurement of Electrical Quantities 4.1. Concept of Digital Systems Concept A digital system is a combination of devices designed for manipulating physical quantities or information represented in digital from, i.e. they can take only discrete

More information

Alignment and Operation

Alignment and Operation Introduction Spectrum Analyser theory Construction Techniques Power Supply Sweep Generator Logarithmic Amplifier 145 MHz IF Filter 1st Mixer 2nd Mixer 8 MHz IF Filter Low-pass Filter Input Attenuator 10MHz

More information

Modern radio techniques

Modern radio techniques Modern radio techniques for probing the ionosphere Receiver, radar, advanced ionospheric sounder, and related techniques Cesidio Bianchi INGV - Roma Italy Ionospheric properties related to radio waves

More information

Feedback Amplifier & Oscillators

Feedback Amplifier & Oscillators 256 UNIT 5 Feedback Amplifier & Oscillators 5.1 Learning Objectives Study definations of positive /negative feedback. Study the camparions of positive and negative feedback. Study the block diagram and

More information

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 The ability of a radar receiver to detect a weak echo signal is limited by the noise energy that occupies the same portion of the frequency spectrum as does

More information

AN5E Application Note

AN5E Application Note Metra utilizes for factory calibration a modern PC based calibration system. The calibration procedure is based on a transfer standard which is regularly sent to Physikalisch-Technische Bundesanstalt (PTB)

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Frequency-Modulated CW Radar EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with FM ranging using frequency-modulated continuous-wave (FM-CW) radar. DISCUSSION

More information

NCERT solution for Sound

NCERT solution for Sound NCERT solution for Sound 1 Question 1 How does the sound produce by a vibrating object in a medium reach your ear? When an object vibrates, it vibrates the neighboring particles of the medium. These vibrating

More information

RADAR CHAPTER 3 RADAR

RADAR CHAPTER 3 RADAR RADAR CHAPTER 3 RADAR RDF becomes Radar 1. As World War II approached, scientists and the military were keen to find a method of detecting aircraft outside the normal range of eyes and ears. They found

More information

GOLDEN MASK DEEP HUNTER LE

GOLDEN MASK DEEP HUNTER LE GOLDEN MASK DEEP HUNTER LE Golden mask Deep Hunter LE is a pulse induction detector, designed for easy detection of deeply buried larger metal objects (such sizes larger than 8 centimeters) with LED indication

More information

Technical Guide for Glass Cutting Section 1 - Two Basic Types of Cutting

Technical Guide for Glass Cutting Section 1 - Two Basic Types of Cutting Section 1 - Two Basic Types of Cutting Part 2 Pressure Cutting Basic Principles of Pressure Cutting This portion of Part 2 deals with those aspects of the basic principles of glass cutting that are common

More information

Exercise 6. Range and Angle Tracking Performance (Radar-Dependent Errors) EXERCISE OBJECTIVE

Exercise 6. Range and Angle Tracking Performance (Radar-Dependent Errors) EXERCISE OBJECTIVE Exercise 6 Range and Angle Tracking Performance EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the radardependent sources of error which limit range and angle tracking

More information

eddyncdt 3010 Non-Contact Displacement Measuring Systems

eddyncdt 3010 Non-Contact Displacement Measuring Systems Eddy current sensors for displacement, distance and position Eddy current and inductive measurement system and sensors with micrometer resolution for linear measurement and displacement, distance and position

More information

Exam Booklet. Pulse Circuits

Exam Booklet. Pulse Circuits Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

More information

Study on monitoring technology of aircraft engine based on vibration and oil

Study on monitoring technology of aircraft engine based on vibration and oil Study on monitoring technology of aircraft engine based on vibration and oil More info about this article: http://www.ndt.net/?id=21987 Junming LIN 1, Libo CHEN 2 1 Eddysun(Xiamen)Electronic Co., Ltd,

More information

MEMS Optical Scanner "ECO SCAN" Application Notes. Ver.0

MEMS Optical Scanner ECO SCAN Application Notes. Ver.0 MEMS Optical Scanner "ECO SCAN" Application Notes Ver.0 Micro Electro Mechanical Systems Promotion Dept., Visionary Business Center The Nippon Signal Co., Ltd. 1 Preface This document summarizes precautions

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

Generator Users Group Annual Conference Core testing, low and high flux, tap. Mladen Sasic, IRIS Power

Generator Users Group Annual Conference Core testing, low and high flux, tap. Mladen Sasic, IRIS Power Generator Users Group Annual Conference 2015 Core testing, low and high flux, tap Mladen Sasic, IRIS Power Stator Cores Cores provide low reluctance paths for working magnetic fluxes Support stator winding,

More information

Applicability of Ultrasonic Pulsed Doppler for Fast Flow-Metering

Applicability of Ultrasonic Pulsed Doppler for Fast Flow-Metering Applicability of Ultrasonic Pulsed Doppler for Fast Flow-Metering Stéphane Fischer (1), Claude Rebattet (2) and Damien Dufour (1), (1) UBERTONE SAS, 4 rue Boussingault Strasbourg, France, www.ubertone.com

More information

SonaFlex. Set of Portable Multifunctional Equipment for Non-contact Ultrasonic Examination of Materials

SonaFlex. Set of Portable Multifunctional Equipment for Non-contact Ultrasonic Examination of Materials SonaFlex Set of Portable Multifunctional Equipment for Non-contact Ultrasonic Examination of Materials General Overview of the Testing Equipment SonaFlex is a unique intelligent ultrasonic testing system

More information

VARIABLE INDUCTANCE TRANSDUCER

VARIABLE INDUCTANCE TRANSDUCER VARIABLE INDUCTANCE TRANSDUCER These are based on a change in the magnetic characteristic of an electrical circuit in response to a measurand which may be displacement, velocity, acceleration, etc. 1.

More information

vibro-acoustic modulation

vibro-acoustic modulation 17th World Conference on Nondestructive Testing, 25-28 Oct 28, Shanghai, ChinaContact defect detection in plates using guided wave and vibro-acoustic modulation Jingpin JIAO 1, Bruce W. DRINKWATER 2, Simon

More information

Underwater communication implementation with OFDM

Underwater communication implementation with OFDM Indian Journal of Geo-Marine Sciences Vol. 44(2), February 2015, pp. 259-266 Underwater communication implementation with OFDM K. Chithra*, N. Sireesha, C. Thangavel, V. Gowthaman, S. Sathya Narayanan,

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatD14: Last updated: 25th February 2006 Author: Patrick J. Kelly This patent application shows the details of a device which it is claimed, can produce sufficient

More information

TIME VARIABLE GAIN FOR LONG RANGE SONAR WITH CHIRP SOUNDING SIGNAL

TIME VARIABLE GAIN FOR LONG RANGE SONAR WITH CHIRP SOUNDING SIGNAL TIME VARIABLE GAIN FOR LONG RANGE SONAR WITH CHIRP SOUNDING SIGNAL JACEK MARSZAL, ZAWISZA OSTROWSKI, JAN SCHMIDT LECH KILIAN, ANDRZEJ JEDEL, ALEKSANDER SCHMIDT Gdansk University of Technology, Faculty

More information

Phased Array Velocity Sensor Operational Advantages and Data Analysis

Phased Array Velocity Sensor Operational Advantages and Data Analysis Phased Array Velocity Sensor Operational Advantages and Data Analysis Matt Burdyny, Omer Poroy and Dr. Peter Spain Abstract - In recent years the underwater navigation industry has expanded into more diverse

More information

ISO INTERNATIONAL STANDARD. Non-destructive testing Ultrasonic thickness measurement

ISO INTERNATIONAL STANDARD. Non-destructive testing Ultrasonic thickness measurement INTERNATIONAL STANDARD ISO 16809 First edition 2012-11-15 Non-destructive testing Ultrasonic thickness measurement Essais non destructifs Mesurage de l'épaisseur par ultrasons Reference number ISO 2012

More information

CLEARER. DEEPER. BROADER. Pocket / Keel-Mount GAME CHANGING TECHNOLOGY.

CLEARER. DEEPER. BROADER. Pocket / Keel-Mount GAME CHANGING TECHNOLOGY. CHIRP Upgrade Your Sounder to a Serious Fishfinding Machine! Only possible with the use of an AIRMAR broadband transducer. CHIRP TECHNOLOGY 5 to 10 times greater detail and resolution 10 to 1,000 times

More information

Reinventing Radar SIMRAD-YACHTING.COM

Reinventing Radar SIMRAD-YACHTING.COM 2012 Broadband 4G Radar Reinventing Radar SIMRAD-YACHTING.COM Reinventing Radar Simrad Yachting has pioneered a new standard of dome radar, first with the award-winning BR24, and more recently with the

More information