Project Report. Object Following Robot

Size: px
Start display at page:

Download "Project Report. Object Following Robot"

Transcription

1 Project Report Object Following Robot Group Members: 1. Haad Yaqub Rathore ( ) 2. Muhammad Umar Javed ( ) 3. Huzaifa Arif ( ) 4. Hunza Zainab ( ) Project Objective & Introduction: We intended to make an object following robot that follows the object that is closest to it to its right, left and the front. We tried to do this by using sound. Our sonar transceivers sent and received sound waves in ultra-frequency range (so that the sensors do not detect human voice or voice audible to human beings). The wave that was the highest in amplitude after reflecting back from the object indicated the direction of the object and we made our robot move towards it. Project Specifications: LM324 quad Op-Amp Op-Amp 6 A number of capacitors (from 1nF to 5nF) 10 SQ 40R for SONAR reception 5 SQ 40T for SONAR transmission 5 LP555 (timer used to generate TTL of 40KHz) 2 74HC138 (decoder) 1 1 OR gate IC 1 1 Inverter IC 1 A number of resistors At least 5 working PCBs H bridge LM298 1 Germanium diodes

2 Burnt: 3 x 741 Op-Amps. 2 x lm324 quad Op-Amps sensors' and transmitters' legs borke. 1 x LM298 (the legs borke because its really hard to insert this IC in the breadboard) Project Deliverables: Generated an AC signal using 555 timer and successfully transmitted, received, amplified it. Once the signal is amplified, a comparison was done to check whether it is only noise or a signal from an object. After all three transceivers were set and received different amplitude signals, we compared the three signals and decided where the object is using a decoder. Once it was known where the object is, we made our motors work to turn the robot in to that direction. Project Modules and Design Overview: Our project can be divided into 3 unique circuits. 555 Timer circuit (Transmitter circuit). Receiver circuit. Decider circuit. A 555 timer IC was used to create a TTL wave of 40kHz that the transmitter would transmit. The circuit used is as follows:

3 We used two formulae found on the internet to calculate our the capacitor and resistor values to create a TTL of desired frequency. f = 1/(0.693 x C x (RA + 2 x RB)) And we also tried to maintain the delay in the circuit at 50% to create a perfect TTL using the following formula D = t1/t = (RA + RB) / (RA + 2RB). Next comes the circuit that received, amplified and rectified the signal. This 40KHz sinusoidal wave that the receiver received (the receiver always received a pur sinusoidal wave) was first amplified by a factor of 20. The op-amp used here was 741. The values of resistors were chosen so that the gain was 20. Also this is a non-inverting amplifier. Next we rectified the resulting signal. This was a halfwave rectifier with a large enough capacitor to convert the signal to DC. We also added a low pass filter that eliminated any higher frequency noise. Next the signal was amplified again (this was done because the voltage of the signal was low due to the drop taken by the diodes). Both of these amplifications used the 741 Op-Amp. Next we used the LM324 Op- Amp that compared this resulting DC signal to a reference DC signal of 0.2 volts (we set this exactness using a potentiometer (gave us flexibility in our ciruit). This PCB at the very end gave either of the two outputs: 0 or 5 volts. It must be mentioned here that in between the these amplifier circuits we did have at least two high pass filters which were necessary to remove the DC offset that crept into the circuit for no reason. (we still cant figure out why this DC offset came but it was clearly there and was tampering with the proper decsion making process).

4 The last step was creating a circuit that could decide where the object is and also make a move according to it. For that we used a 3 to 8 decoder. It took the output of all three receiver circuits and if there was no object 000 minterm was activated and the object remained stationary. If there was an object in the middle then minterm received was 010, if on the right 001 and left 100. The three outputs and 010 were taken and their logical OR given to the LM298 s logic supply. On the other hand, the right and left minterms were given directly to the H bridge terminal that controlled turning and the forward one was given to the H bridge terminal that controlled forward moving. The logical OR as stated above was the one controlling the first motor (for forward motion) while the the right and the left minterms (001 and 100 respectively) were used to drive the second motor for turning purposes. Also the elegance in this design made sure that the receiver circuit was completely detached from the decision making circuit otherwise we would have face unnecessary voltage level drops as the motors started to power up. Technical Issues Faced and how you resolved them: Lack of batteries (portable and light weight). Heavy batteries caused the body of the robot touch the ground causing turning to be impossible. Selecting a better car body. The body we got was from a toy car. It was not designed withstand weight. Also the decision making and the turning had to be achieved using a decoder. It was not a differential drive (that s what most robots have). Thus the logic we designed was based on the type of the robot we had. There was an unnecessary DC offset every time we switched on the circuit. Because we were working with a comparison based circuit, the DC offset over the sinusoidal signal was an anomaly in our system and had to be eliminated. We finally worked it out the basic first order Low Pass Filter would solve the problem and it did. The sensors were broken and did not function properly. The first day of the project (the day we started working) every sensor was working perfectly fine but by the end of the project they simply weren't. The entire circuit was designed on very precise voltage levels. By the end of the project the sensors gave such low voltage levels that they were simply useless. We then had to demonstrate the

5 working circuit using a sinusoidal source instead of the sensors. Had the store had more working sensors and receivers our demonstration could have been with sensors instead of sinusoidal sources. I would suggest that since it s very hard to work with analogue sensors, using either the HCSR04 IC which basically does everything our circuit was doing in a single IC or getting a few spare sensors for the project. We faced difficulty controlling the gain of op amps using fixed resistance values. We were able to control the gain of the amplifiers using variable resistors instead of fixed one; this gave us more flexibility over experimental errors that are inherent in any analogue system. Our timer circuit worked perfectly fine on a breadboard and when the exact same components were transferred to a PCB, our frequency value which is dependent on resistance and capacitance changed drastically. There were probably some of these two properties available in the copper tracks of the PCB. To overcome this problem we had to hit and try with resistances and capacitances close to our decided values by adding them in parallel and testing our PCB.

ULTRASONIC TRANSMITTER & RECEIVER

ULTRASONIC TRANSMITTER & RECEIVER ELECTRONIC WORKSHOP II Mini-Project Report on ULTRASONIC TRANSMITTER & RECEIVER Submitted by Basil George 200831005 Nikhil Soni 200830014 AIM: To build an ultrasonic transceiver to send and receive data

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Week 8 AM Modulation and the AM Receiver

Week 8 AM Modulation and the AM Receiver Week 8 AM Modulation and the AM Receiver The concept of modulation and radio transmission is introduced. An AM receiver is studied and the constructed on the prototyping board. The operation of the AM

More information

Hydra: A Three Stage Power Converter

Hydra: A Three Stage Power Converter 6.101 Project Proposal Paul Hemberger, Joe Driscoll, David Yamnitsky Hydra: A Three Stage Power Converter Introduction Hydra is a three stage power converter system where each stage not only supports a

More information

Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

More information

AERO2705 Space Engineering 1 Week 7 The University of Sydney

AERO2705 Space Engineering 1 Week 7 The University of Sydney AERO2705 Space Engineering 1 Week 7 The University of Sydney Presenter Mr. Warwick Holmes Executive Director Space Engineering School of Aerospace, Mechanical and Mechatronic Engineering The University

More information

6.101 Introductory Analog Electronics Laboratory

6.101 Introductory Analog Electronics Laboratory 6.101 Introductory Analog Electronics Laboratory Spring 2015, Instructor Gim Hom Project Proposal Transmitting, Receiving, and Interpreting ECG Waveforms Daniel Moon (dhmoon@mit.edu) Thipok (Ben) Rak-amnouykit

More information

Multi-Stage Power Conversion Proposal

Multi-Stage Power Conversion Proposal Multi-Stage Power Conversion Proposal Joe Driscoll, Paul Hemberger, David Yamnitsky Introduction MSPC is a three stage power converter system where each stage not only supports a useful application, but

More information

Interactive Tone Generator with Capacitive Touch. Corey Cleveland and Eric Ponce. Project Proposal

Interactive Tone Generator with Capacitive Touch. Corey Cleveland and Eric Ponce. Project Proposal Interactive Tone Generator with Capacitive Touch Corey Cleveland and Eric Ponce Project Proposal Overview Capacitance is defined as the ability for an object to store charge. All objects have this ability,

More information

Electronic Instrumentation ENGR-4300 Fall 2002 Project 2: Optical Communications Link

Electronic Instrumentation ENGR-4300 Fall 2002 Project 2: Optical Communications Link Project 2: Optical Communications Link For this project, each group will build a transmitter circuit and a receiver circuit. It is suggested that 1 or 2 students build and test the individual components

More information

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

More information

5v AC R. 12v. 1kohm. F=35KHz oscilloscope. 3 Final Project OFF. ON Toggle Switch. Relay 5v 2N3906 2N uF LM311. IR Detector +5v GND LED PNP NPN

5v AC R. 12v. 1kohm. F=35KHz oscilloscope. 3 Final Project OFF. ON Toggle Switch. Relay 5v 2N3906 2N uF LM311. IR Detector +5v GND LED PNP NPN 3 Final Project Diode 103 IR Detector OFF ON Toggle Switch IR Detector +5v Push Button IR 100uF LED + GND LDR C Preset R 7805 IN GND OUT Relay 5v + PNP 2N3906 1 Kohm NPN 2N3904 4 3 2 1 555 5 6 7 8 4 3

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS II EMT 212 2009/2010 EXPERIMENT # 3 OP-AMP (OSCILLATORS) 1 1. OBJECTIVE: 1.1 To demonstrate the Wien bridge oscillator 1.2 To demonstrate the RC phase-shift

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps University of Portland EE 271 Electrical Circuits Laboratory Experiment: Op Amps I. Objective The objective of this experiment is to learn how to use an op amp circuit to prevent loading and to amplify

More information

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

More information

Optical Attenuation Sensor for Process Control

Optical Attenuation Sensor for Process Control Optical Attenuation Sensor for Process Control Senior Project Final Report Eric Borisch Jeremy Protas Scott Ruppert Christopher Spiek EEAP 398/399 April 16, 1999 Advisor: Dr. Frank Merat Executive Summary

More information

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS OBJECTIVES In this experiment you will Explore the use of a popular IC chip and its applications. Become more

More information

Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] (Branch: ECE)

Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] (Branch: ECE) Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] B.Tech Year 3 rd, Semester - 5 th (Branch: ECE) Version: 01 st August 2018 The LNM Institute

More information

Ultrasound Brain Imaging System

Ultrasound Brain Imaging System Ultrasound Brain Imaging System Group Dec13-01 Members: Zach Bertram Michael McFarland Maurio McKay Jonathan Runchey Client/Advisor: Dr. Bigelow Project Overview Pulse Echo Ultrasound for brain imaging

More information

Electronic Concepts and Troubleshooting 101. Experiment 1

Electronic Concepts and Troubleshooting 101. Experiment 1 Electronic Concepts and Troubleshooting 101 Experiment 1 o Concept: What is the capacity of a typical alkaline 1.5V D-Cell? o TS: Assume that a battery is connected to a 20Ω load and the voltage across

More information

Lab 6: Exploring the Servomotor Controller Circuit

Lab 6: Exploring the Servomotor Controller Circuit Lab 6: Exploring the Servomotor Controller Circuit By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC 1. Purpose: The purpose of this

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

Laboratory Final Design Project. PWM DC Motor Speed Control

Laboratory Final Design Project. PWM DC Motor Speed Control Laboratory Final Design Project PWM DC Motor Speed Control Bowen Wang, Siyang Xia, Renhao Xie, E E 331 Lab, Winter 2013 TABLE OF CONTENTS Purpose of project, features, ratings.

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 3 TITLE : Operational Amplifier (Op-Amp) OUTCOME : Upon completion of this unit, the student should be able to: 1. Gain

More information

EE223 Laboratory #4. Comparators

EE223 Laboratory #4. Comparators EE223 Laboratory #4 Comparators Objectives 1) Learn how to design using comparators 2) Learn how to breadboard circuits incorporating integrated circuits (ICs) 3) Learn how to obtain and read IC datasheets

More information

Electronics (JUN ) General Certificate of Secondary Education June Thursday 5 June pm to 3.30 pm. Time allowed 2 hours

Electronics (JUN ) General Certificate of Secondary Education June Thursday 5 June pm to 3.30 pm. Time allowed 2 hours Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark General Certificate of Secondary Education June 2014 Electronics 44301 Unit 1

More information

Direct Current Waveforms

Direct Current Waveforms Cornerstone Electronics Technology and Robotics I Week 20 DC and AC Administration: o Prayer o Turn in quiz Direct Current (dc): o Direct current moves in only one direction in a circuit. o Though dc must

More information

Figure 1: Basic Relationships for a Comparator. For example: Figure 2: Example of Basic Relationships for a Comparator

Figure 1: Basic Relationships for a Comparator. For example: Figure 2: Example of Basic Relationships for a Comparator Cornerstone Electronics Technology and Robotics I Week 16 Voltage Comparators Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit: To

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

Obstacle Avoiding Robot

Obstacle Avoiding Robot Obstacle Avoiding Robot Trinayan Saharia 1, Jyotika Bauri 2, Mrs. Chayanika Bhagabati 3 1,2 Student, 3 Asst. Prof., ECE, Assam down town University, Assam Abstract: An obstacle avoiding robot is an intelligent

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project

EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project Required Parts, Software and Equipment Parts EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project Figure 1 Flasher Circuit Component /alue Quantity LM741 OP AMP Integrated Circuit

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers

Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers Op Amps Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers are frequency specific i.e. they only operate

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

A2 Electronics Project: DARPS: A Digital Audio Recorder and Playback System. Name: Andrew Cottrell Year: 2011

A2 Electronics Project: DARPS: A Digital Audio Recorder and Playback System. Name: Andrew Cottrell Year: 2011 A2 Electronics Project: DARPS: A Digital Audio Recorder and Playback System. Name: Year: 2011 System Overview: I will design and create a system that will record a variable amount of audio data and then

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

ELR 4202C Project: Finger Pulse Display Module

ELR 4202C Project: Finger Pulse Display Module EEE 4202 Project: Finger Pulse Display Module Page 1 ELR 4202C Project: Finger Pulse Display Module Overview: The project will use an LED light source and a phototransistor light receiver to create an

More information

POWER LINE COMMUNICATION. A dissertation submitted. to Istanbul Arel University in partial. fulfillment of the requirements for the.

POWER LINE COMMUNICATION. A dissertation submitted. to Istanbul Arel University in partial. fulfillment of the requirements for the. POWER LINE COMMUNICATION A dissertation submitted to Istanbul Arel University in partial fulfillment of the requirements for the Bachelor's Degree Submitted by Egemen Recep Çalışkan 2013 Title in all caps

More information

Project Report Designing Wein-Bridge Oscillator

Project Report Designing Wein-Bridge Oscillator Abu Dhabi University EEN 360 - Electronic Devices and Circuits II Project Report Designing Wein-Bridge Oscillator Author: Muhammad Obaidullah 03033 Bilal Arshad 0929 Supervisor: Dr. Riad Kanan Section

More information

Assignment /01

Assignment /01 Principles and Applications of Electronic Devices and Circuits Assignment 1 40764/01 It's very straightforward to submit this test paper online by logging on to the ICS Student Community at www.icslearn.co.uk.

More information

Putting it all Together

Putting it all Together ECE 2C Laboratory Manual 5b Putting it all Together.continuation of Lab 5a In-Lab Procedure At this stage you should have your transmitter circuit hardwired on a vectorboard, and your receiver circuit

More information

Electronics. RC Filter, DC Supply, and 555

Electronics. RC Filter, DC Supply, and 555 Electronics RC Filter, DC Supply, and 555 0.1 Lab Ticket Each individual will write up his or her own Lab Report for this two-week experiment. You must also submit Lab Tickets individually. You are expected

More information

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE LM2901 Quad Voltage Comparator 1 5/18/04 TABLE OF CONTENTS 1. Index of Figures....3 2. Index of Tables. 3 3. Introduction.. 4-5 4. Theory

More information

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved.

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved. Lab 7: The Op Amp Laboratory Objectives: 1) To introduce the operational amplifier or Op Amp 2) To learn the non-inverting mode 3) To learn the inverting mode 4) To learn the differential mode Before You

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

Smart Car: Collision Avoidance. Ajeena Kurian Mike Krause George Kachouh

Smart Car: Collision Avoidance. Ajeena Kurian Mike Krause George Kachouh Smart Car: Collision Avoidance Ajeena Kurian Mike Krause George Kachouh Overview Purpose Schedule Group Work Divided Research Parts List / Individual Parts Overall Block Diagram and Schematic Cost Analysis

More information

Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp)

Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp) Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp) Objectives Become familiar with an Operational Amplifier (Op Amp) electronic device and it operation Learn several basic

More information

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I)

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) Student ID: 2018 Fall 1 Introduction This lab session introduces some very basic concepts

More information

Electronic Buzzer for Blind

Electronic Buzzer for Blind EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, April 2009 Electronic Buzzer for Blind Group no. B08 Vaibhav Chaudhary (06007018) Anuj Jain (06007019)

More information

RF System: Baseband Application Note

RF System: Baseband Application Note Jimmy Hua 997227433 EEC 134A/B RF System: Baseband Application Note Baseband Design and Implementation: The purpose of this app note is to detail the design of the baseband circuit and its PCB implementation

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Study on Transmission of Audio Signal using Laser Communication System

Study on Transmission of Audio Signal using Laser Communication System Study on Transmission of Audio Signal using Laser Communication System Ekta Badoni 1, Sumita Srivastava 2 1.2 Department Of Physics, Pt. L.M.S Government Post Graduate College, Rishikesh (Autonomous College)

More information

Final Mini Project Report

Final Mini Project Report Integrated System Analysis Team 1 Savath Lieng: Leader Jose Diaz: Certifier Shabuktagin Photon Khan: Rapporteur Abstract This mini project III shows an integrated system analysis. In this project, we built

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

Bi-Directional DC Motor Speed Controller 5-32Vdc (3166v2)

Bi-Directional DC Motor Speed Controller 5-32Vdc (3166v2) General Guidelines for Electronic Kits and Assembled Modules Thank you for choosing one of our products. Please take some time to carefully read the important information below concerning use of this product.

More information

ENGN Analogue Electronics Digital PC Oscilloscope

ENGN Analogue Electronics Digital PC Oscilloscope Faculty of Engineering and Information Technology Department of Engineering ENGN3227 - Analogue Electronics Digital PC Oscilloscope David Dries u2543318 Craig Gibbons u2543813 James Moran u4114563 Ranmadhu

More information

ANALOG TO DIGITAL CONVERTER

ANALOG TO DIGITAL CONVERTER Final Project ANALOG TO DIGITAL CONVERTER As preparation for the laboratory, examine the final circuit diagram at the end of these notes and write a brief plan for the project, including a list of the

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #7 Lab Report Analog-Digital Applications Submission Date: 08/01/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A:

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A: Basic Op Amps The operational amplifier (Op Amp) is useful for a wide variety of applications. In the previous part of this article basic theory and a few elementary circuits were discussed. In order to

More information

Fluxgate Magnetometer

Fluxgate Magnetometer 6.101 Final Project Proposal Woojeong Elena Byun Jack Erdozain Farita Tasnim 7 April 2016 Fluxgate Magnetometer Motivation: A fluxgate magnetometer is a highly precise magnetic field sensor. Its typical

More information

Handy dandy little circuit #17 #17

Handy dandy little circuit #17 #17 Handy dandy little circuit #17 #17 Download # 17 in PDF There are a lot of alarm systems on the market but you might be inclined to build your own. This little project can be put together using inexpensive

More information

Signal Conditioning Devices

Signal Conditioning Devices Lecture 4. Signal Conditioning Devices Signal Conditioning Operations In previous lectures we have studied various sensors and transducers used in a mechatronics system. Transducers sense physical phenomenon

More information

PROPOSED SCHEME OF COURSE WORK

PROPOSED SCHEME OF COURSE WORK PROPOSED SCHEME OF COURSE WORK Course Details: Course Title : LINEAR AND DIGITAL IC APPLICATIONS Course Code : 13EC1146 L T P C : 4 0 0 3 Program: : B.Tech. Specialization: : Electrical and Electronics

More information

DC Motor-Driver H-Bridge Circuit

DC Motor-Driver H-Bridge Circuit Page 1 of 9 David Cook ROBOT ROOM home projects contact copyright & disclaimer books links DC Motor-Driver H-Bridge Circuit Physical motion of some form helps differentiate a robot from a computer. It

More information

using dc inputs. You will verify circuit operation with a multimeter.

using dc inputs. You will verify circuit operation with a multimeter. Op Amp Fundamentals using dc inputs. You will verify circuit operation with a multimeter. FACET by Lab-Volt 77 Op Amp Fundamentals O circuit common. a. inverts the input voltage polarity. b. does not invert

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

More information

Final Exam: Electronics 323 December 14, 2010

Final Exam: Electronics 323 December 14, 2010 Final Exam: Electronics 323 December 4, 200 Formula sheet provided. In all questions give at least some explanation of what you are doing to receive full value. You may answer some questions ON the question

More information

Operational Amplifiers: Part II

Operational Amplifiers: Part II 1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

More information

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS PESIT BANGALORE SOUTH CAMPUS QUESTION BANK BASIC ELECTRONICS Sub Code: 17ELN15 / 17ELN25 IA Marks: 20 Hrs/ Week: 04 Exam Marks: 80 Total Hours: 50 Exam Hours: 03 Name of Faculty: Mr. Udoshi Basavaraj Module

More information

NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL ENGINEERING AND TELECOMMUNICATIONS TECHNOLOGIES

NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL ENGINEERING AND TELECOMMUNICATIONS TECHNOLOGIES NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL ENGINEERING AND TELECOMMUNICATIONS TECHNOLOGIES Course : EET 24 Communications Electronics Module : AM Tx and

More information

Wiring Manual NEScaf April 2010 (August 2006)

Wiring Manual NEScaf April 2010 (August 2006) Wiring Manual NEScaf April 2010 (August 2006) Switched Capacitor Audio Filter The NEScaf is a switched capacitor audio filter (acronym SCAF) built around a building-block type filter chip. The NEScaf will

More information

Chapter 3 THE DIFFERENTIATOR AND INTEGRATOR Name: Date

Chapter 3 THE DIFFERENTIATOR AND INTEGRATOR Name: Date AN INTRODUCTION TO THE EXPERIMENTS The following two experiments are designed to demonstrate the design and operation of the op-amp differentiator and integrator at various frequencies. These two experiments

More information

King Fahd University of Petroleum and Minerals. Department of Electrical Engineering

King Fahd University of Petroleum and Minerals. Department of Electrical Engineering King Fahd University of Petroleum and Minerals Department of Electrical Engineering AN OPEN LOOP RATIONAL SPEED CONTROL OF COOLING FAN UNDER VARYING TEMPERATURE Done By: Al-Hajjaj, Muhammad Supervised

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #6 Lab Report Active Filters and Oscillators Submission Date: 7/9/28 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0. Laboratory 6 Operational Amplifier Circuits Required Components: 1 741 op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.1 F capacitor 6.1 Objectives The operational amplifier is one of the most

More information

Figure 1.1 Mechatronic system components (p. 3)

Figure 1.1 Mechatronic system components (p. 3) Figure 1.1 Mechatronic system components (p. 3) Example 1.2 Measurement System Digital Thermometer (p. 5) Figure 2.2 Electric circuit terminology (p. 13) Table 2.2 Resistor color band codes (p. 18) Figure

More information

MOSFET Amplifier Biasing

MOSFET Amplifier Biasing MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following

More information

Validation of Push Pull Current

Validation of Push Pull Current Montana Tech Library Digital Commons @ Montana Tech Proceedings of the Annual Montana Tech Electrical and General Engineering Symposium Student Scholarship 2016 Validation of Push Pull Current Randy Ford

More information

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link Electronic Instrumentation Experiment 8: Diodes (continued) Project 4: Optical Communications Link Agenda Brief Review: Diodes Zener Diodes Project 4: Optical Communication Link Why optics? Understanding

More information

How to Wire an Inverting Amplifier Circuit

How to Wire an Inverting Amplifier Circuit How to Wire an Inverting Amplifier Circuit Figure 1: Inverting Amplifier Schematic Introduction The purpose of this instruction set is to provide you with the ability to wire a simple inverting amplifier

More information

Utilise audio amps for voltage splitting (Part 3)

Utilise audio amps for voltage splitting (Part 3) Utilise audio amps for voltage splitting (Part 3) Here's a look at voltage splitters based on power audio amplifiers. By Petre Petrov Electronics Engineer Part 1 gave an overview of voltage splitters and

More information

Lab 10: Single Supply Amplifier

Lab 10: Single Supply Amplifier Overview This lab assignment implements an inverting voltage amplifier circuit with a single power supply. The amplifier output contains a bias point which is removed by AC coupling the output signal.

More information

Maintenance Manual ERICSSONZ LBI-31552E

Maintenance Manual ERICSSONZ LBI-31552E E Maintenance Manual TONE REMOTE CONTROL BOARD 19A704686P4 (1-Frequency Transmit Receive with Channel Guard) 19A704686P6 (4-Frequency Transmit Receive with Channel Guard) ERICSSONZ Ericsson Inc. Private

More information

transformer rectifiers

transformer rectifiers Power supply mini-project This week, we finish up 201 lab with a short mini-project. We will build a bipolar power supply and use it to power a simple amplifier circuit. 1. power supply block diagram Figure

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches Cornerstone Electronics Technology and Robotics II H-Bridges and Electronic Motor Control 4 Hour Class Administration: o Prayer o Debriefing Botball competition Four States of a DC Motor with Terminals

More information

ELECTRONICS WITH DISCRETE COMPONENTS

ELECTRONICS WITH DISCRETE COMPONENTS ELECTRONICS WITH DISCRETE COMPONENTS Enrique J. Galvez Department of Physics and Astronomy Colgate University WILEY John Wiley & Sons, Inc. ^ CONTENTS Preface vii 1 The Basics 1 1.1 Foreword: Welcome to

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

Exercise 2: Temperature Measurement

Exercise 2: Temperature Measurement Exercise 2: Temperature Measurement EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain the use of a thermocouple in temperature measurement applications. DISCUSSION the

More information

The ROSE 80 CW Transceiver (Part 1 of 3)

The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! Page 1 of 10 The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! (Designed by N1HFX) A great deal of interest has been

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

Intruder Alarm Name Mohamed Alsubaie MMU ID Supervisor Pr. Nicholas Bowring Subject Electronic Engineering Unit code 64ET3516

Intruder Alarm Name Mohamed Alsubaie MMU ID Supervisor Pr. Nicholas Bowring Subject Electronic Engineering Unit code 64ET3516 Intruder Alarm Name MMU ID Supervisor Subject Unit code Course Mohamed Alsubaie 09562211 Pr. Nicholas Bowring Electronic Engineering 64ET3516 BEng (Hons) Computer and Communication Engineering 1. Introduction

More information

TV Remote. Discover Engineering. Youth Handouts

TV Remote. Discover Engineering. Youth Handouts Discover Engineering Youth Handouts Electronic Component Guide Component Symbol Notes Amplifier chip 1 8 2 7 3 6 4 5 Capacitor LED The amplifier chip (labeled LM 386) has 8 legs, or pins. Each pin connects

More information

Final Project Stereo Audio Amplifier Final Report

Final Project Stereo Audio Amplifier Final Report The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Project Stereo Audio Amplifier Final Report Daniel S. Boucher ECE 20-32,

More information

FCC Technician License Course

FCC Technician License Course FCC Technician License Course 2014-2018 FCC Element 2 Technician Class Question Pool Presented by: Tamiami Amateur Radio Club (TARC) WELCOME To the SECOND of 4, 3-hour classes presented by TARC to prepare

More information

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY Electronics Circuits II Laboratory (EEE 208) Simulation Experiment No. 02 Study of the Characteristics and Application of Operational Amplifier (Part B)

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information