Electricity. Coil in the AC circuit /11. Electrodynamics. What you need:

Size: px
Start display at page:

Download "Electricity. Coil in the AC circuit /11. Electrodynamics. What you need:"

Transcription

1 Electrodynamics Electricity Coil in the AC circuit -01/11 What you can learn about Inductance Kirchhoff s laws Maxwell s equations AC impedance Phase displacement Principle: The coil is connected in a circuit with a voltage source of variable frequency. The impedance and phase displacements are determined as functions of frequency. Parallel and series impedances are measured. Set-up of experiment P with FG-Module What you need: Experiment P with FG-Module Experiment P with oscilloscope Function generator Oscilloscope, 30 MHz, 2 channels Difference amplifier Digital counter, 4 decades Screened cable, BNC, l = 750 mm Connecting cord, l = 100 mm, red Coil, 300 turns Coil, 600 turns Resistor in plug-in box 50 Ω Resistor in plug-in box 100 Ω Resistor in plug-in box 200 Ω Connection box Connecting cord, l = 500 mm, red Connecting cord, l = 500 mm, blue Cobra3 Basic Unit Power supply, 12 V RS232 data cable Cobra3 Universal writer software Measuring module function generator PC, Windows 95 or higher Complete Equipment Set, Manual on CD-ROM included Coil in the AC circuit P /11 Tangent of the current-voltage phase displacement as a function of the frequency used for calculation of the total inductance of coils connected in parallel and in series. Tasks: 1. Determination of the impedance of a coil as a function of frequency. 2. Determination of the inductance of the coil. 3. Determination of the phase displacement between the terminal voltage and total current as a function of the frequency in the circuit. 4. Determination of the total impedance of coils connected in parallel and in series. PHYWE Systeme GmbH & Co. KG D Göttingen Laboratory Experiments Physics 183

2 Coil in the AC circuit LEP -01 Related topics Inductance, Kirchhoff s laws, Maxwell s equations, a. c. impedance, phase displacement. Principle The coil is connected in a circuit with a voltage source of variable frequency. The impedance and phase displacements are determined as functions of frequency. Parallel and series impedances are measured. Equipment Coil, 300 turns Coil, 600 turns Resistor in plug-in box 50 Ohms Resistor in plug-in box 100 Ohms Resistor in plug-in box 200 Ohms Connection box Difference amplifier Function generator Digital counter, 4 decades Oscilloscope, 20 MHz, 2 channels Screened cable, BNC, l = 750 mm Connecting cord, l = 100 mm, red Connecting cord, l = 500 mm, red Connecting cord, l = 500 mm, blue Tasks 1. Determination of the impedance of a coil as a function of frequency. 2. Determination of the inductance of the coil. 3. Determination of the phase displacement between the terminal voltage and total current, as a function of the frequency in the circuit. 4. Determination of the total impedance of coils connected in parallel and in series. Set-up and procedure The experimental set up is as shown in Fig. 1. Since normal voltmeters and ammeters generally measure only rms (root mean square) values and take no account of phase relationships, it is prefereable to use an oscilloscope. The experiment will be carried out with sinusoidal voltages, so that to obtain rms values, the peak-to-peak values measured on the oscilloscope (U - ) are to be divided by 222. In accordance with I = U/R, the current can be deduced by measurement of the voltage across the resistor. The circuit shown in Fig. 2 permits the simultaneous display of the total current and the coil voltage. If, by means of the time-base switch of the oscilloscope, one half-wave of the current (180 ) is brought to the full screen width (10 cm) possibly with variable sweep rate the phase displacement of the voltage can be read off directly in cm (18 /cm). The Y-positions of the two base-lines (GND) are made to coincide. After switching to other gain settings, the base-lines are readjusted. In order to achieve high reading accuracy, high gain settings are selected. The inputs to the difference amplifier are non-grounded. Fig.1: Experimental set up for investigating the a. c. impedance of the coil. PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

3 LEP -01 Coil in the AC circuit Fig. 2: Circuit for display of current and voltage with the oscilloscope. Fig. 3: Impedance of various coils as a function of the frequency. To determine the impedance of a coil as a function of the frequency, the coil is connected in series with resistors of known value. The frequency is varied until there is the same voltage drop across the coil as across the resistor. The resistance and impedance values are then equal: R Ω = vl = X L (1) with the phase displacement f given by vl tan f = (3) R and U 0 I 0 = (4) 2R 2 1vL2 2 The phase displacement between the terminal voltage and the total current can be measured using a similar circuit to Fig. 2, but with channel B measuring the total voltage and not the voltage across the coil. When coils are connected in parallel or in series, care should be taken to ensure that they are sufficiently far apart, since their magnetic fields influence one another. It is customary to treat complex impedances as operators Coil Rˆ L ivl, Ohmic resistance Rˆ R. With parallel connection, 1 ai Rˆ i 1 Rˆ i : Theory and evaluation If a coil of inductance L and a resistor of resistance R are connected in a circuit (see Fig. 2), the sum of the voltage drops on the individual elements is equal to the terminal voltage U U IR L di dt where I is the current. The resistors R are selected so that the d.c. resistance of the coil, with a value of 0.2 Ω, can be disregarded. If the alternating voltage U has the frequency = 2 f and the waveform U = U 0 cos vt, then the solution of (2) is I = I 0 cos (vt f), (2) The real impedance of a circuit is the absolute value of and the phase relationship, analogous to (2), is the ratio of the imaginary part to the real part of. From the regression line to the measured value of Fig. 3 and the exponential statement Y = A X B there follows the exponent B 1 = 1.02 ± 0.01 (see (1)) B 2 = 1.01 ± 0.01 With the regression line to the measured values of Fig. 3 and the linear statement Y = A + B X PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

4 Coil in the AC circuit LEP -01 Fig. 4: Phase displacement (tan f) between total current and total voltage as a function of frequency tan f Fig. 5: Phase displacement (f) between total current and total voltage as a function of frequency. f the slope B 1 = ± (see (1)) B 2 = ± The frequency at which the total impedance of the coils was equal to the reference of 200 Ω was determined with coils connected in parallel and in series. is obtained. From this, with R = L the inductances L 1 = 2.38 mh L 2 = 10.4 mh Table: Total inductance of coils L i connected in parallel (line 1) and in series (line 2). Coil f (200 Ω) L tot L 1 L khz 1.93 mh L 1 + L khz mh are obtained. From the regression line to the measured values of Fig. 4 and the exponential statement Y = A X B the exponent B = 0.97 ± 0.01 follows (see (2)) PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

5 LEP -01 Coil in the AC circuit PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

6 Coil in the AC circuit with Cobra3 LEP -11 Related topics Inductance, Kirchhoff s laws, Maxwell s equations, a. c. impedance, phase displacement. Principle The coil is connected in a circuit with a voltage source of variable frequency. The impedance and phase displacements are determined as functions of frequency. Parallel and series impedances are measured. Equipment Cobra3 Basic Unit Power supply, 12 V RS 232 data cable Cobra3 Universal writer software Cobra3 Function generator module Coil, 300 turns Coil, 600 turns Resistor in plug-in box 47 Ohms Resistor in plug-in box 100 Ohms Resistor in plug-in box 220 Ohms Connection box Connecting cord, l = 250 mm, red Connecting cord, l = 250 mm, blue Connecting cord, l = 500 mm, red Connecting cord, l = 500 mm, blue Tasks 1. Determination of the impedance of a coil as a function of frequency. 2. Determination of the inductance of the coil. 3. Determination of the phase displacement between the terminal voltage and total current, as a function of the frequency in the circuit. 4. Determination of the total inductance of coils connected in parallel and in series. Set-up and procedure The experimental set up is as shown in Figs. 1, 2a and 2b. Connect the Cobra3 Basic Unit to the computer port COM1, COM2 or to USB port (for USB computer port use USB to RS232 Converter ). Start the measure program and select Cobra3 Universal Writer Gauge. Begin the measurement using the parameters given in Fig. 3. Fig. 1: Experimental set up for the measurement of the coil impedance. PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

7 LEP -11 Coil in the AC circuit with Cobra3 Fig. 2a: Circuit for measurement of the coil impedance. then the solution of (2) is I = I 0 cos (vt f) with the phase displacement f given by and vl tan f = (2) R Fig. 2b: Circuit for measurement of total current and total voltage. U 0 I 0 = (3) 2R 2 1vL2 2 It is customary to treat complex impedances as operators Coil Rˆ L ivl, Ohmic resistance Rˆ R. With parallel connection, Rˆ i : 1 ai Rˆ i 1 The real impedance of a circuit is the absolute value of and the phase relationship, analogous to (2), is the ratio of the imaginary part to the real part of. Theory and evaluation If a coil of inductance L and a resistor of resistance R are connected in a circuit (see Fig. 2), the sum of the voltage drops on the individual elements is equal to the terminal voltage U U IR L di dt where I is the current. The resistors R are selected so that the d.c. resistance of the coil, with a value of 0.2 Ω, can be disregarded. If the alternating voltage U has the frequency = 2 f and the waveform U = U 0 cos vt, Fig. 3: Measuring parameters., (1) Task 1 To determine the impedance of a coil as a function of the frequency, the coil is connected in series with resistors of known value. The frequency is varied until there is the same voltage drop across the coil as across the resistor (see Fig. 2a). The resistance and impedance values are then equal: R = vl = 2pf L (4) The masured frequencies for 300 turns and 600 turns coils and for different resistors with the same voltage drops across the coil as across the resistor are shown in Fig. 4. Task 2 With the regression line to the measured values of Fig. 4 and the linear statement (see eq.(4)) y = a + b x f = a + (1/2pL) R We receive for the inductance: L = 1/2pb and with the slopes for 300 turns and 600 turns coils (see Fig. 4): L(300) = (1.98 ± 0.09) mh L(600) = (9.1 ± 0.4) mh Both values are very close to theoretical values of the used inductances L(300) = 2 mh, L(600) = 9 mh PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

8 Coil in the AC circuit with Cobra3 LEP -11 Fig. 4: Measured frequencies for 300 turns and 600 turns coils and for different resistors when the same voltage drops across the coil as across the resistor. Task 3 The phase displacement between the total voltage and the total current can be measured using a circuit shown in Fig. 2b. Use the "Survey Function" of the Measure Software as it is shown in Fig. 5 for the measurement of phase displacements. Plot the phase displacement (see Fig. 6) and the tangent of phase displacement as a function of the Cobra3 function generator frequency (see Fig. 7). From the regression line to the measured values of Fig. 7 and the linear statement (see eq.(2)) Both values are very close to theoretical values of the used inductances L(300) = 2 mh, L(600) = 9 mh. y = a + b x tan(phi) = a + (2pL/R) f We receive for the inductance: L = br/2p and with the slopes for 300 turns and 600 turns coils (see Fig. 7): L(300) = (2.0 ±0.1) mh L(600) = (8.6 ± 0.5) mh Fig. 6: Phase displacement between total current and total voltage for 600 turns coil and 47 ohm resistor as a function of the frequency. Fig. 5: Measurement of current and voltage amplitudes and of phase displacements with the "Survey Function". Fig. 7: The tangent of phase displacement as a function of frequency for a 600 turns coil. PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

9 LEP -11 Coil in the AC circuit with Cobra3 Task 4 When coils are connected in parallel or in series, care should be taken to ensure that they are sufficiently far apart, since their magnetic fields influence one another. As in Task 3, use the "Survey Function" for the measurement of phase displacements and plot the tangent of phase displacement as a function of the frequency (see Fig. 8). From the slopes of the straight lines for coils connected in parallel in series (see Fig. 8) we receive: L( ) = (2.1 ± 0.1) mh L( ) = (11.8 ± 0.6) mh Both values are close to theoretical values of the used inductances: L( ) = 1.6 mh L( ) = 11 mh. Fig. 8: Calculation of the total inductance of coils connected in parallel and in series PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D Göttingen

Coil in the AC circuit with Cobra3

Coil in the AC circuit with Cobra3 Coil in the AC circuit with Cobra3 TEP Related topics Inductance, Kirchhoff s laws, Maxwell s equations, a.c. impedance, phase displacement. Principle and task The coil is connected in a circuit with a

More information

Coil in the AC circuit

Coil in the AC circuit Coil in the AC circuit LEP Related topics Inductance, Kirchhoff s laws, parallel connection, series connection, a. c. impedance, phase displacement, vector diagram Principle The impedance and phase displacement

More information

RLC Circuit with Cobra3

RLC Circuit with Cobra3 RLC Circuit with Cobra3 LEP Related topics Tuned circuit, series-tuned circuit, parallel-tuned circuit, resistance, capacitance, inductance, capacitor, coil, phase displacement, Q-factor, band-width,impedance,

More information

Inductance of solenoids

Inductance of solenoids Inductance of solenoids LEP -01 Related topics Law of inductance, Lenz s law, self-inductance, solenoids, transformer, oscillatory circuit, resonance, damped oscillation, logarithmic decrement, Q factor.

More information

Magnetic induction with Cobra3

Magnetic induction with Cobra3 Magnetic induction with Cobra3 LEP Related Topics Maxwell s equations, electrical eddy field, magnetic field of coils, coil, magnetic flux, induced voltage. Principle A magnetic field of variable frequency

More information

TEP. RLC Circuit with Cobra3

TEP. RLC Circuit with Cobra3 RLC Circuit with Cobra3 TEP Related topics Tuned circuit, series-tuned circuit, parallel-tuned circuit, resistance, capacitance, inductance, capacitor, coil, phase displacement, Q-factor, band-width,impedance,

More information

Inductance of solenoids with Cobra3

Inductance of solenoids with Cobra3 Inductance of solenoids with Cobra3 TEP Related topics Law of inductance, Lenz s law, self-inductance, solenoids, transformer, oscillatory circuit, resonance, damped oscillation, logarithmic decrement,

More information

Magnetic induction with Cobra3

Magnetic induction with Cobra3 Principle A magnetic field of variable frequency and varying strength is produced in a long coil. The voltages induced across thin coils which are pushed into the long coil are determined as a function

More information

RLC-circuits TEP. f res. = 1 2 π L C.

RLC-circuits TEP. f res. = 1 2 π L C. RLC-circuits TEP Keywords Damped and forced oscillations, Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, reactance, impedance, phase displacement, Q-factor, band-width

More information

Kirchhoff s laws, induction law, Maxwell equations, current, voltage, resistance, parallel connection, series connection, potentiometer

Kirchhoff s laws, induction law, Maxwell equations, current, voltage, resistance, parallel connection, series connection, potentiometer Kirchhoff s laws with Cobra4 TEP Related Topics Kirchhoff s laws, induction law, Maxwell equations, current, voltage, resistance, parallel connection, series connection, potentiometer Principle First Kirchhoff

More information

Experiment 1 Alternating Current with Coil and Ohmic Resistors

Experiment 1 Alternating Current with Coil and Ohmic Resistors Experiment Alternating Current with Coil and Ohmic esistors - Objects of the experiment - Determining the total impedance and the phase shift in a series connection of a coil and a resistor. - Determining

More information

LEP RLC Circuit

LEP RLC Circuit RLC Circuit LEP Related topics Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, phase displacement, Q-factor, band-width, loss resistance, damping Principle The

More information

RLC-circuits with Cobra4 Xpert-Link TEP. 1 2 π L C. f res=

RLC-circuits with Cobra4 Xpert-Link TEP. 1 2 π L C. f res= Related topics Damped and forced oscillations, Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, reactance, impedance, phase displacement, Q-factor, band-width Principle

More information

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits PHY203: General Physics III Lab page 1 of 5 Lab: AC Circuits OBJECTIVES: EQUIPMENT: Universal Breadboard (Archer 276-169) 2 Simpson Digital Multimeters (464) Function Generator (Global Specialties 2001)*

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Magnetic field inside a conductor

Magnetic field inside a conductor Magnetic field inside a conductor TEP Principle A current is passed through an electrolyte producing a magnetic field. This magnetic field inside the conductor is measured as function of position and current

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

RLC-circuits with Cobra4 Xpert-Link

RLC-circuits with Cobra4 Xpert-Link Student's Sheet RLC-circuits with Cobra4 Xpert-Link (Item No.: P2440664) Curricular Relevance Area of Expertise: Physics Subtopic: Inductance, Electromagnetic Oscillations, AC Circuits Topic: Electricity

More information

resistor box inductor 3 BNC to banana + V L

resistor box inductor 3 BNC to banana + V L Physics ab II Inductance and Circuit Page 1/5 Name: Partner: Partner: Purpose: To investigate how the voltage across an inductor changes in response to changing currents. To measure the inductance by measuring

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

Activity P51: LR Circuit (Power Output, Voltage Sensor)

Activity P51: LR Circuit (Power Output, Voltage Sensor) Activity P51: LR Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P51 LR Circuit.DS (See end of activity) (See end of activity) Equipment Needed

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

Exercise 1: Inductors

Exercise 1: Inductors Exercise 1: Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect an inductor has on dc and ac circuits by using measured values. You will verify your

More information

Lab #5 Steady State Power Analysis

Lab #5 Steady State Power Analysis Lab #5 Steady State Power Analysis Steady state power analysis refers to the power analysis of circuits that have one or more sinusoid stimuli. This lab covers the concepts of RMS voltage, maximum power

More information

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope PAGE 1/14 Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission

More information

13 th Asian Physics Olympiad India Experimental Competition Wednesday, 2 nd May 2012

13 th Asian Physics Olympiad India Experimental Competition Wednesday, 2 nd May 2012 13 th Asian Physics Olympiad India Experimental Competition Wednesday, nd May 01 Please first read the following instructions carefully: 1. The time available is ½ hours for each of the two experimental

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

Reactance and Impedance

Reactance and Impedance eactance and Impedance Theory esistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum value (in

More information

ET1210: Module 5 Inductance and Resonance

ET1210: Module 5 Inductance and Resonance Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

More information

Brown University PHYS 0060 Physics Department LAB B Circuits with Resistors and Diodes

Brown University PHYS 0060 Physics Department LAB B Circuits with Resistors and Diodes References: Circuits with Resistors and Diodes Edward M. Purcell, Electricity and Magnetism 2 nd ed, Ch. 4, (McGraw Hill, 1985) R.P. Feynman, Lectures on Physics, Vol. 2, Ch. 22, (Addison Wesley, 1963).

More information

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS Name: Partners: PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS The electricity produced for use in homes and industry is made by rotating coils of wire in a magnetic field, which results in alternating

More information

Electricity. Interference of microwaves Electromagnetic Oscillations and Waves. What you need:

Electricity. Interference of microwaves Electromagnetic Oscillations and Waves. What you need: Electromagnetic Oscillations and Waves Electricity What you can learn about Wavelength Standing wave Reflection Transmission Michelson interferometer Principle: A microwave beam, after reflection from

More information

Exercise 9: inductor-resistor-capacitor (LRC) circuits

Exercise 9: inductor-resistor-capacitor (LRC) circuits Exercise 9: inductor-resistor-capacitor (LRC) circuits Purpose: to study the relationship of the phase and resonance on capacitor and inductor reactance in a circuit driven by an AC signal. Introduction

More information

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance Introduction Electron spin resonance (ESR) (or electron paramagnetic resonance (EPR) as it is sometimes

More information

Experiment 13: LR Circuit

Experiment 13: LR Circuit 012-05892A AC/DC Electronics Laboratory Experiment 13: LR Circuit Purpose Theory EQUIPMENT NEEDED: Computer and Science Workshop Interface Power Amplifier (CI-6552A) (2) Voltage Sensor (CI-6503) AC/DC

More information

Teacher s Guide - Activity P51: LR Circuit (Power Output, Voltage Sensor)

Teacher s Guide - Activity P51: LR Circuit (Power Output, Voltage Sensor) Teacher s Guide - Activity P51: LR Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P51 LR Circuit.DS (See end of activity) (See end of activity)

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

RLC Frequency Response

RLC Frequency Response 1. Introduction RLC Frequency Response The student will analyze the frequency response of an RLC circuit excited by a sinusoid. Amplitude and phase shift of circuit components will be analyzed at different

More information

PHASES IN A SERIES LRC CIRCUIT

PHASES IN A SERIES LRC CIRCUIT PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.

More information

#8A RLC Circuits: Free Oscillations

#8A RLC Circuits: Free Oscillations #8A RL ircuits: Free Oscillations Goals In this lab we investigate the properties of a series RL circuit. Such circuits are interesting, not only for there widespread application in electrical devices,

More information

NAPREDNI FIZIČKI PRAKTIKUM 1 SMJER: ISTRAŽIVAČKI STUDIJ FIZIKE ELEKTRIČNI TITRAJNI KRUG

NAPREDNI FIZIČKI PRAKTIKUM 1 SMJER: ISTRAŽIVAČKI STUDIJ FIZIKE ELEKTRIČNI TITRAJNI KRUG NAPREDNI FIZIČKI PRAKTIKUM 1 SMJER: ISTRAŽIVAČKI STUDIJ FIZIKE ELEKTRIČNI TITRAJNI KRUG ISTRAŽIVAČKI STUDIJ FIZIKE NFP1 1 ZADACI 1. Odredite ovisnost impedancije o frekvenciji za serijski RLC krug, za

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Electron Spin Resonance v2.0

Electron Spin Resonance v2.0 Electron Spin Resonance v2.0 Background. This experiment measures the dimensionless g-factor (g s ) of an unpaired electron using the technique of Electron Spin Resonance, also known as Electron Paramagnetic

More information

PHY 132 Summer 2000 LAB 9: LRC Circuit (Phases) 1

PHY 132 Summer 2000 LAB 9: LRC Circuit (Phases) 1 PHY 132 Summer 2000 LAB 9: LRC Circuit (Phases) 1 Introduction In this lab we will measure the phases (voltage vs current) for each component in a series LRC circuit. Theory L C V_in R Fig. 1 Generic series

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

Lab 3: AC Low pass filters (version 1.3)

Lab 3: AC Low pass filters (version 1.3) Lab 3: AC Low pass filters (version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS DC POWER SUPPLIES We will discuss these instruments one at a time, starting with the DC power supply. The simplest DC power supplies are batteries which

More information

Lab 1: Basic RL and RC DC Circuits

Lab 1: Basic RL and RC DC Circuits Name- Surname: ID: Department: Lab 1: Basic RL and RC DC Circuits Objective In this exercise, the DC steady state response of simple RL and RC circuits is examined. The transient behavior of RC circuits

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

More information

ELECTRIC CIRCUITS CMPE 253 DEPARTMENT OF COMPUTER ENGINEERING LABORATORY MANUAL ISHIK UNIVERSITY

ELECTRIC CIRCUITS CMPE 253 DEPARTMENT OF COMPUTER ENGINEERING LABORATORY MANUAL ISHIK UNIVERSITY ELECTRIC CIRCUITS CMPE 253 DEPARTMENT OF COMPUTER ENGINEERING LABORATORY MANUAL ISHIK UNIVERSITY 2017-2018 1 WEEK EXPERIMENT TITLE NUMBER OF EXPERIMENT No Meeting Instructional Objective 2 Tutorial 1 3

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER)

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) LIST OF EXPERIMENTS. Verification of Ohm s laws and Kirchhoff s laws. 2. Verification of Thevenin s and Norton s Theorem. 3. Verification of Superposition

More information

ECE 231 Laboratory Exercise 3 Oscilloscope/Function-Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation

ECE 231 Laboratory Exercise 3 Oscilloscope/Function-Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation Laboratory Group (Names) OBJECTIVES Gain experience in using an oscilloscope to measure time varying signals. Gain experience in

More information

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

More information

ECE215 Lecture 7 Date:

ECE215 Lecture 7 Date: Lecture 7 Date: 29.08.2016 AC Circuits: Impedance and Admittance, Kirchoff s Laws, Phase Shifter, AC bridge Impedance and Admittance we know: we express Ohm s law in phasor form: where Z is a frequency-dependent

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 10 Electronic Circuits 1. Pre-Laboratory Work [2 pts] 1. How are you going to determine the capacitance of the unknown

More information

SINUSOIDS February 4, ELEC-281 Network Theory II Wentworth Institute of Technology. Bradford Powers Ryan Ferguson Richard Lupa Benjamin Wolf

SINUSOIDS February 4, ELEC-281 Network Theory II Wentworth Institute of Technology. Bradford Powers Ryan Ferguson Richard Lupa Benjamin Wolf SINUSOIDS February 4, 28 ELEC-281 Network Theory II Wentworth Institute of Technology Bradford Powers Ryan Ferguson Richard Lupa Benjamin Wolf Abstract: Sinusoidal waveforms are studied in three circuits:

More information

FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE

FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE 1 Introduction In this exercise you will get basic knowledge about how to use an oscilloscope. You ll also measure properties of components, which you are

More information

Exercise 2: Inductors in Series and in Parallel

Exercise 2: Inductors in Series and in Parallel Exercise 2: Inductors in Series and in Parallel EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the total inductance of a circuit containing inductors in series

More information

Output Impedance. Duty Cycle Range. Buffer Size Resolution. PROTECTION Input Over Voltage. Output Short Circuit. TRIGGERING Sources.

Output Impedance. Duty Cycle Range. Buffer Size Resolution. PROTECTION Input Over Voltage. Output Short Circuit. TRIGGERING Sources. 3 Channel Digital Storage Oscilloscope (DSO) Instrument VERTICAL SPECIFICATIONS Analogue Bandwidth (-3dB) Bandwidth Limiting Rise time (10% to 90%, calculated) Input ranges (full scale) Input sensitivity

More information

Sallen-Key_High_Pass_Filter -- Overview

Sallen-Key_High_Pass_Filter -- Overview Sallen-Key_High_Pass_Filter -- Overview Sallen-Key High Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand & analyze working of Sallen-Key topology of active

More information

Experiment 9: AC circuits

Experiment 9: AC circuits Experiment 9: AC circuits Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Last week (RC circuit): This week:

More information

Wave Measurement & Ohm s Law

Wave Measurement & Ohm s Law Wave Measurement & Ohm s Law Marking scheme : Methods & diagrams : 2 Graph plotting : 1 Tables & analysis : 2 Questions & discussion : 3 Performance : 2 Aim: Various types of instruments are used by engineers

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 10: LR and Undriven LRC Circuits

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 10: LR and Undriven LRC Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 005 Experiment 10: LR and Undriven LRC Circuits OBJECTIVES 1. To determine the inductance L and internal resistance R L of a coil,

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #11 Lab Report Inductance/Transformers Submission Date: 12/04/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex Williams Station

More information

Non_Inverting_Voltage_Follower -- Overview

Non_Inverting_Voltage_Follower -- Overview Non_Inverting_Voltage_Follower -- Overview Non-Inverting, Unity-Gain Amplifier Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Design

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE8261-ELECTRIC CIRCUITS LABORATORY LABORATORY MANUAL 1 ST YEAR EEE (REGULATION 2017)

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State Experiment 5 Introduction to C Steady State Purpose: This experiment addresses combinations of resistors, capacitors and inductors driven by sinusoidal voltage sources. In addition to the usual simulation

More information

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND Experiment 6 Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

NODIA AND COMPANY. Model Test Paper - I GATE Electrical & Electronic Measurement. Copyright By Publishers

NODIA AND COMPANY. Model Test Paper - I GATE Electrical & Electronic Measurement. Copyright By Publishers No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. Model Test Paper -

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

Exercise 6 AC voltage measurements average responding voltmeters

Exercise 6 AC voltage measurements average responding voltmeters Exercise 6 AC voltage measurements average responding voltmeters 1. Aim of the exercise The aim of the exercise is to familiarize students with the AC voltage measurements by means of rectified average

More information

Inverting_Amplifier -- Overview

Inverting_Amplifier -- Overview Inverting_Amplifier -- Overview Inverting Amplifier Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Design & build inverting amplifier

More information

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope For students to become more familiar with oscilloscopes and function generators. Pre laboratory Work Read the TDS 210 Oscilloscope

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN OBJECTIVES 1. To design and DC bias the JFET transistor oscillator for a 9.545 MHz sinusoidal signal. 2. To simulate JFET transistor oscillator using MicroCap

More information

Electrical Engineering Fundamentals

Electrical Engineering Fundamentals Electrical Engineering Fundamentals EE-238 Sheet 1 Series Circuits 1- For the circuits shown below, the total resistance is specified. Find the unknown resistance and the current for each circuit. 12.6

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Low_Pass_Filter_1st_Order -- Overview

Low_Pass_Filter_1st_Order -- Overview Low_Pass_Filter_1st_Order -- Overview 1 st Order Low Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Comprehend basics of

More information

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) 72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

More information

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi L UTS nstitute of Lifelong Learning, University of Delhi L UTS PHYSS (LAB MANUAL) nstitute of Lifelong Learning, University of Delhi PHYSS (LAB MANUAL) L UTS ntroduction ircuits containing an inductor

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Alternating current circuits- Series RLC circuits

Alternating current circuits- Series RLC circuits FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits- Series circuits 8- Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 18 ALTERNATING CURRENT

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 18 ALTERNATING CURRENT ENGINEERING OUNIL ERTIFIATE LEVEL ENGINEERING SIENE 03 TUTORIAL 8 ALTERNATING URRENT On completion of this tutorial you should be able to do the following. Explain alternating current. Explain Root Mean

More information

ENG 100 Lab #2 Passive First-Order Filter Circuits

ENG 100 Lab #2 Passive First-Order Filter Circuits ENG 100 Lab #2 Passive First-Order Filter Circuits In Lab #2, you will construct simple 1 st -order RL and RC filter circuits and investigate their frequency responses (amplitude and phase responses).

More information

Simulating Inductors and networks.

Simulating Inductors and networks. Simulating Inductors and networks. Using the Micro-cap7 software, CB introduces a hands on approach to Spice circuit simulation to devise new, improved, user models, able to accurately mimic inductor behaviour

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

EE-2302 Passive Filters and Frequency Response

EE-2302 Passive Filters and Frequency Response EE2302 Passive Filters and Frequency esponse Objective he student should become acquainted with simple passive filters for performing highpass, lowpass, and bandpass operations. he experimental tasks also

More information

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES Introduction to the concept of resonance Observing resonance

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information