Mid-Frequency Noise Notch in Deep Water. W.S. Hodgkiss / W.A. Kuperman. June 1, 2012 May 31, 2013

Size: px
Start display at page:

Download "Mid-Frequency Noise Notch in Deep Water. W.S. Hodgkiss / W.A. Kuperman. June 1, 2012 May 31, 2013"

Transcription

1 Mid-Frequency Noise Notch in Deep Water W.S. Hodgkiss and W.A. Kuperman June 1, 2012 May 31, 2013 A Proposal to ONR Code 322 Attn: Dr. Robert Headrick, Office of Naval Research BAA UCSD ABSTRACT Technical Contact: Administrative Contact: W.S. Hodgkiss / W.A. Kuperman Nancy Wilson whodgkiss@ucsd.edu / wkuperman@ucsd.edu nwilson@ucsd.edu / Marine Physical Laboratory Scripps Institution of Oceanography (SIO) / University of California, San Diego 9500 Gilman Drive, La Jolla CA We propose a combined experimental and modeling program to study the mid-frequency noise notch in deep water. A very sensitive 100 element vertical array will be used for noise measurements in the 1-10 khz band. Experimental results will be interpreted using in situ environmental data, theory and modeling. The overall results will also be interpreted in the more general context of arbitrary array configurations. Since no sources will be deployed, there will be no need for a source-related EIS. 1

2 Mid-Frequency Noise Notch in Deep Water W.S. Hodgkiss and W.A. Kuperman June 1, 2012 May 31, 2013 A Proposal to ONR Code 322 Attn: Dr. Robert Headrick, Office of Naval Research BAA UCSD VOLUME I: TECHNICAL PROPOSAL Technical Contact: Administrative Contact: W.S. Hodgkiss / W.A. Kuperman Nancy Wilson whodgkiss@ucsd.edu / wkuperman@ucsd.edu nwilson@ucsd.edu / Marine Physical Laboratory Scripps Institution of Oceanography (SIO) / University of California, San Diego 9500 Gilman Drive, La Jolla CA Table of Contents Objective p. 2 Background p. 2 Approach p. 2 Experimental Program p. 3 Modeling Program p. 3 Array and Signal Processing Analysis p. 4 Deliverables p. 4 Transition Potential p. 4 References p. 4 1

3 Objective: To measure and model the deep-water noise notch at mid frequencies. Background: Signals need to be extracted from noise, the latter having been studied in various details over the years (Carey, Jensen et al.). Understanding the physics of the deep-water mid frequency noise notch is key to utilizing the noise notch for an assortment of convergence zone scale ASW applications. In particular, the actual minimum level of the noise notch under various array-processing configurations is indicative of the potential for utilizing this ocean acoustic phenomenon. The noise notch is a well-known phenomenon resulting from noise sources near the surface. It has been particularly studied in the lower frequency, ship generated noise regime (see for example Wagstaff). There, the noise notch results from a combination of downward refraction and the dipole structure associated with distant sources near the pressure release ocean surfaces. At these lower frequencies, the common mechanisms for filling in the deep water noise notch primarily originating from shipping lane sources are shoaling of the sound channel between polar to temperate regions and continental slope, heavy shipping traffic environments in which down slope propagation converts steeper rays to more horizontal paths. In shallow water, the lower frequency noise notch case is discussed in papers by Rouseff and Ferat et al. and Yang et al. (also see references contained therein) where, for example, Rouseff takes internal wave activity as the notch filling mechanism. At mid-frequencies, however, the contributions from surface noise sources (see for example, Kennedy) will typically come from within a few convergence zones. Rather than the above effects, the notch filling mechanisms in deep water areas are likely to include ocean variability such as that originating from internal waves. In any event, there is in an important need for calibrated measurements of mid-frequency, beamformed noise to quantitatively ascertain the lowest levels of the noise notch (see for example Holden and references therein but in which their array did not have resolution to measure the notch) and for a model to relate these results to the oceanographic environment. While this total problem is rich in basic and applied research issues in oceanography, acoustic propagation through a fluctuating medium and signal/array processing, it has an important, potentially near-term impact on understanding and improving a class of ASW operations. Approach: The approach will involve at-sea measurements/data analysis and modeling. There are no plans to include an acoustic source in these measurements so there will be no need for an associated EIS. 2

4 A. Experimental Program: We propose an experimental program that is comprised of two deep- water experiments: 1) a combination engineering trial and noise measurement experiment in which the vertical array is suspended from the ship in deep water; and 2) a deep-water deployment of the array suspended from a remote buoy. The experiments will use a one hundred element array emphasizing the 1-10 khz regime. The measurements will use a DURIPfunded array of sensitive hydrophones (the HTI-92-WB that has a preamp self noise of 27 db re 1 upa/sqrt(hz) at 1 khz and that drops to 15 db re 1 upa/sqrt(hz) at 10 khz). There will be two types of deployments (which also serves the purpose of risk mitigation). The first will be the array hung from the ship itself. The second will utilize a buoy based remote system with connectivity. As mentioned, during the engineering sea test, the array will be deployed over the side of the ship. We anticipate the array being deployed to a depth of ~300 m with the data stream being recorded directly on the ship. While not the eventual autonomous deployment mode, this approach has the advantage of testing the entire array electronics and data acquisition system while preserving the ability to quickly recover the hardware if any issues develop. The data from the engineering sea test also will provide a valuable initial look at the mid-frequency noise notch in deep water. During the primary data collection experiment, an off board buoy will be used to tether the array and data acquisition system. Here we also anticipate the array being deployed to a depth of ~300 m with the data stream being recorded on the buoy. This autonomous mode has the advantage of enabling the ship to stand off to mitigate any concerns regarding its own self-noise contaminating the ambient noise measurements. The buoy will have GPS navigation and wireless connectivity to the ship. This will provide us the opportunity to monitor the health of the system as well as to copy over modest amounts of data for analysis prior to recovery of the buoy. Both the engineering sea test (~4 days) and data collection experiment (~10 days) are planned for deep water west of San Diego off the Patton Escarpment. B. Modeling Program: We will modify our suite of existing noise codes to predict mid-frequency noise in a fluctuating ocean. Emphasis will be on a fast, RAM-based Parabolic Equation (PE) that includes a module to simulate internal wave dynamics for the propagation medium. For the PE, surface noise sources will be coupled into the water channel during each step of the marching algorithm. Other inputs into the model will be (measured) sound speed profiles, surface roughness and oceanographic information from which an estimate of internal dynamics can be made. The cross-spectral density function of the acoustic field will be computed and an ability to simulate data realizations will be developed. 3

5 C. Array and Signal Processing Analysis: We will interpret the experimental/modeling results in terms of predicting the performance relevant system configurations. Conventional and adaptive array processing methods will be used. Deliverables: Deliverables include research papers and focused reports. Transition Potential: The output of this program is relevant to some of the efforts of N875. References W. M Carey and R.B. Evans, Ocean Ambient Noise, Springer, New York (2011) F.B. Jensen, W. A. Kuperman, M.B. Porter and H. Schmidt, Computational Ocean Acoustics, 2 nd Edition, Springer, New York (2011) R. A. Wagstaff, Low-frequency ambient noise in the deep ocean sound channel-the missing component, J. Acoust. Soc. Am. 69, 1009 (1981). D. Rouseff and D. J. Tang, Internal wave effects on the ambient noise notch in the East China Sea;Madel/data comparison, J. Acoust. Soc. Am. 120, 1284 (2006). P. Ferat and J. Arvelo, Mid- to High-Frequency Ambient Noise Anisotropy and Notch- Filling Mechanisms, p.497, in High Frequency Ocean Acoustics, edited by M.B. Porter, M. Siderius, and W. A. Kuperman, AIP CP /04 (2004). T. C. Yang and K. Yoo, Modeling the environmental influence on the vertical directionality of ambient noise in shallow water, J. Acoust. Soc. Am., 101, 2541 (1997). R.M. Kennedy and T. K. Szlyk, Modeling high-frequency vertical directional spectra, J. Acoust. Soc. Am. 102, 673 (1991). A. Holden, Measurements and Predictions of High Frequency Ambient Noise, p. 508, in High Frequency Ocean Acoustics, edited by M.B. Porter, M. Siderius, and W. A. Kuperman, AIP CP /04 (2004). 4

MURI: Impact of Oceanographic Variability on Acoustic Communications

MURI: Impact of Oceanographic Variability on Acoustic Communications MURI: Impact of Oceanographic Variability on Acoustic Communications W.S. Hodgkiss Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 92093-0701 phone: (858) 534-1798 / fax: (858)

More information

Long Range Acoustic Communications Experiment 2010

Long Range Acoustic Communications Experiment 2010 Long Range Acoustic Communications Experiment 2010 Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 92093-0701 6 September 2010 Objectives Experimentally confirm that robust

More information

Ocean Ambient Noise Studies for Shallow and Deep Water Environments

Ocean Ambient Noise Studies for Shallow and Deep Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Ambient Noise Studies for Shallow and Deep Water Environments Martin Siderius Portland State University Electrical

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

Advanced Structural Dynamics and Acoustics

Advanced Structural Dynamics and Acoustics Advanced Structural Dynamics and Acoustics Fundamentals of OCEAN ACOUSTICS Figures in this lecture are from Jensen, F.B., W.A. Kuperman, M.B. Porter, and H. Schmidt. Computational Ocean Acoustics. New

More information

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise Martin Siderius Portland State University, ECE Department 1900 SW 4 th Ave., Portland, OR 97201 phone: (503) 725-3223

More information

Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications

Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications W.S. Hodgkiss Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 92093-0701 phone: (858)

More information

Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise

Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise Proceedings of Acoustics - Fremantle -3 November, Fremantle, Australia Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise Xinyi Guo, Fan Li, Li Ma, Geng Chen Key Laboratory

More information

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum Aaron Thode

More information

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine

More information

Marine~4 Pbscl~ PHYS(O laboratory -Ip ISUt

Marine~4 Pbscl~ PHYS(O laboratory -Ip ISUt Marine~4 Pbscl~ PHYS(O laboratory -Ip ISUt il U!d U Y:of thc SCrip 1 nsti0tio of Occaiiographv U n1icrsi ry of' alifi ra, San Die".(o W.A. Kuperman and W.S. Hodgkiss La Jolla, CA 92093-0701 17 September

More information

INTERDISCIPLINARY RESEARCH PROGRAM

INTERDISCIPLINARY RESEARCH PROGRAM INTERDISCIPLINARY RESEARCH PROGRAM W.A. Kuperman and W.S. Hodgkiss Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 92093-0701 Phone: (619) 534-1803 / (619) 534-1798; FAX: (619)

More information

Shallow Water Fluctuations and Communications

Shallow Water Fluctuations and Communications Shallow Water Fluctuations and Communications H.C. Song Marine Physical Laboratory Scripps Institution of oceanography La Jolla, CA 92093-0238 phone: (858) 534-0954 fax: (858) 534-7641 email: hcsong@mpl.ucsd.edu

More information

Observations of the deep-water mid-frequency ambient noise spatial structure and temporal fluctuation characteristics.

Observations of the deep-water mid-frequency ambient noise spatial structure and temporal fluctuation characteristics. Mid-Frequency Ambient Noise Experiment 4-21 August 2018 Objective Observations of the deep-water mid-frequency ambient noise spatial structure and temporal fluctuation characteristics. Background The 2D

More information

Mid-Frequency Reverberation Measurements with Full Companion Environmental Support

Mid-Frequency Reverberation Measurements with Full Companion Environmental Support DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Mid-Frequency Reverberation Measurements with Full Companion Environmental Support Dajun (DJ) Tang Applied Physics Laboratory,

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region & West Coast Naval Training Range

More information

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum Aaron Thode

More information

Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters

Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters H.C. Song, W.S. Hodgkiss, and J.D. Skinner Marine Physical Laboratory, Scripps Institution of Oceanography La Jolla, CA 92037-0238,

More information

Development of Mid-Frequency Multibeam Sonar for Fisheries Applications

Development of Mid-Frequency Multibeam Sonar for Fisheries Applications Development of Mid-Frequency Multibeam Sonar for Fisheries Applications John K. Horne University of Washington, School of Aquatic and Fishery Sciences Box 355020 Seattle, WA 98195 phone: (206) 221-6890

More information

Summary. Methodology. Selected field examples of the system included. A description of the system processing flow is outlined in Figure 2.

Summary. Methodology. Selected field examples of the system included. A description of the system processing flow is outlined in Figure 2. Halvor Groenaas*, Svein Arne Frivik, Aslaug Melbø, Morten Svendsen, WesternGeco Summary In this paper, we describe a novel method for passive acoustic monitoring of marine mammals using an existing streamer

More information

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY M. BADIEY, K. WONG, AND L. LENAIN College of Marine Studies, University of Delaware Newark DE 19716, USA E-mail: Badiey@udel.edu

More information

Acoustic Communications and Navigation for Mobile Under-Ice Sensors

Acoustic Communications and Navigation for Mobile Under-Ice Sensors DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Communications and Navigation for Mobile Under-Ice Sensors Lee Freitag Applied Ocean Physics and Engineering 266

More information

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Mohsen Badiey University of Delaware College of Marine Studies Newark, DE 19716 phone: (32) 831-3687 fax: (32) 831-332 email: badiey@udel.edu

More information

MIMO Transceiver Systems on AUVs

MIMO Transceiver Systems on AUVs MIMO Transceiver Systems on AUVs Mohsen Badiey 107 Robinson Hall College of Marine and Earth Studies, phone: (302) 831-3687 fax: (302) 831-6521 email: badiey@udel.edu Aijun Song 114 Robinson Hall College

More information

Acoustic propagation affected by environmental parameters in coastal waters

Acoustic propagation affected by environmental parameters in coastal waters Indian Journal of Geo-Marine Sciences Vol. 43(1), January 2014, pp. 17-21 Acoustic propagation affected by environmental parameters in coastal waters Sanjana M C, G Latha, A Thirunavukkarasu & G Raguraman

More information

Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments

Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments David R. Dowling Department

More information

TREX13 data analysis/modeling

TREX13 data analysis/modeling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TREX13 data analysis/modeling Dajun (DJ) Tang Applied Physics Laboratory, University of Washington 1013 NE 40 th Street,

More information

North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements

North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements Kevin D. Heaney Ocean Acoustical Services and Instrumentation

More information

Shallow Water MCM using Off-Board, Autonomous Sensor Networks and Multistatic, Time-Reversal Acoustics

Shallow Water MCM using Off-Board, Autonomous Sensor Networks and Multistatic, Time-Reversal Acoustics Shallow Water MCM using Off-Board, Autonomous Sensor Networks and Multistatic, Time-Reversal Acoustics William A. Kuperman, Karim Sabra, Philippe Roux and William S. Hodgkiss Marine Physics Laboratory

More information

High Frequency Acoustical Propagation and Scattering in Coastal Waters

High Frequency Acoustical Propagation and Scattering in Coastal Waters High Frequency Acoustical Propagation and Scattering in Coastal Waters David M. Farmer Graduate School of Oceanography (educational) University of Rhode Island Narragansett, RI 02882 Phone: (401) 874-6222

More information

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise Martin Siderius Portland State University, ECE Department 1900 SW 4 th Ave., Portland, OR 97201 phone: (503) 725-3223

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Noise Session 4aNSb: Future of Acoustics 4aNSb1. Ocean noise: Lose it

More information

Reverberation, Sediment Acoustics, and Targets-in-the-Environment

Reverberation, Sediment Acoustics, and Targets-in-the-Environment DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Reverberation, Sediment Acoustics, and Targets-in-the-Environment Kevin L. Williams Applied Physics Laboratory College

More information

Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx

Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx Mohsen Badiey 1, Stephen E. Forsythe 2, Michael B. Porter 3, and the KauaiEx Group 1 College of Marine Studies, University of

More information

Marine Mammal Acoustic Tracking from Adapting HARP Technologies

Marine Mammal Acoustic Tracking from Adapting HARP Technologies DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Marine Mammal Acoustic Tracking from Adapting HARP Technologies Sean M. Wiggins Marine Physical Laboratory, Scripps Institution

More information

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Mohsen Badiey College of Marine and Earth Studies University of Delaware Newark, DE 19716 phone: (302) 831-3687 fax: (302) 831-3302

More information

Results from the Elba HF-2003 experiment

Results from the Elba HF-2003 experiment Results from the Elba HF-2003 experiment Finn Jensen, Lucie Pautet, Michael Porter, Martin Siderius, Vincent McDonald, Mohsen Badiey, Dan Kilfoyle and Lee Freitag NATO Undersea Research Centre, La Spezia,

More information

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940 TARUN K. CHANDRAYADULA 703-628-3298 650 Sloat Ave # 3, cptarun@gmail.com Monterey,CA 93940 EDUCATION George Mason University, Fall 2009 Fairfax, VA Ph.D., Electrical Engineering (GPA 3.62) Thesis: Mode

More information

Ocean Acoustic Observatories: Data Analysis and Interpretation

Ocean Acoustic Observatories: Data Analysis and Interpretation Ocean Acoustic Observatories: Data Analysis and Interpretation Peter F. Worcester Scripps Institution of Oceanography, University of California at San Diego La Jolla, CA 92093-0225 phone: (858) 534-4688

More information

Directionality and coherence of underwater noise and their impact on sonar array performance

Directionality and coherence of underwater noise and their impact on sonar array performance Directionality and coherence of underwater noise and their impact on sonar array performance Zhi Yong ZHANG Defence Science & Technology Organisation, Australia ABSTRACT Fundamentally, sonar detection

More information

Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface LONG-TERM

More information

High-Frequency Rapid Geo-acoustic Characterization

High-Frequency Rapid Geo-acoustic Characterization High-Frequency Rapid Geo-acoustic Characterization Kevin D. Heaney Lockheed-Martin ORINCON Corporation, 4350 N. Fairfax Dr., Arlington VA 22203 Abstract. The Rapid Geo-acoustic Characterization (RGC) algorithm

More information

Underwater acoustic measurements of the WET-NZ device at Oregon State University s ocean test facility

Underwater acoustic measurements of the WET-NZ device at Oregon State University s ocean test facility Underwater acoustic measurements of the WET-NZ device at Oregon State University s ocean test facility An initial report for the: Northwest National Marine Renewable Energy Center (NNMREC) Oregon State

More information

Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation

Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation Peter F. Worcester Scripps Institution of Oceanography, University of California at San Diego La Jolla, CA

More information

Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments

Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments H. Chandler*, E. Kennedy*, R. Meredith*, R. Goodman**, S. Stanic* *Code 7184, Naval Research Laboratory Stennis

More information

MODELING DOPPLER-SENSITIVE WAVEFORMS MEASURED OFF THE COAST OF KAUAI

MODELING DOPPLER-SENSITIVE WAVEFORMS MEASURED OFF THE COAST OF KAUAI Proceedings of the Eighth European Conference on Underwater Acoustics, 8th ECUA Edited by S. M. Jesus and O. C. Rodríguez Carvoeiro, Portugal 2-5 June, 26 MODELING DOPPLER-SENSITIVE WAVEFORMS MEASURED

More information

Time Reversal Ocean Acoustic Experiments At 3.5 khz: Applications To Active Sonar And Undersea Communications

Time Reversal Ocean Acoustic Experiments At 3.5 khz: Applications To Active Sonar And Undersea Communications Time Reversal Ocean Acoustic Experiments At 3.5 khz: Applications To Active Sonar And Undersea Communications Heechun Song, P. Roux, T. Akal, G. Edelmann, W. Higley, W.S. Hodgkiss, W.A. Kuperman, K. Raghukumar,

More information

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments David R. Dowling Department of Mechanical Engineering

More information

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing Arthur B. Baggeroer Massachusetts Institute of Technology Cambridge, MA 02139 Phone: 617 253 4336 Fax: 617 253 2350 Email: abb@boreas.mit.edu

More information

Exploitation of frequency information in Continuous Active Sonar

Exploitation of frequency information in Continuous Active Sonar PROCEEDINGS of the 22 nd International Congress on Acoustics Underwater Acoustics : ICA2016-446 Exploitation of frequency information in Continuous Active Sonar Lisa Zurk (a), Daniel Rouseff (b), Scott

More information

Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness

Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness Robert M. Heitsenrether, Mohsen Badiey Ocean Acoustics Laboratory, College of Marine Studies, University of Delaware, Newark, DE 19716

More information

Fluctuations of Broadband Acoustic Signals in Shallow Water

Fluctuations of Broadband Acoustic Signals in Shallow Water Fluctuations of Broadband Acoustic Signals in Shallow Water LONG-TERM GOALS Mohsen Badiey College of Earth, Ocean, and Environment University of Delaware Newark, DE 19716 Phone: (302) 831-3687 Fax: (302)

More information

Acoustic Communication Using Time-Reversal Signal Processing: Spatial and Frequency Diversity

Acoustic Communication Using Time-Reversal Signal Processing: Spatial and Frequency Diversity Acoustic Communication Using Time-Reversal Signal Processing: Spatial and Frequency Diversity Daniel Rouseff, John A. Flynn, James A. Ritcey and Warren L. J. Fox Applied Physics Laboratory, College of

More information

The Acoustic Oceanographic Buoy Telemetry System

The Acoustic Oceanographic Buoy Telemetry System The Acoustic Oceanographic Buoy Telemetry System An advanced sonobuoy that meets acoustic rapid environmental assessment requirements {A. Silva, F. Zabel, C. Martins} In the past few years Rapid Environmental

More information

Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments

Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments ONR Special Research Awards in Underwater Acoustics: Entry Level Faculty Award Kyle M. Becker The Pennsylvania State

More information

Thin-ice Arctic Acoustic Window (THAAW)

Thin-ice Arctic Acoustic Window (THAAW) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Thin-ice Arctic Acoustic Window (THAAW) Peter F. Worcester La Jolla, CA 92093-0225 phone: (858) 534-4688 fax: (858) 534-6354

More information

MURI: Impact of Oceanographic Variability on Acoustic Communications

MURI: Impact of Oceanographic Variability on Acoustic Communications DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. MURI: Impact of Oceanographic Variability on Acoustic Communications W.S. Hodgkiss Marine Physical Laboratory Scripps Institution

More information

IN the absence of near-shipping interference, the undersea

IN the absence of near-shipping interference, the undersea IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 32, NO. 3, JULY 2007 609 Vertical Directionality of Midfrequency Surface Noise in Downward-Refracting Environments Cathy Ann Clark, Member, IEEE Abstract The vertical

More information

Dispersion of Sound in Marine Sediments

Dispersion of Sound in Marine Sediments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Dispersion of Sound in Marine Sediments N. Ross Chapman School of Earth and Ocean Sciences University of Victoria 3800

More information

Underwater Wideband Source Localization Using the Interference Pattern Matching

Underwater Wideband Source Localization Using the Interference Pattern Matching Underwater Wideband Source Localization Using the Interference Pattern Matching Seung-Yong Chun, Se-Young Kim, Ki-Man Kim Agency for Defense Development, # Hyun-dong, 645-06 Jinhae, Korea Dept. of Radio

More information

North Pacific Acoustic Laboratory: Scripps Institution of Oceanography

North Pacific Acoustic Laboratory: Scripps Institution of Oceanography North Pacific Acoustic Laboratory: Scripps Institution of Oceanography Peter F. Worcester Scripps Institution of Oceanography, University of California, San Diego La Jolla, CA 92093-0225 phone: (858) 534-4688

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region & West Coast Naval Training Range

More information

Pilot experiments for monitoring ambient noise in Northern Crete

Pilot experiments for monitoring ambient noise in Northern Crete Pilot experiments for monitoring ambient noise in Northern Crete Panagiotis Papadakis George Piperakis Emmanuel Skarsoulis Emmanuel Orfanakis Michael Taroudakis University of Crete, Department of Mathematics,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 213 http://acousticalsociety.org/ ICA 213 Montreal Montreal, Canada 2-7 June 213 Underwater Acoustics Session 4aUWa: Detection and Localization 4aUWa3. Data-based

More information

Acoustic Communications and Navigation for Mobile Under-Ice Sensors

Acoustic Communications and Navigation for Mobile Under-Ice Sensors DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Communications and Navigation for Mobile Under-Ice Sensors Lee Freitag Applied Ocean Physics and Engineering 266

More information

Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations

Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations Daniel Rouseff, Dajun Tang, Kevin L. Williams, and Zhongkang Wang a) Applied Physics Laboratory,

More information

Fluctuating arrivals of short-range acoustic data

Fluctuating arrivals of short-range acoustic data Fluctuating arrivals of short-range acoustic data Cheolsoo Park Maritime and Ocean Engineering Research Institute (MOERI), Daejeon 305-343, Korea Woojae Seong a) Department of Ocean Engineering, Seoul

More information

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient Alex ZINOVIEV 1 ; David W. BARTEL 2 1,2 Defence Science and Technology Organisation, Australia ABSTRACT

More information

HIGH FREQUENCY INTENSITY FLUCTUATIONS

HIGH FREQUENCY INTENSITY FLUCTUATIONS Proceedings of the Seventh European Conference on Underwater Acoustics, ECUA 004 Delft, The Netherlands 5-8 July, 004 HIGH FREQUENCY INTENSITY FLUCTUATIONS S.D. Lutz, D.L. Bradley, and R.L. Culver Steven

More information

Bio-Alpha off the West Coast

Bio-Alpha off the West Coast DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Bio-Alpha off the West Coast Dr. Orest Diachok Johns Hopkins University Applied Physics Laboratory Laurel MD20723-6099

More information

Thin-ice Arctic Acoustic Window (THAAW)

Thin-ice Arctic Acoustic Window (THAAW) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Thin-ice Arctic Acoustic Window (THAAW) Peter F. Worcester La Jolla, CA 92093-0225 phone: (858) 534-4688 fax: (858) 534-6354

More information

HF Radar Measurements of Ocean Surface Currents and Winds

HF Radar Measurements of Ocean Surface Currents and Winds HF Radar Measurements of Ocean Surface Currents and Winds John F. Vesecky Electrical Engineering Department, University of California at Santa Cruz 221 Baskin Engineering, 1156 High Street, Santa Cruz

More information

NEutrino Mediterranean Observatory

NEutrino Mediterranean Observatory On line monitoring of underwater acoustic background from 2000 m depth NEutrino Mediterranean Observatory G. Riccobene, for the Collaboration The test site in Catania The Collaboration aims at installing

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ACOUSTIC PROPAGATION THROUGH THE ANTARCTIC CONVERGENCE ZONE CALIBRATION TESTS FOR THE NUCLEAR TEST MONITORING SYSTEM Donna K. Blackman and Catherine de Groot-Hedlin University of California San Diego Sponsored

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

Reverberation, Sediment Acoustics, and Targets-in-the-Environment

Reverberation, Sediment Acoustics, and Targets-in-the-Environment DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Reverberation, Sediment Acoustics, and Targets-in-the-Environment Kevin L. Williams Applied Physics Laboratory College

More information

Vertical Directionality of Low-Frequency Wind Noise and Vertical Array Optimization for the Wind Noise Limit

Vertical Directionality of Low-Frequency Wind Noise and Vertical Array Optimization for the Wind Noise Limit Naval Research Laboratory Washington, DC 20375-5320 NRL/FR/7120--04-10,088 Vertical Directionality of Low-Frequency Wind Noise and Vertical Array Optimization for the Wind Noise Limit THOMAS J. HAYWARD

More information

Centre for Marine Science and Technology Curtin University. PORT HEDLAND SEA NOISE LOGGER PROGRAM, FIELD REPORT MARCH-2011 to JULY-2011

Centre for Marine Science and Technology Curtin University. PORT HEDLAND SEA NOISE LOGGER PROGRAM, FIELD REPORT MARCH-2011 to JULY-2011 Centre for Marine Science and Technology Curtin University PORT HEDLAND SEA NOISE LOGGER PROGRAM, FIELD REPORT MARCH-2011 to JULY-2011 By: Robert D. McCauley & Miles J. Parsons Centre for Marine Science

More information

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014 A Study on channel modeling of underwater acoustic communication K. Saraswathi, Netravathi K A., Dr. S Ravishankar Asst Prof, Professor RV College of Engineering, Bangalore ksaraswathi@rvce.edu.in, netravathika@rvce.edu.in,

More information

Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization

Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization Kent Scarbrough Advanced Technology Laboratory Applied Research Laboratories The University of Texas

More information

Oceanographic and Bathymetric Effects on Ocean Acoustics

Oceanographic and Bathymetric Effects on Ocean Acoustics . DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Oceanographic and Bathymetric Effects on Ocean Acoustics Michael B. Porter Heat, Light, and Sound Research, Inc. 3366

More information

aoi^i\i6öo<r u uu u REPORT DOCUMENTATION PAGE 05/20/2015 N I-0462 ONR BAA Arctic, Mooring John N. Kemp

aoi^i\i6öo<r u uu u REPORT DOCUMENTATION PAGE 05/20/2015 N I-0462 ONR BAA Arctic, Mooring John N. Kemp REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

INITIAL ANALYSIS OF DATA FROM THE NEW DIEGO GARCIA HYDROACOUSTIC STATION. Jeffrey A. Hanson. Science Applications International Corporation

INITIAL ANALYSIS OF DATA FROM THE NEW DIEGO GARCIA HYDROACOUSTIC STATION. Jeffrey A. Hanson. Science Applications International Corporation INITIAL ANALYSIS OF DATA FROM THE NEW DIEGO GARCIA HYDROACOUSTIC STATION Jeffrey A. Hanson Science Applications International Corporation Sponsored by Defense Threat Reduction Agency Contract No. DTRA-99-C-

More information

Thin-ice Arctic Acoustic Window (THAAW)

Thin-ice Arctic Acoustic Window (THAAW) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Thin-ice Arctic Acoustic Window (THAAW) Peter F. Worcester La Jolla, CA 92093-0225 phone: (858) 534-4688 fax: (858) 534-6354

More information

Acoustic Resonance Classification of Swimbladder-Bearing Fish

Acoustic Resonance Classification of Swimbladder-Bearing Fish Acoustic Resonance Classification of Swimbladder-Bearing Fish Timothy K. Stanton and Dezhang Chu Applied Ocean Physics and Engineering Department Woods Hole Oceanographic Institution Bigelow 201, MS #11

More information

SOCAL 34 Preliminary Cruise Report R/V Sproul, July 21-28, Executive Summary. Introduction

SOCAL 34 Preliminary Cruise Report R/V Sproul, July 21-28, Executive Summary. Introduction SOCAL 34 Preliminary Cruise Report R/V Sproul, July 21-28, 2009 John Hildebrand Scripps Institution of Oceanography University of California San Diego jhildebrand@ucsd.edu Executive Summary During July

More information

A passive fathometer technique for imaging seabed layering using ambient noise

A passive fathometer technique for imaging seabed layering using ambient noise A passive fathometer technique for imaging seabed layering using ambient noise Martin Siderius HLS Research Inc., 12730 High Bluff Drive, Suite 130, San Diego, California 92130 Chris H. Harrison NATO Undersea

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Propagation of Low-Frequency, Transient Acoustic Signals through a Fluctuating Ocean: Development of a 3D Scattering Theory

More information

Ship source level. Aleksander Klauson, Janek Laanearu, Mirko Mustonen. Gothenburg, 01 June 2016

Ship source level. Aleksander Klauson, Janek Laanearu, Mirko Mustonen. Gothenburg, 01 June 2016 Ship source level Aleksander Klauson, Janek Laanearu, Mirko Mustonen Gothenburg, 01 June 2016 Outline 1. Why ship noise? 2. How to measure ship noise. Testing methods. 3. Sources of ship noise. 4. Source

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Understanding the Effects of Water-Column Variability on Very-High-Frequency Acoustic Propagation in Support of High-Data-Rate

More information

Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments

Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments Natalia A. Sidorovskaia*, George E. Ioup, Juliette W. Ioup, and Jerald W. Caruthers *Physics Department, The University

More information

Channel Effects on Direct-Sequence Spread Spectrum Rake Receiver During the KauaiEx Experiment

Channel Effects on Direct-Sequence Spread Spectrum Rake Receiver During the KauaiEx Experiment Channel Effects on Direct-Sequence Spread Spectrum Rake Receiver During the KauaiEx Experiment Paul Hursky*, Vincent K. McDonald, and the KauaiEx Group Center for Ocean Research, SAIC, 10260 Campus Point

More information

BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS

BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS PETER L. NIELSEN SACLANT Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy E-mail: nielsen@saclantc.nato.int

More information

Dynamic Ambient Noise Model Comparison with Point Sur, California, In-Situ Data

Dynamic Ambient Noise Model Comparison with Point Sur, California, In-Situ Data 1 Dynamic Ambient Noise Model Comparison with Point Sur, California, In-Situ Data Charlotte V. Leigh, APL-UW Anthony I. Eller, SAIC Applied Physics Laboratory, University of Washington Seattle, Washington

More information

Tu A D Broadband Towed-Streamer Assessment, West Africa Deep Water Case Study

Tu A D Broadband Towed-Streamer Assessment, West Africa Deep Water Case Study Tu A15 09 4D Broadband Towed-Streamer Assessment, West Africa Deep Water Case Study D. Lecerf* (PGS), D. Raistrick (PGS), B. Caselitz (PGS), M. Wingham (BP), J. Bradley (BP), B. Moseley (formaly BP) Summary

More information

Acoustic Communications and Navigation for Under-Ice Sensors

Acoustic Communications and Navigation for Under-Ice Sensors Acoustic Communications and Navigation for Under-Ice Sensors Lee Freitag and Andrey Morozov 2009 Funded Project Ocean and Climate Change Institute What were the primary questions you were trying to address

More information

Geoacoustic Inversion of Tow-Ship Noise via Near-Field Matched-Field Processing

Geoacoustic Inversion of Tow-Ship Noise via Near-Field Matched-Field Processing 454 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 28, NO. 3, JULY 2003 Geoacoustic Inversion of Tow-Ship Noise via Near-Field Matched-Field Processing David J. Battle, Member, IEEE, Peter Gerstoft, Member,

More information

Computer modeling of acoustic modem in the Oman Sea with inhomogeneities

Computer modeling of acoustic modem in the Oman Sea with inhomogeneities Indian Journal of Geo Marine Sciences Vol.46 (08), August 2017, pp. 1651-1658 Computer modeling of acoustic modem in the Oman Sea with inhomogeneities * Mohammad Akbarinassab University of Mazandaran,

More information

Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region

Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region John A. Hildebrand Scripps Institution

More information

A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator

A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator 430 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator L. Sevgi and Ç. Uluışık Doğuş University,

More information