10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD

Size: px
Start display at page:

Download "10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD"

Transcription

1 10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD Hideaki Hasegawa a), Yosuke Oikawa, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa Research Institute of Electrical Communication, Tohoku University Katahira, Aoba-ku, Sendai , Japan a) hasehide@riec.tohoku.ac.jp Abstract: We describe a 5 km 10 Gb/s transmission at 850 nm using a single-mode photonic crystal fiber (PCF), a vertical cavity surface emitting laser (VCSEL), and a Si-avalanche photodiode (APD). The fabricated PCF has an endlessly single-mode property. The transmission loss and dispersion of the fabricated PCF were 5.2 db/km and 62.8 ps/nm/km, respectively. We also fabricate erbium-doped fluoride fiber amplifier (EDFFA), which operates at 850 nm and report the gain characteristics of EDFFA. 10 Gb/s NRZ signals were successfully transmitted over 5 km. Keywords: photonic crystal fiber, VCSEL, Si-avalanche photodiode, EDFFA Classification: Photonics devices, circuits, and systems References [1] J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Photonic crystal fibers, Opt. Fiber Technol., vol. 5, pp , [2] T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, Photonic crystal fibers: An endless variety, IEICE Trans. Electron., vol. E84-C, pp , [3] T. A. Birks, J. C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., vol. 22, pp , [4] W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, Soliton effects in photonic crystal fibers at 850 nm, Electron. Lett., vol. 36, pp , [5] J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett., vol. 25, pp , [6] K. Iga, F. Koyama, and S. Kinoshita, Surface emitting semiconductor lasers, IEEE J. Quantum Electron., vol. 24, pp , [7] D. G. Deppe, D. L. Huffaker, T. Oh, H. Deng, and Q. Deng, Low-threshold vertical cavity surface emitting lasers based on oxidec IEICE

2 confinement and high contrast distributed Bragg reflectors, IEEE J. Select. Quantum Electron., vol. 3, pp , [8] K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, Ultra wide band 190 Gbit/s WDM transmission over a long length and low loss PCF, Optical Fiber Communication Conference (OFC2004), PD23, [9] Y. Oikawa, H. Hasegawa, M. Yoshida, T. Hirooka, and M. Nakazawa, Ultra-broadband dispersion measurement of photonic crystal fiber with pico-second streak camera and group-delay-free supercontinuum, Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR 2005), CWE2-1, [10] C. Millar, M. Brierley, M. Hunt, and S. Carter, Efficient up-conversion pumping at 800 nm of an erbium-doped fluoride fiber laser operating at 850 nm, Electron. Lett., vol. 26, pp , Introduction Recently, photonic crystal fiber (PCF), which has a core region surrounded by multiple air holes, has received a lot of attention because of its new characteristics [1, 2]. PCF has attractive features including endlessly single-mode operation [3], high nonlinearlity [4, 5], and arbitrary dispersion control [1]. The structure, which is defined by the hole pitch Λ and the hole diameter d, allows much greater flexibility as regards designing the dispersion to suit new applications. A zero dispersion shift toward the shorter wavelength region is interesting in terms of realizing high-speed optical communication in a new wavelength region. For example, the 800 nm region is attractive, since inexpensive and high-speed optical devices such as the AlGaAs VCSEL and Si-APD are available. PCF is also an intrinsically inexpensive transmission medium, because there is no need for expensive doping materials such as GeO 2. In particular, VCSELs have a lot of advantages over edge emitting lasers including low threshold current, a single longitudinal mode and high density integration, due to their two dimensional structure and short cavity length [6, 7]. AlGaAs quantum well based VCSELs at 850 nm have achieved higher efficiency, higher output power and larger modulation bandwidth, compared with InP based VCSELs at longer wavelength. The demand of AlGaAs VCSELs has increased for Local Area Network (LAN) and interconnect. However, since conventional fibers are multi-mode and have large normal dispersion in the 800 nm region, transmission length is limited to m. On the other hand, in PCFs, it is possible to control dispersion characteristics and transverse mode more flexibly. By combining AlGaAs VCSEL and PCF, we can construct inexpensive and high-speed communication systems such as a few km Gb/s Ethernet. Recently Nakajima et al. have reported an ultra wide band transmission using a PCF in the 850 to 1550 nm region [8]. They used a distributed feedback (DFB) laser as a light source and a PCF with a d/λ of 0.50 that was multi-mode at 850 nm. In this paper, we report 10 Gb/s data transmission in the 800 nm region 110

3 using a pure single-mode PCF with zero dispersion at 1098 nm, an 850 nm AlGaAs VCSEL and a Si-APD. We also describe the gain characteristics of an erbium-doped fluoride fiber amplifier (EDFFA) that operates at 850 nm. 2 Dispersion characteristics of single-mode PCF for high-speed data transmission in the 800 nm region In the transmission experiment, we used a PCF fabricated by the capillary method. In PCFs, the transmission loss depends strongly on the roughness of the air-hole surface. Therefore, with the capillary method, we need capillary tubes whose diameters are uniform along their length and whose surface is smooth. When fabricating the PCF, we used polishing and etching techniques to reduce the roughness of the air-holes. Figure 1 (a) shows a scanning electron microscope (SEM) image of the cross-section of the present PCF. It is clearly seen that the air-holes are neatly and symmetrically located around the pure silica core. The measured transmission loss was 5.2 db/km at 850 nm. On the other hand, that of the PCF reported in Ref. [8] was 2.7 db/km at 850 nm. The air-hole pitch Λ, the air-hole diameter d, d/λ, the core diameter 2Λ d were 3.4 µm, 1.2 µm, 0.35 and 5.6 µm, respectively. The core diameter of the previously reported PCF was 8.4 µm. The transmission loss increases as the core diameter decreases. Therefore, the present PCF has a higher transmission loss because of the small core diameter. The measured mode field diameter (MFD) at 850 nm was 5.3 µm. Since the MFD of the fabricated PCF is close to that of single-mode fiber (SMF) in the 800 nm region, the measured splicing loss between PCF and SMF was 0.6 db. PCF with a d/λ of 0.35 has an endlessly single-mode property [3], while the PCF with a d/λ of 0.50 in Ref. [8] is multi-mode at 850 nm. Figure 1 (b) shows the dispersion characteristics of the fabricated PCF and SMF. The dispersion characteristics were measured by the time of flight method using supercontinuum generation in highly nonlinear PCF [9]. The zero dispersion wavelength was 1098 nm and the dispersion value was 62.8 ps/nm/km at 850 nm. Compared with a conventional SMF, whose Fig. 1. SEM image of a PCF cross-section (a) and the measured dispersion characteristics (b). 111

4 dispersion is 97.5 ps/nm/km at 850 nm, it is possible to reduce the pulse waveform distortion caused by the group velocity dispersion. The dispersion length L D of the PCF is 37.4 km, when the pulse width T o is 50 ps, roughly corresponding to a bit rate of 10 Gb/s NRZ signal. Here the dispersion length is defined as πcto 2 L D = 2ln2λ 2 (1) D where c is the velocity of light in a vacuum and λ is the wavelength. For a 5 km transmission, which is much shorter than L D, the influence of dispersion is still negligible. 3 Gain characteristics of EDFFA in the 800 nm region We fabricated an optical amplifier that operated in the 800 nm region and measured its gain characteristics. The amplifier employed erbium-doped fluoride fiber (EDFF) as a gain medium in the 800 nm region [10]. Figure 2 (a) shows the Er ion energy diagram. With Er ions, the energy difference between the 4 S 3/2 and 4 I 13/2 levels corresponds to 850 nm. With 980 nm pumping, the electrons in the ground state ( 4 I 15/2 ) are excited to 4 F 7/2 by two photon absorption and transit quickly down to the 4 S 3/2 level. An 850 nm signal is then amplified by the stimulated emission between the 4 S 3/2 and 4 I 13/2 levels. A 550 nm green light, corresponding to the energy difference between the 4 S 3/2 and 4 I 15/2 levels, is also emitted. Figure 2 (b) shows the gain characteristics of the EDFFA with a forward pumping at nm, where the pump power is 500 mw and the input signal power is 25 dbm. The EDFF length is 5 m and the Er ion concentration is 2000 ppm. Although the pump power is 500 mw, the output power is as small as 0 dbm. The reason for such a small energy conversion rate is that the pump power is also used for the green light emission. The 3 db gain bandwidth is about 3 nm. As the bit rate of 10 Gb/s corresponds to a bandwidth of nm, the gain bandwidth of the EDFFA is sufficient to amplify 10 Gb/s signals. Fig. 2. Simplified energy diagram of Er ions (a) and the gain characteristics of EDFFA (b). 112

5 4 10 Gb/s transmission experiment in the 800 nm region Figure 3 (a) shows our experimental setup for a 10 Gb/s data transmission in the 800 nm region. A single-mode AlGaAs VCSEL was used as a light source. The maximum output power was 1 mw and the wavelength was 852 nm. A CW light from the VCSEL was modulated with a LiNbO 3 (LN) intensity Fig Gb/s transmission experiment in the 800 nm region. (a) Experimental setup. (b) and (c) Eye patterns of output signals after 3 km and 5 km transmission, respectively. (d) Measured bit error rate performance. 113

6 modulator and a 10 Gb/s NRZ signal was generated. The sequence length was The input signal power to the PCF was amplified to 4.04 dbm by the EDFFA. The output signal transmitted through a 3 km or 5 km PCF was amplified by the EDFFA. The noise figure of the EDFFA was 6.5 db. The amplified signal was detected with a Si-APD with a conversion gain of 500 V/W, and the bit error rate was measured. Figure 3 (b) and (c) show eye patterns of output signals after 3 km and 5 km transmission, respectively. The eye patterns exhibited wide eye opening, since the EDFFA compensated for the transmission loss successfully. Figure 3 (d) shows the measured BER. shows the BER performance under a back-to-back condition, and and show the BER after 3 km and 5 km transmission, respectively. The power penalty was 0.9 db at a BER of 10 9 for a 3 km transmission. This result indicates that the influence of dispersion and the signal to noise ratio (SNR) degradation due to the transmission loss were negligible. For a 5 km transmission, although there was a power penalty of 3.5 db at a BER of 10 9,aBERof10 12 was obtained at a received power of 15 dbm. This power penalty was caused by a low input signal power of 4.04 dbm and a high transmission loss of 5.2 db/km. Since the transmission length was much shorter than the PCF dispersion length, the influence of dispersion on the power penalty may still be negligible. The transmission distance can be extended by increasing the output power of single-mode VCSEL and reducing the transmission loss of the PCF. 5 Conclusion We described the 10 Gb/s single-mode transmission performance over a 5 kmlong PCF with an AlGaAs VCSEL, EDFFAs and a Si-APD. The gain of the fabricated EDFFA was 25 db at 850 nm and this successfully compensated for the transmission loss of the PCF. A 10 Gb/s NRZ signal was successfully transmitted through the 5 km PCF. This result indicates that inexpensive and high-speed optical transmission over short distances appears to be feasible by combining these devices and PCF. 114

Visible to infrared high-speed WDM transmission over PCF

Visible to infrared high-speed WDM transmission over PCF Visible to infrared high-speed WDM transmission over PCF Koji Ieda a), Kenji Kurokawa, Katsusuke Tajima, and Kazuhide Nakajima NTT Access Network Service Systems Laboratories, NTT Corporation, 1 7 1 Hanabatake,

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307) Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

More information

A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating

A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating LETTER IEICE Electronics Express, Vol.14, No.19, 1 10 A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 µm Koudai Harako a), Masato Yoshida, Toshihiko Hirooka, and Masataka

More information

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs Safwat W.Z. Mahmoud Data transmission experiments with single-mode as well as multimode 85 nm VCSELs are carried out from a near-field

More information

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands Tadashi Sakamoto, Atsushi Mori, Hiroji Masuda, and Hirotaka Ono Abstract We are expanding the gain

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 016 Lecture 7: Transmitter Analysis Sam Palermo Analog & Mixed-Signal Center Texas A&M University Optical Modulation Techniques

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres

Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, P. St. J. Russell Optoelectronics

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Mode analysis of Oxide-Confined VCSELs using near-far field approaches Annual report 998, Dept. of Optoelectronics, University of Ulm Mode analysis of Oxide-Confined VCSELs using near-far field approaches Safwat William Zaki Mahmoud We analyze the transverse mode structure

More information

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode The International Journal Of Engineering And Science (IJES) Volume 2 Issue 7 Pages 07-11 2013 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Performance Analysis of Dwdm System With Different Modulation Techique

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

32-Channel DWDM System Design and Simulation by Using EDFA with DCF and Raman Amplifiers

32-Channel DWDM System Design and Simulation by Using EDFA with DCF and Raman Amplifiers 2012 International Conference on Information and Computer Networks (ICICN 2012) IPCSIT vol. 27 (2012) (2012) IACSIT Press, Singapore 32-Channel DWDM System Design and Simulation by Using EDFA with DCF

More information

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1 Lecture 8 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 8, Slide Bit error

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Photonic crystal distributed feedback fiber lasers with Bragg gratings Søndergaard, Thomas

Photonic crystal distributed feedback fiber lasers with Bragg gratings Søndergaard, Thomas Aalborg Universitet Photonic crystal distributed feedback fiber lasers with Bragg gratings Søndergaard, Thomas Published in: Journal of Lightwave Technology DOI (link to publication from Publisher): 10.1109/50.838134

More information

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Special Issue Optical Communication The Development of the 16 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Tomofumi Kise* 1, Toshihito Suzuki* 2, Masaki Funabashi* 1, Kazuya Nagashima*

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

More information

Bangladesh 1

Bangladesh 1 IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 232-3331, Volume 11, Issue 4 Ver. IV (Jul. Aug. 216), PP 19-24 www.iosrjournals.org Characterization of Hexagonal

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks 363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

More information

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 2 Issue 4 Dec - 2012 11-16 TJPRC Pvt. Ltd., PERFORMANCE ENHANCEMENT

More information

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Mayur Date M.E. Scholar Department of Electronics and Communication Ujjain Engineering College, Ujjain (M.P.) datemayur3@gmail.com

More information

S Optical Networks Course Lecture 2: Essential Building Blocks

S Optical Networks Course Lecture 2: Essential Building Blocks S-72.3340 Optical Networks Course Lecture 2: Essential Building Blocks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9

More information

Four-wave mixing based widely tunable wavelength conversion using 1-m dispersionshifted bismuth-oxide photonic crystal fiber

Four-wave mixing based widely tunable wavelength conversion using 1-m dispersionshifted bismuth-oxide photonic crystal fiber Four-wave mixing based widely tunable wavelength conversion using 1-m dispersionshifted bismuth-oxide photonic crystal fiber K. K. Chow 1, K. Kikuchi 1, T. Nagashima 2, T. Hasegawa 2, S. Ohara 2, and N.

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Design of Ultra High Capacity DWDM System with Different Modulation Formats

Design of Ultra High Capacity DWDM System with Different Modulation Formats Design of Ultra High Capacity DWDM System with Different Modulation Formats A. Nandhini 1, K. Gokulakrishnan 2 1 PG Scholar, Department of Electronics & Communication Engineering, Regional Center, Anna

More information

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Bidirectional Optical Data Transmission 77 Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Martin Stach and Alexander Kern We report on the fabrication and

More information

DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability

DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability DESIGN TEMPLATE ISSUES performance, yield, reliability ANALYSIS FOR ROBUST DESIGN properties, figure-of-merit thermodynamics, kinetics, process margins process control OUTPUT models, options Optical Amplification

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Optical communications

Optical communications Optical communications Components and enabling technologies Optical networking Evolution of optical networking: road map SDH = Synchronous Digital Hierarchy SONET = Synchronous Optical Network SDH SONET

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth

60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth 60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth Tatsunori Omiya a), Seiji Okamoto, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa Research Institute of Electrical Communication,

More information

Trends in Optical Transceivers:

Trends in Optical Transceivers: Trends in Optical Transceivers: Light sources for premises networks Peter Ronco Corning Optical Fiber Asst. Product Line Manager Premises Fibers January 24, 2006 Outline: Introduction: Transceivers and

More information

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers Kazuhiko Aikawa, Ryuji Suzuki, Shogo Shimizu, Kazunari Suzuki, Masato Kenmotsu, Masakazu

More information

Erbium-Doper Fiber Amplifiers

Erbium-Doper Fiber Amplifiers Seminar presentation Erbium-Doper Fiber Amplifiers 27.11.2009 Ville Pale Presentation Outline History of EDFA EDFA operating principle Stimulated Emission Stark Splitting Gain Gain flatness Gain Saturation

More information

High-Speed Directly Modulated Lasers

High-Speed Directly Modulated Lasers High-Speed Directly Modulated Lasers Tsuyoshi Yamamoto Fujitsu Laboratories Ltd. Some parts of the results in this presentation belong to Next-generation High-efficiency Network Device Project, which Photonics

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

Hybrid vertical-cavity laser integration on silicon

Hybrid vertical-cavity laser integration on silicon Invited Paper Hybrid vertical-cavity laser integration on Emanuel P. Haglund* a, Sulakshna Kumari b,c, Johan S. Gustavsson a, Erik Haglund a, Gunther Roelkens b,c, Roel G. Baets b,c, and Anders Larsson

More information

OFC SYSTEM: Design Considerations. BC Choudhary, Professor NITTTR, Sector 26, Chandigarh.

OFC SYSTEM: Design Considerations. BC Choudhary, Professor NITTTR, Sector 26, Chandigarh. OFC SYSTEM: Design Considerations BC Choudhary, Professor NITTTR, Sector 26, Chandigarh. OFC point-to-point Link Transmitter Electrical to Optical Conversion Coupler Optical Fiber Coupler Optical to Electrical

More information

Semiconductor Optical Active Devices for Photonic Networks

Semiconductor Optical Active Devices for Photonic Networks UDC 621.375.8:621.38:621.391.6 Semiconductor Optical Active Devices for Photonic Networks VKiyohide Wakao VHaruhisa Soda VYuji Kotaki (Manuscript received January 28, 1999) This paper describes recent

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is due today, HW #5 is assigned (due April 8)

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016)

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016) Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016) ABSTRACT Neha Thakral Research Scholar, DAVIET, Jalandhar nthakral9@gmail.com Earlier

More information

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking 15 August 2002 Optics Communications 209 (2002) 329 334 www.elsevier.com/locate/optcom All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking C.W. Chow, C.S. Wong *,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Mach-Zehnder interferometer (MZI) phase stabilization. (a) DC output of the MZI with and without phase stabilization. (b) Performance of MZI stabilization

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

VERTICAL CAVITY SURFACE EMITTING LASER

VERTICAL CAVITY SURFACE EMITTING LASER VERTICAL CAVITY SURFACE EMITTING LASER Nandhavel International University Bremen 1/14 Outline Laser action, optical cavity (Fabry Perot, DBR and DBF) What is VCSEL? How does VCSEL work? How is it different

More information

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 4 pulse compression using air-core fiber and conventional erbium-doped fiber amplifier C. J. S. de Matos and J. R. Taylor

More information

High Speed VCSEL Transmission at 1310 nm and 1550 nm Transmission Wavelengths

High Speed VCSEL Transmission at 1310 nm and 1550 nm Transmission Wavelengths American Journal of Optics and Photonics 01; (): - http://www.sciencepublishinggroup.com/j/ajop doi: 10.11/j.ajop.0100.1 ISSN: 0- (Print); ISSN: 0- (Online) High Speed VCSEL Transmission at 110 nm and

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems 64 Annual report 1998, Dept. of Optoelectronics, University of Ulm High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems G. Jost High-power semiconductor laser amplifiers are interesting

More information

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers Investigation of Performance Analysis of EDFA Amplifier Using Different Pump Wavelengths and Powers Ramandeep Kaur, Parkirti, Rajandeep Singh ABSTRACT In this paper, an investigation of the performance

More information

Gain-clamping techniques in two-stage double-pass L-band EDFA

Gain-clamping techniques in two-stage double-pass L-band EDFA PRAMANA c Indian Academy of Sciences Vol. 66, No. 3 journal of March 2006 physics pp. 539 545 Gain-clamping techniques in two-stage double-pass L-band EDFA S W HARUN 1, N Md SAMSURI 2 and H AHMAD 2 1 Faculty

More information

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi Optical Fiber Technology Numerical Aperture (NA) What is numerical aperture (NA)? Numerical aperture is the measure of the light gathering ability of optical fiber The higher the NA, the larger the core

More information

arxiv:physics/ v1 [physics.optics] 25 Aug 2003

arxiv:physics/ v1 [physics.optics] 25 Aug 2003 arxiv:physics/0308087v1 [physics.optics] 25 Aug 2003 Multi-mode photonic crystal fibers for VCSEL based data transmission N. A. Mortensen, 1 M. Stach, 2 J. Broeng, 1 A. Petersson, 1 H. R. Simonsen, 1 and

More information

GREAT interest has recently been shown for photonic

GREAT interest has recently been shown for photonic JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2004 11 Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling Theis P. Hansen, Jes Broeng, Christian

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow EE 233. LIGHTWAVE SYSTEMS Chapter 2. Optical Fibers Instructor: Ivan P. Kaminow PLANAR WAVEGUIDE (RAY PICTURE) Agrawal (2004) Kogelnik PLANAR WAVEGUIDE a = (n s 2 - n c2 )/ (n f 2 - n s2 ) = asymmetry;

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

The absorption of the light may be intrinsic or extrinsic

The absorption of the light may be intrinsic or extrinsic Attenuation Fiber Attenuation Types 1- Material Absorption losses 2- Intrinsic Absorption 3- Extrinsic Absorption 4- Scattering losses (Linear and nonlinear) 5- Bending Losses (Micro & Macro) Material

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information "Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip" SUPPLEMENTARY INFORMATION Eiichi Kuramochi*, Kengo Nozaki, Akihiko Shinya,

More information

Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating

Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating Takanori Suzuki 1a), Kenichi Masuda 1, Hiroshi Ishikawa 2, Yukio Abe 2, Seiichi Kashimura 2, Hisato Uetsuka

More information

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. The

More information

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network Yu-Fu Wu a, Jinu-Yu Sung a, and Chi-Wai Chow a, and Chien-Hung Yeh* b,c a Department of Photonics and Institute of Electro-Optical

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Optical Transmission Fundamentals

Optical Transmission Fundamentals Optical Transmission Fundamentals F. Vasey, CERN-EP-ESE Context Technology HEP Specifics 12 Nov 2018 0 Context: Bandwidth Demand Internet traffic is growing at ~Moore s law Global interconnection bandwidth

More information

Power adjustable visible supercontinuum generation using amplified nanosecond gainswitched

Power adjustable visible supercontinuum generation using amplified nanosecond gainswitched Power adjustable visible supercontinuum generation using amplified nanosecond gainswitched laser diode Malay Kumar 1*, Chenan Xia 1, Xiuquan Ma 1, Vinay V. Alexander 1, Mohammed N. Islam 1, Fred L. Terry

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Ben Wu, * Zhenxing Wang, Bhavin J. Shastri, Matthew P. Chang, Nicholas A. Frost, and Paul R. Prucnal

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

Compact Low-power-consumption Optical Modulator

Compact Low-power-consumption Optical Modulator Compact Low-power-consumption Modulator Eiichi Yamada, Ken Tsuzuki, Nobuhiro Kikuchi, and Hiroshi Yasaka Abstract modulators are indispensable devices for optical fiber communications. They turn light

More information

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum WDM Transmitter Based on Spectral Slicing of Similariton Spectrum Leila Graini and Kaddour Saouchi Laboratory of Study and Research in Instrumentation and Communication of Annaba (LERICA), Department of

More information

Chapter 3 Signal Degradation in Optical Fibers

Chapter 3 Signal Degradation in Optical Fibers What about the loss in optical fiber? Why and to what degree do optical signals gets distorted as they propagate along a fiber? Fiber links are limited by in path length by attenuation and pulse distortion.

More information

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Noah Chang Herbert Winful,Ted Norris Center for Ultrafast Optical Science University of Michigan What is Photonic

More information

Vertical Cavity Surface Emitting Laser (VCSEL) Technology

Vertical Cavity Surface Emitting Laser (VCSEL) Technology Vertical Cavity Surface Emitting Laser (VCSEL) Technology Gary W. Weasel, Jr. (gww44@msstate.edu) ECE 6853, Section 01 Dr. Raymond Winton Abstract Vertical Cavity Surface Emitting Laser technology, typically

More information

Advanced Fibre Testing: Paving the Way for High-Speed Networks. Trevor Nord Application Specialist JDSU (UK) Ltd

Advanced Fibre Testing: Paving the Way for High-Speed Networks. Trevor Nord Application Specialist JDSU (UK) Ltd Advanced Fibre Testing: Paving the Way for High-Speed Networks Trevor Nord Application Specialist JDSU (UK) Ltd Fibre Review Singlemode Optical Fibre Elements of Loss Fibre Attenuation - Caused by scattering

More information

Comparison of Various Configurations of Hybrid Raman Amplifiers

Comparison of Various Configurations of Hybrid Raman Amplifiers IJCST Vo l. 3, Is s u e 4, Oc t - De c 2012 ISSN : 0976-8491 (Online) ISSN : 2229-4333 (Print) Comparison of Various Configurations of Hybrid Raman Amplifiers Sunil Gautam Dept. of ECE, Shaheed Bhagat

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks International Journal of Optics and Applications 2017, 7(2): 31-36 DOI: 10.5923/j.optics.20170702.01 Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s

More information

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING P. Hajireza Optical Fiber Devices Group Multimedia University

More information

Optical Fiber Technology

Optical Fiber Technology Optical Fiber Technology 18 (2012) 29 33 Contents lists available at SciVerse ScienceDirect Optical Fiber Technology www.elsevier.com/locate/yofte A novel WDM passive optical network architecture supporting

More information

Pulse Restoration by Filtering of Self-Phase Modulation Broadened Optical Spectrum

Pulse Restoration by Filtering of Self-Phase Modulation Broadened Optical Spectrum JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 7, JULY 2002 1113 Pulse Restoration by Filtering of Self-Phase Modulation Broadened Optical Spectrum Bengt-Erik Olsson, Member, IEEE, and Daniel J. Blumenthal,

More information

Designing an ultra negative dispersion Photonic Crystal Fiber (PCFs) with square lattice geometry

Designing an ultra negative dispersion Photonic Crystal Fiber (PCFs) with square lattice geometry Designing an ultra negative dispersion Photonic Crystal Fiber (PCFs) with square lattice geometry Partha Sona Maji and Partha Roy Chaudhuri Department of Physics & Meteorology, Indian Institute of Technology

More information

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Viyoma Sarup* and Amit Gupta Chandigarh University Punjab, India *viyoma123@gmail.com Abstract A RoF

More information

UNIT List the requirements that be satisfied by materials used to manufacture optical fiber? ANS: Fiber Materials

UNIT List the requirements that be satisfied by materials used to manufacture optical fiber? ANS: Fiber Materials UNIT- 2 1. List the requirements that be satisfied by materials used to manufacture optical fiber? ANS: Fiber Materials Most of the fibers are made up of glass consisting of either Silica (SiO 2 ) or.silicate.

More information