Alvarion Advanced Antenna Systems

Size: px
Start display at page:

Download "Alvarion Advanced Antenna Systems"

Transcription

1 4Motion Alvarion Advanced Antenna Systems Leveraging MIMO and diversity schemes to take WiMAX infrastructure to the next level of wireless broadband White Paper SentieM TM

2 Contents Abstract 3 AAS Enables WiMAX Network Efficiency 3 Antenna Diversity and Down Link (DL) Transmit Diversity Schemes 4 Delay Diversity 4 Cyclic Delay Diversity 4 Delay Diversity over Beams 5 MIMO Technology 5 Down Link (DL) Technologies: Matrix A and Matrix B 5 Up-Link (UL) Technologies: MRC and CSM 7 Beamforming (BF) 8 Alvarion SentieM Technologies 8 Alvarion s AAS Business Benefits and Technical Features 9 Business Benefits 9 Technical Features 9 Summary 10 Glossary of Acronyms 11 2

3 Abstract Alvarion Advanced Antenna Systems (AASs) use Multi-Input-Multi-Output (MIMO) technology and diversity schemes that deliver wireless service level agreements (SLAs) efficiently and cost effectively. The unique characteristics of each multi-antenna technology are highlighted in relation to operator-specific needs for Quality of Service (QoS), coverage and capacity. To operators, this means a whole new level of reliability and affordability when delivering next-generation wireless broadband services over WiMAX. This paper briefly covers the enabling technologies of Alvarion s AAS technologies. AAS Enables WiMAX Network Efficiency In addition to being a leading-edge technology, Mobile WiMAX has also emerged as a business driver addressing the ever escalating needs of operators. One of the primary requirements is the demand for lowcost, wireless broadband to mobile stations, such as cell phones, Mobile Internet Devices (MIDs), laptops, smartphones and PDAs. However, the challenge still hinges on the capability to deliver reliable and consistent service to these networks while meeting the low price point demanded by consumers. This has become even more apparent when operators attempt to maximize Average Revenue per User (ARPU) and lower Capital Expenditures (CAPEX) and Operating Expenses (OPEX) in order to remain competitive. Alvarion s AASs refer to a class of intelligent antenna technologies that use multiple antennas at both transmission and reception ends of the wireless link. AASs generate multi-channel systems, increasing the carrier-to-interference plus noise ratio (CINR), significantly improving the radio signal and therefore impacting QoS for the customer. This greatly enhances the performance of WiMAX networks, while reducing the number of required base stations and cell sites. At the same time, it increases overall system reliability, improves data rates, and boosts capacity and coverage. Alvarion s AAS technologies demonstrate that WiMAX can successfully meet and even exceed operator expectations, providing operators with the differentiation they need to succeed. Alvarion s AASs go beyond WiMAX-based standard rules to integrate hybrid, best-in-class solutions that leverage innovative, proprietary signal processing functionalities embedded with standard WiMAX multi-antenna schemes. 3

4 Antenna Diversity and Down Link (DL) Transmit Diversity Schemes Antenna Diversity plays a major role in WiMAX implementations. Diversity greatly improves the quality and reliability of a wireless link line, utilizing more than one antenna element. Simply defined, Down Link (DL) Transmit Diversity is comprised of a number of schemes for reducing the effects of fading by transmitting identical information from two or more different antenna elements, generally with different transmission characteristics. Delay Diversity Alvarion s Delay Diversity exploits an antenna array by applying different delays to each antenna element. As the multiple channels are spectrally different, due to different multipath fading, combining these channels at the receiver end increases the frequency selectivity. Cyclic Delay Diversity In OFDM systems, Alvarion s Delay Diversity takes the form of Cyclic Delay Diversity (CDD) where instead of simple time delay to each stream, every transmission element contains a cyclic shifted version of the OFDM data transmission. As CDD only builds a different Single-Input-Single-Output (SISO) channel, it requires no additional effort from the receiver. This is an important feature, as it enables using this application with no specific equipment from the receiver. Consequently, CDD improves WiMAX coverage by dramatically decreasing the outage probability, especially for users close to the cell edge. Cyclic Delay Diversity 4

5 Delay Diversity over Beams Alvarion s unique implementation of CDD, namely Delay Diversity over Beams (DDOB), enables increased diversity gain relative to standard CDD, resulting in improved performance and enhanced robustness for a larger number of users. This maximizes the extent of the cell with enhanced performance and improved coverage, and allows operators to deploy fewer base stations, reducing CAPEX and OPEX for a better business case. MIMO Technology In radio access networks, Multi-Input-Multi-Output (MIMO) refers to the use of multiple antennas at both transmitter and receiver ends in order to improve communication performance. MIMO benefits include the ability to provide a significant increase in coverage and capacity while leveraging bandwidth through higher spectral efficiency and link reliability. AAS technologies represent Alvarion s unique approach to MIMO implementation, and are fundamental building blocks in any successful WiMAX-based network deployment and in the successful delivery of customer-centric services and solutions. Down Link (DL) Technologies: Matrix A and Matrix B MIMO Matrix A In an Alvarion MIMO Matrix A implementation, a single data stream is transmitted from multiple antennas and encoded using a mathematical manipulation known as Space Time Block Code (STBC) or Alamouti Code. This improves a receiver s capability to detect information. Implementing multiple receiver antenna elements increases the diversity order and improves the decoding performance of STC transmissions. Additionally, using more than two transmit (TX) antenna elements at the base station side allows for the combination of STC with CDD, or with beamforming (BF). MIMO Matrix A Some of the benefits provided by MIMO Matrix A include the provision of improved coverage for Mobile WiMAX stations; maximization of the cell extent for enhanced performance and allowing operators to deploy fewer base stations; and the reduction of network deployment CAPEX and OPEX. Space Time Code (STC) Receiver Implementation STC requires support from a decoding receiver; however, this is easy to implement since a receiving mobile station uses the two pilot patterns that are orthogonal and unique to each transmission (TX) antenna in order to estimate the channel paths of each antenna. STC provides improved reliability as a result of the better diversity; higher TX effective antenna gain; and the increased link budget and coverage realized. 5

6 MIMO Matrix B An Alvarion MIMO Matrix B implementation leverages Spatial Multiplexing (SM) utilizing two (or more) multiple antenna elements at the base station and the mobile station for processing independent data streams. Data bits are split between two antennas and transmitted simultaneously as separate (non-redundant) streams. A receiver separates the independent data streams via space-time processing techniques, leveraging two orthogonal pilot patterns. As a result, MIMO Matrix B positively affects throughput capacity. Although it entails added complexity at both the transmitter and receiver ends, a carrier s allocated frequency bandwidth capacity can be enhanced by up to 60%. MIMO Matrix B Alvarion s implementation of MIMO Matrix B, efficiently employs two data streams over two antenna elements, thereby easing mobile station implementations in such a way that even basic receivers realize substantially higher performance. In addition, it increases throughput for user terminals, raising aggregate capacity and facilitating mobile station implementations. MIMO Business Benefits Reduced amount of cell sites resulting in fewer base stations, fewer antennas, less space to rent, and easier location of regulatorapproved sites Implementing MIMO Matrix B for Downlink Improved capacity which better utilizes the spectrum, resulting in improved QoS and more subscribers on a single sector, thereby allowing operators to offer higher speed packages Enhanced coverage, allowing operators to better utilize base stations and cover greater distances 6

7 Up-Link (UL) Technologies: MRC and CSM Maximal-ratio Combining (MRC) Alvarion Maximal-ratio Combining (MRC) is a receive diversity scheme. Each signal from a receiver (RX) antenna array is multiplied by a weight proportional to the incoming signal level, and inversely proportional to the noise level, after which all the signals are combined. Alvarion s technology features a unique MRC algorithm which achieves exceptional results for operators, while greatly enhancing system coverage. The robust nature of MRC provides operators with a value-added methodology for realizing optimal performance in terms of the Signal-to-Noise Ratio (SNR). MRC s lack of interference mitigation is compensated by the abilities of other more advanced and more complex receivers, in tandem with UL beamforming techniques. Employing UL MRC in a WiMAX base station receive chain increases the UL budget; expands coverage while improving operator network performance; and delivers an improved business case by lowering the number of required base stations to cover the same area. Collaborative Spatial Multiplexing (CSM) Alvarion s CSM is an antenna scheme whereby multiple mobile stations simultaneously send transmission signals, thereby acting like a multi-antenna transmitter. The mobile stations feature one or two transmit antennas, while the base station is multi-antennaed. MIMO in the UL direction utilizes two transmit (TX) channels to send data to multiple receive (RX) antennas located at the base station. The scheme uses two mobile stations paired for Spatial Multiplexing (SM), which transmit data simultaneously, while utilizing the same frequency allocation. Implementing MIMO for Uplink (Pairing) Alvarion s proprietary technology features smart algorithms, which couple geographically-separated mobile stations (also known as pairing) in such a way that two transmitters are spatially diverted, so that the base station receiver can resolve the two incoming data streams. Implementing CSM can maximize the spectral efficiency; increase the aggregate sector capacity, especially in small cells; and improve the business case due to efficient usage of spectrum, allowing operators to connect more subscribers to one sector. 7

8 Beamforming (BF) Alvarion s beamforming focuses the radio signals of the antenna arrays, acting as a powerful directional antenna. By being aimed towards signal sources, beamforming can reduce interference and fading, while significantly enhancing signal quality. Different beamforming schemes are currently in use; however Alvarion utilizes Adaptive Beamforming, which is the most effective scheme for specific applications. For more information, refer to Alvarion s beamforming white paper. Alvarion Adaptive Beamforming Alvarion SentieM Technologies WiMAX networks are dependent on standards-based technologies which enhance both coverage and capacity. However, superior networks require unique technologies extending beyond WiMAX standards, enabling enhanced coverage and capacity for better service quality and improved user experience. These three fundamentals of mobile WiMAX networks are built into Alvarion s innovative SentieM technologies, providing substantial benefits in terms of better coverage, capacity, and Quality-of-Service (QoS). SentieM technologies offer considerable improvement in the utilization of AAS technologies, Radio Resource Management (RRM), Radio Network Architecture and Media technologies. Designed to comply with the IEEE e-2005 standard, SentieM technologies deliver and leverage superior technological advantages. Alvarion s AASs leverage the widest range of diversity schemes, combining them to achieve better capacity and coverage. Alvarion s SentieM technologies are able to intelligently determine whether wireless conditions call for the use of beamforming, MIMO, or the use of both combined, for best-in-class wireless broadband transmit/ receive (TX/RX) delivery. A good example of Alvarion s technological AAS superiority is the Mode Selection algorithm. This algorithm selects the right AAS scheme by instantly learning the mobile station noise level, signal strength, mobility (speed that the device is traveling), distance from the base station, mobile station receive (RX) antenna configuration (type, amount), burst length, traffic type (voice, data), system limitation, QoS and other critical factors needed for best-in-class WiMAX. The above examples, as well as Alvarion s additional methods of combining and implementing intelligent and dynamic schemes, maximize overall WiMAX network spectral efficiency, increasing capacity up to 70%, while leveraging an exact combination of multi-antenna schemes for meeting the needs of WiMAX operators, determined on a case-by-case, and user-by-user business basis. 8

9 Alvarion s AAS Business Benefits and Technical Features Business Benefits Increase the probability that subscribers will receive service according to their SLA Provide on-the-fly solutions to meet the dynamic needs of any wireless environment Provide even basic receivers with substantially enhanced performance Enable enhanced base station coverage and capacity, resulting in reduced system costs and better performance Increase system reliability, utilizing AASs that allow retention of SLAs in hard-to-reach areas Technical Features Deliver a full range of robust, MIMO-based transmission schemes, reducing fading and interference while adaptively managing air interfaces Deliver on-demand collaborative MIMO and beamforming, enhancing coverage and capacity by intelligently selecting the right, operator-specific, multi-antenna technology Deliver optimal performance in terms of SNR Employ UL MRC at the base station receive chain, increasing link budget while enhancing coverage Maximize spectral efficiency, significantly increasing aggregate sector capacity, especially in small cells Provide proprietary CDD, improving network coverage, while greatly decreasing outages close to the cell edge Provide STC, a robust method for delivering extensive diversity gain 9

10 Summary Alvarion s AASs play a strategic, critical role for ensuring the delivery of best-in-class, WiMAX solutions for operators. Whether Delayed Diversity, MIMO Matrix A, MIMO Matrix B or a combination of any of the schemes, operators must be provided with the WiMAX deliverables they require to satisfy their business case demands. For operators, selecting the right vendor for the provision of WiMAX technologies is a process which must be executed meticulously and methodically, with a partner that fully understands the industry while adapting to the operator s own business case. In a competitive marketplace which allows no room for errors, this is imperative. Alvarion, the global leader in WiMAX solutions, is the vendor of choice for many operators worldwide, who are successfully expanding their businesses on the crest of today s Mobile WiMAX wave. Furthermore, as operators position themselves for the technological challenges materializing on a daily basis, and WiMAX increasingly impacts the world of communications, Alvarion provides operators with the best-in-class open solutions they require, in order to meet the challenges of tomorrow, today. Capacity SISO MIMO B CDD MIMO A Alvarion Intelligent AAS Combining Schemes Coverage Antenna Technologies Comparison Graph 10

11 Glossary of Acronyms AAS Adaptive Antenna Systems BF CAPEX CINR CPE CDD CSM DL HARQ MISO MRC MRRC MS MID MIMO OFDM OFDMA OPEX QoS PDA RX SD SDMA SISO SNR STBC STC SM TX UL WiMAX Beamforming Capital Expenditures Carrier-to-Interference plus Noise Ratio Customer Premise Equipment Cyclic Delay Diversity Collaborative Spatial Multiplexing Down Link Hybrid Automatic Repeat Request Multiple-Input-Single-Output Maximal-ratio Combining Maximal-ratio Receive Combining Mobile Station Mobile Internet Device Multi-Input-Multi-Output Orthogonal Frequency-division Multiplexing Orthogonal Frequency-division Multiple Access Operating Expenses Quality of Service Personal Digital Assistant Receiver Spatial Diversity Spatial Division Medium Access Single-Input-Single-Output Signal-to-Noise Ratio Space Time Block Code Space Time Code Spatial Multiplexing Transmitter Up Link Worldwide Interoperability for Microwave Access 11

12 Headquarters International Corporate Headquarters North America Headquarters Sales Contacts Australia: Brazil: Canada: Caribbean: China: Czech Republic: France: Germany: Italy: Ireland: Japan: Latin America: Mexico: Nigeria: Philippines: Poland: Portugal: alvarion.com Romania: Russia: Singapore: South Africa: Spain: U.K.: Uruguay: For the latest contact information in your area, please visit: About Alvarion Alvarion (NASDAQ: ALVR) is the largest WiMAX pure-player with the most extensive WiMAX customer base and over 250 commercial deployments around the globe. Committed to growing the WiMAX market, the company offers solutions for a wide range of frequency bands supporting a variety of business cases. Through its OPEN WiMAX strategy, superior IP and OFDMA know-how, and proven ability to deploy end-to-end turnkey WiMAX projects, Alvarion is shaping the new wireless broadband experience. Copyright 2009 Alvarion Ltd. All rights reserved. Alvarion and all names, product and service names referenced herein are either registered trademarks, trademarks, tradenames or service marks of Alvarion Ltd. All other names are or may be the trademarks of their respective owners. The content herein is subject to change without further notice. WiMAX Forum is a registered trademark of the WiMAX Forum. WiMAX, the WiMAX Forum logo, WiMAX Forum Certified and the WiMAX Forum Certified logo are trademarks of the WiMAX Forum rev.a

The WiMAX e Advantage

The WiMAX e Advantage The WiMAX 802.16e Advantage An analysis of WiFi 802.11 a/b/g/n and WiMAX 802.16e technologies for license-exempt, outdoor broadband wireless applications. White Paper 2 Objective WiMAX and WiFi are technologies

More information

Simply Connect. 4G End User Device Portfolio. O U T D O O R I N D O O R. U S B D o n g l e s M O B I L E P H O N E S

Simply Connect. 4G End User Device Portfolio.  O U T D O O R I N D O O R. U S B D o n g l e s M O B I L E P H O N E S Simply Connect 4G End User Device Portfolio www.alvarion.com I N D O O R O U T D O O R U S B D o n g l e s M O b i l e H o t s p o t s M O B I L E P H O N E S N e t b o o k s Simply Connect www.alvarion.com

More information

We're on your wavelength. emgw Solutions. Enabling Operators to Provide Cost Effective Voice Services to Sparsely Populated Rural Areas.

We're on your wavelength. emgw Solutions. Enabling Operators to Provide Cost Effective Voice Services to Sparsely Populated Rural Areas. emgw Solutions Enabling Operators to Provide Cost Effective Voice Services to Sparsely Populated Rural Areas White paper Introduction A growing number of operators, mainly those focusing on service provision

More information

Multiple Antenna Systems in WiMAX

Multiple Antenna Systems in WiMAX WHITEPAPER An Introduction to MIMO, SAS and Diversity supported by Airspan s WiMAX Product Line We Make WiMAX Easy Multiple Antenna Systems in WiMAX An Introduction to MIMO, SAS and Diversity supported

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM N.Prabakaran Research scholar, Department of ETCE, Sathyabama University, Rajiv Gandhi Road, Chennai, Tamilnadu 600119, India prabakar_kn@yahoo.co.in

More information

Boosting Microwave Capacity Using Line-of-Sight MIMO

Boosting Microwave Capacity Using Line-of-Sight MIMO Boosting Microwave Capacity Using Line-of-Sight MIMO Introduction Demand for network capacity continues to escalate as mobile subscribers get accustomed to using more data-rich and video-oriented services

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

WIRELESS 20/20. Twin-Beam Antenna. A Cost Effective Way to Double LTE Site Capacity

WIRELESS 20/20. Twin-Beam Antenna. A Cost Effective Way to Double LTE Site Capacity WIRELESS 20/20 Twin-Beam Antenna A Cost Effective Way to Double LTE Site Capacity Upgrade 3-Sector LTE sites to 6-Sector without incurring additional site CapEx or OpEx and by combining twin-beam antenna

More information

EFFICIENT SMART ANTENNA FOR 4G COMMUNICATIONS

EFFICIENT SMART ANTENNA FOR 4G COMMUNICATIONS http:// EFFICIENT SMART ANTENNA FOR 4G COMMUNICATIONS 1 Saloni Aggarwal, 2 Neha Kaushik, 3 Deeksha Sharma 1,2,3 UG, Department of Electronics and Communication Engineering, Raj Kumar Goel Institute of

More information

Deploying the Promise of NLOS WiMAX. Les Sparrey Director of NA Sales

Deploying the Promise of NLOS WiMAX. Les Sparrey Director of NA Sales Deploying the Promise of NLOS WiMAX Les Sparrey Director of NA Sales WiMAX Coverage, Capacity & Affordability Superior Range More Throughput Much Lower Cost 2 Product Introduction About develops high performance,

More information

NetPoint Pro. 6x2.4, 6x5.8, 3x2.4, 3x5.8. Wi-Fi base Stations Providing Superior Connectivity

NetPoint Pro. 6x2.4, 6x5.8, 3x2.4, 3x5.8. Wi-Fi base Stations Providing Superior Connectivity NetPoint Pro 6x2.4, 6x5.8, 3x2.4, 3x5.8 Wi-Fi base Stations Providing Superior Connectivity NetPoint Pro is an advanced Wi-Fi base station that provides superior connectivity and greater range. It enables

More information

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO Chapter: 3G Evolution 6 Outline Introduction Multi-antenna configurations Multi-antenna t techniques Vanja Plicanic vanja.plicanic@eit.lth.se lth Multi-antenna techniques Multiple transmitter antennas,

More information

Seamless wireless broadband infrastructure for carriers, ISPs, and network operators.

Seamless wireless broadband infrastructure for carriers, ISPs, and network operators. We're on your wavelength. BreezeACCESS Seamless wireless broadband infrastructure for carriers, ISPs, and network operators. Wireless DSL - Broadband IP Access, backhauling and mobility Field proven in

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

Urban WiMAX response to Ofcom s Spectrum Commons Classes for licence exemption consultation

Urban WiMAX response to Ofcom s Spectrum Commons Classes for licence exemption consultation Urban WiMAX response to Ofcom s Spectrum Commons Classes for licence exemption consultation July 2008 Urban WiMAX welcomes the opportunity to respond to this consultation on Spectrum Commons Classes for

More information

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) The key to successful deployment in a dynamically varying non-line-of-sight environment

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) The key to successful deployment in a dynamically varying non-line-of-sight environment White Paper Wi4 Fixed: Point-to-Point Wireless Broadband Solutions MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) The key to successful deployment in a dynamically varying non-line-of-sight environment Contents

More information

PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES

PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES SHUBHANGI CHAUDHARY AND A J PATIL: PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES DOI: 10.21917/ijct.2012.0071 PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING

More information

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Improving the Data Rate of OFDM System in Rayleigh Fading Channel

More information

Designing Reliable Wi-Fi for HD Delivery throughout the Home

Designing Reliable Wi-Fi for HD Delivery throughout the Home WHITE PAPER Designing Reliable Wi-Fi for HD Delivery throughout the Home Significant Improvements in Wireless Performance and Reliability Gained with Combination of 4x4 MIMO, Dynamic Digital Beamforming

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Guide to Wireless Communications, Third Edition Cengage Learning Objectives

Guide to Wireless Communications, Third Edition Cengage Learning Objectives Guide to Wireless Communications, Third Edition Chapter 9 Wireless Metropolitan Area Networks Objectives Explain why wireless metropolitan area networks (WMANs) are needed Describe the components and modes

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

A Study on the Performance of IEEE Includes STBC

A Study on the Performance of IEEE Includes STBC ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA. A Study on the Performance of IEEE 802.16-2004 Includes STBC Hussain A. Alhassan Department of Computer Science

More information

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR COMMUNICATION SYSTEMS Abstract M. Chethan Kumar, *Sanket Dessai Department of Computer Engineering, M.S. Ramaiah School of Advanced

More information

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014 Performance Enhancement of WiMAX System using Adaptive Equalizer RICHA ANAND *1, PRASHANT BHATI *2 *1 (Prof. of Department, Patel college of science and technology / RGPV University, India) *2(student

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE IMPROVEMENT OF CONVOLUTION CODED OFDM SYSTEM WITH TRANSMITTER DIVERSITY SCHEME Amol Kumbhare *, DR Rajesh Bodade *

More information

IEEE Project m as an IMT-Advanced Technology

IEEE Project m as an IMT-Advanced Technology 2008-09-25 IEEE L802.16-08/057r2 IEEE Project 802.16m as an IMT-Advanced Technology IEEE 802.16 Working Group on Broadband Wireless Access 1 IEEE 802.16 A Working Group: The IEEE 802.16 Working Group on

More information

Technical White Paper. WiMAX Modelling in Atoll 2.7.0

Technical White Paper. WiMAX Modelling in Atoll 2.7.0 February 2008 Technical White Paper WiMAX Modelling in Atoll 2.7.0 WiMAX, OFDM, and SOFDMA Modelling in Atoll This white paper describes how WiMAX (IEEE 802.16d and IEEE 802.16e) is modelled in the Atoll

More information

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH).

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). Smart Antenna K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). ABSTRACT:- One of the most rapidly developing areas of communications is Smart Antenna systems. This paper

More information

Smart Antenna ABSTRACT

Smart Antenna ABSTRACT Smart Antenna ABSTRACT One of the most rapidly developing areas of communications is Smart Antenna systems. This paper deals with the principle and working of smart antennas and the elegance of their applications

More information

University of Bristol - Explore Bristol Research. Peer reviewed version

University of Bristol - Explore Bristol Research. Peer reviewed version Tran, M., Doufexi, A., & Nix, AR. (8). Mobile WiMAX MIMO performance analysis: downlink and uplink. In IEEE Personal and Indoor Mobile Radio Conference 8 (PIMRC), Cannes (pp. - 5). Institute of Electrical

More information

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC MIMO in 4G Wireless Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC About the presenter: Iqbal is the founder of training and consulting firm USPurtek LLC, which specializes

More information

All Beamforming Solutions Are Not Equal

All Beamforming Solutions Are Not Equal White Paper All Beamforming Solutions Are Not Equal Executive Summary This white paper compares and contrasts the two major implementations of beamforming found in the market today: Switched array beamforming

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Neha Pathak #1, Neha Bakawale *2 # Department of Electronics and Communication, Patel Group of Institution, Indore

Neha Pathak #1, Neha Bakawale *2 # Department of Electronics and Communication, Patel Group of Institution, Indore Performance evolution of turbo coded MIMO- WiMAX system over different channels and different modulation Neha Pathak #1, Neha Bakawale *2 # Department of Electronics and Communication, Patel Group of Institution,

More information

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Mallouki Nasreddine,Nsiri Bechir,Walid Hakimiand Mahmoud Ammar University of Tunis El Manar, National Engineering School

More information

802.11n. Suebpong Nitichai

802.11n. Suebpong Nitichai 802.11n Suebpong Nitichai Email: sniticha@cisco.com 1 Agenda 802.11n Technology Fundamentals 802.11n Access Points Design and Deployment Planning and Design for 802.11n in Unified Environment Key Steps

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW In this section, a brief review of literature on Performance of Antenna Diversity Techniques, Alamouti Coding Scheme, WiMAX Broadband Wireless Access Technology, Mobile WiMAX Technology,

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 White paper Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 HSPA has transformed mobile networks Contents 3 Multicarrier and multiband HSPA 4 HSPA and LTE carrier 5 HSDPA multipoint

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Advanced Frequency Reuse

Advanced Frequency Reuse Advanced Frequency Reuse More Capacity Out of Current Spectrum Introduction To thrive in the increasingly competitive, hyper-connected world, Network Operators must offer new revenue-generating services

More information

Performance Enhancement of Multi-Input Multi-Output (MIMO) System with Diversity

Performance Enhancement of Multi-Input Multi-Output (MIMO) System with Diversity Performance Enhancement of Multi-Input Multi-Output (MIMO) System with Diversity Ghulam Abbas, Ebtisam Ahmed, Waqar Aziz, Saqib Saleem, Qamar-ul-Islam Department of Electrical Engineering, Institute of

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

RADWIN JET POINT-TO-MULTIPOINT BEAMFORMING SOLUTION DELIVERS FIBER-LIKE CONNECTIVITY FOR RESIDENTIAL AND ENTERPRISE

RADWIN JET POINT-TO-MULTIPOINT BEAMFORMING SOLUTION DELIVERS FIBER-LIKE CONNECTIVITY FOR RESIDENTIAL AND ENTERPRISE RADWIN JET POINT-TO-MULTIPOINT FOR SERVICE PROVIDERS Product Brochure PtMP solution with PtP performance 750 Mbps RADWIN JET POINT-TO-MULTIPOINT BEAMFORMING SOLUTION DELIVERS FIBER-LIKE CONNECTIVITY FOR

More information

Wireless Connectivity. Breaking the line-of-sight boundaries. BreezeACCESS OFDM

Wireless Connectivity. Breaking the line-of-sight boundaries. BreezeACCESS OFDM Wireless Connectivity Breaking the line-of-sight boundaries BreezeACCESS OFDM Introduction: current market demands Today, more than ever, telecom operators providing last mile Broadband Wireless Access

More information

the measurement requirements posed by MIMO as well as a thorough discussion of MIMO itself. BROADBAND SIGNAL CHALLENGES

the measurement requirements posed by MIMO as well as a thorough discussion of MIMO itself. BROADBAND SIGNAL CHALLENGES the measurement requirements posed by MIMO as well as a thorough discussion of MIMO itself. BROADBAND SIGNAL CHALLENGES Any signal with a broad bandwidth is susceptible to the potentially destructive effects

More information

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mb

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mb RADWIN JET Point-to-MultiPoint for Service Providers Product Brochure PtMP so l with PtuPtion perform ance 750 Mb ps RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential

More information

Journal of Asian Scientific Research

Journal of Asian Scientific Research Journal of Asian Scientific Research journal homepage: http://aessweb.com/journal-detail.php?id=5003 THOUGHPUT PERFORMANCE OF ADAPTIVE MODULATION AND CODING SCHEME WITH LINK ADAPTATION FOR MIMO-WIMAX DOWNLINK

More information

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Navjot Kaur and Lavish Kansal Lovely Professional University, Phagwara, E-mails: er.navjot21@gmail.com,

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

Implementation of MIMO-OFDM System Based on MATLAB

Implementation of MIMO-OFDM System Based on MATLAB Implementation of MIMO-OFDM System Based on MATLAB Sushmitha Prabhu 1, Gagandeep Shetty 2, Suraj Chauhan 3, Renuka Kajur 4 1,2,3,4 Department of Electronics and Communication Engineering, PESIT-BSC, Bangalore,

More information

MIMO Enabled Efficient Mapping of Data in WiMAX Networks

MIMO Enabled Efficient Mapping of Data in WiMAX Networks MIMO Enabled Efficient Mapping of Data in WiMAX Networks Phani Krishna P, Saravana Manickam R and Siva Ram Murthy C High Performance Computing & Networking Lab (HPCN) Department of Computer Science & Engineering

More information

RADWIN JET PtMP Beamforming solution for fiber-like connectivity

RADWIN JET PtMP Beamforming solution for fiber-like connectivity RADWIN JET Point-to-MultiPoint for Private Networks Product Brochure PtMP so l with PtuPtion perform ance 750 Mb ps RADWIN JET PtMP Beamforming solution for fiber-like connectivity RADWIN JET is a disruptive

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Review on Improvement in WIMAX System

Review on Improvement in WIMAX System IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 09 February 2017 ISSN (online): 2349-6010 Review on Improvement in WIMAX System Bhajankaur S. Wassan PG Student

More information

Multi-Cell Interference Coordination in LTE Systems using Beamforming Techniques

Multi-Cell Interference Coordination in LTE Systems using Beamforming Techniques Multi-Cell Interference Coordination in LTE Systems using Beamforming Techniques Sérgio G. Nunes, António Rodrigues Instituto Superior Técnico / Instituto de Telecomunicações Technical University of Lisbon,

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

Diversity Techniques

Diversity Techniques Diversity Techniques Vasileios Papoutsis Wireless Telecommunication Laboratory Department of Electrical and Computer Engineering University of Patras Patras, Greece No.1 Outline Introduction Diversity

More information

MIMO I: Spatial Diversity

MIMO I: Spatial Diversity MIMO I: Spatial Diversity COS 463: Wireless Networks Lecture 16 Kyle Jamieson [Parts adapted from D. Halperin et al., T. Rappaport] What is MIMO, and why? Multiple-Input, Multiple-Output (MIMO) communications

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

RIDE RADWIN 5000 HPMP HIGHWAY. RADWIN 5000 HPMP product brochure. RADWIN 5000 HPMP High Capacity Point to Multi-Point Solution

RIDE RADWIN 5000 HPMP HIGHWAY. RADWIN 5000 HPMP product brochure. RADWIN 5000 HPMP High Capacity Point to Multi-Point Solution RADWIN 5000 HPMP product brochure RIDE RADWIN 5000 HPMP HIGHWAY RADWIN 5000 HPMP High Capacity Point to Multi-Point Solution RADWIN 5000 HPMP delivers up to 200Mbps making it the ideal choice for last

More information

Overview of Mobile WiMAX Technology

Overview of Mobile WiMAX Technology Overview of Mobile WiMAX Technology Esmael Dinan, Ph.D. April 17, 2009 1 Outline Part 1: Introduction to Mobile WiMAX Part 2: Mobile WiMAX Architecture Part 3: MAC Layer Technical Features Part 4: Physical

More information

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mbps. PtMP solution with PtP performance

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mbps. PtMP solution with PtP performance RADWIN JET Point-to-MultiPoint for Service Providers Product Brochure PtMP solution with PtP performance 750 Mbps RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and

More information

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM Indian J.Sci.Res. (): 0-05, 05 ISSN: 50-038 (Online) DESIGN OF STBC ENCODER AND DECODER FOR X AND X MIMO SYSTEM VIJAY KUMAR KATGI Assistant Profesor, Department of E&CE, BKIT, Bhalki, India ABSTRACT This

More information

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 ATHEROS COMMUNICATIONS, INC. Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 By Winston Sun, Ph.D. Member of Technical Staff May 2006 Introduction The recent approval of the draft 802.11n specification

More information

A Polling Based Approach For Delay Analysis of WiMAX/IEEE Systems

A Polling Based Approach For Delay Analysis of WiMAX/IEEE Systems A Polling Based Approach For Delay Analysis of WiMAX/IEEE 802.16 Systems Archana B T 1, Bindu V 2 1 M Tech Signal Processing, Department of Electronics and Communication, Sree Chitra Thirunal College of

More information

Motorola Wireless Broadband Technical Brief OFDM & NLOS

Motorola Wireless Broadband Technical Brief OFDM & NLOS technical BRIEF TECHNICAL BRIEF Motorola Wireless Broadband Technical Brief OFDM & NLOS Splitting the Data Stream Exploring the Benefits of the Canopy 400 Series & OFDM Technology in Reaching Difficult

More information

1 Overview of MIMO communications

1 Overview of MIMO communications Jerry R Hampton 1 Overview of MIMO communications This chapter lays the foundations for the remainder of the book by presenting an overview of MIMO communications Fundamental concepts and key terminology

More information

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX OBJECTIVES Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX INTRODUCTION WIMAX the Worldwide Interoperability for Microwave Access, is a telecommunications

More information

Mitigating Interference in LTE Networks With Sequans AIR - Active Interference Rejection

Mitigating Interference in LTE Networks With Sequans AIR - Active Interference Rejection With Sequans AIR - Active Interference Rejection Contents Executive summary... 3 Introduction... 4 LTE market... 4 Inter-cell interference in LTE networks... 4 Impact of small cells... 4 Network-based

More information

PHY Proposal IEEE Presentation Submission Template (Rev. 8.2)

PHY Proposal IEEE Presentation Submission Template (Rev. 8.2) PHY Proposal IEEE 80.6 Presentation Submission Template (Rev. 8.) Document Number: IEEE 80.6.3p-0/8 Date Submitted: January 9, 00 Source: Randall Schwartz Voice: 650-988-4758 BeamReach Networks, Inc. Fax:

More information

1/16. White Paper May General consideration in Wimax technologies. Solutions in Radiocommunications

1/16. White Paper May General consideration in Wimax technologies. Solutions in Radiocommunications 1/16 White Paper May 2008 General consideration in Wimax technologies Solutions in Radiocommunications 2/16 ABSTRACT WiMAX is based upon the IEEE 802.16 standard enabling the delivery of wireless broadband

More information

BASIC CONCEPTS OF HSPA

BASIC CONCEPTS OF HSPA 284 23-3087 Uen Rev A BASIC CONCEPTS OF HSPA February 2007 White Paper HSPA is a vital part of WCDMA evolution and provides improved end-user experience as well as cost-efficient mobile/wireless broadband.

More information

Advanced Broadband Wireless Access System

Advanced Broadband Wireless Access System Advanced Broadband Wireless Access System Advanced 4G Technology: Hybrid Air Interface 8x Smart Antenna - Interference Resistance - SDMA High Efficiency: Long Range - Deep NLoS Coverage - High Capacity

More information

TDD and FDD Wireless Access Systems

TDD and FDD Wireless Access Systems WHITE PAPER WHITE PAPER Coexistence of TDD and FDD Wireless Access Systems In the 3.5GHz Band We Make WiMAX Easy TDD and FDD Wireless Access Systems Coexistence of TDD and FDD Wireless Access Systems In

More information

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005 Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks Plenary Talk at: Jack H. Winters September 13, 2005 jwinters@motia.com 12/05/03 Slide 1 1 Outline Service Limitations Smart Antennas

More information

LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND

LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND International Journal of Recent Innovation in Engineering and Research Scientific Journal Impact Factor - 3.605 by SJIF e- ISSN: 2456 2084 LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND G.Madhusudhan 1 and

More information

CHAPTER : 1 INTRODUCTION. 1.1 Basic. 1.2 System Modeling and Simulation

CHAPTER : 1 INTRODUCTION. 1.1 Basic. 1.2 System Modeling and Simulation CHAPTER : 1 This research work is presented for the topic MODELING, SIMULATION AND COMPARATIVE ANALYSIS OF WIMAX SYSTEM USING MIMO-OFDM AND ALAMOUTI CODING SCHEME, to the department of Electronics and

More information

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014 By Fanny Mlinarsky 1/12/2014 Rev. A 1/2014 Wireless technology has come a long way since mobile phones first emerged in the 1970s. Early radios were all analog. Modern radios include digital signal processing

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

Dynamic Frequency Hopping in Cellular Fixed Relay Networks Dynamic Frequency Hopping in Cellular Fixed Relay Networks Omer Mubarek, Halim Yanikomeroglu Broadband Communications & Wireless Systems Centre Carleton University, Ottawa, Canada {mubarek, halim}@sce.carleton.ca

More information

Multi Antenna Solutions in Vehicle Environment

Multi Antenna Solutions in Vehicle Environment Multi Antenna Solutions in Vehicle Environment Hiro Onishi (Alpine Electronics Research of America, Inc.) Fanny Mlinarsky (octoscope, Inc.) 2014 Alpine Electronics, Inc. Not for commercial distribution.

More information

1X-Advanced: Overview and Advantages

1X-Advanced: Overview and Advantages 1X-Advanced: Overview and Advantages Evolution to CDMA2000 1X QUALCOMM INCORPORATED Authored by: Yallapragada, Rao 1X-Advanced: Overview and Advantages Evolution to CDMA2000 1X Introduction Since the first

More information

Enhancement of Transmission Reliability in Multi Input Multi Output(MIMO) Antenna System for Improved Performance

Enhancement of Transmission Reliability in Multi Input Multi Output(MIMO) Antenna System for Improved Performance Advances in Wireless and Mobile Communications. ISSN 0973-6972 Volume 10, Number 4 (2017), pp. 593-601 Research India Publications http://www.ripublication.com Enhancement of Transmission Reliability in

More information

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems Use of in Modern Wireless Communication Systems Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph:

More information

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands Overview of IEEE 802.16 Broadband Wireless Access Standards Timo Smura 24.02.2004 Contents Fixed Wireless Access networks Network topologies, frequency bands IEEE 802.16 standards Air interface: MAC +

More information

RADWIN 5000 JET REDEFINING POINT-TO-MULTIPOINT WIRELESS CONNECTIVITY IN SUB-6GHZ BANDS

RADWIN 5000 JET REDEFINING POINT-TO-MULTIPOINT WIRELESS CONNECTIVITY IN SUB-6GHZ BANDS RADWIN 5000 JET POINT-TO-MULTIPOINT Product Brochure PtMP solution with PtP performance 750 Mbps RADWIN 5000 JET REDEFINING POINT-TO-MULTIPOINT WIRELESS CONNECTIVITY IN SUB-6GHZ BANDS RADWIN 5000 JET is

More information

IEEE Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/20/>

IEEE Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/20/> 00-0- Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy IEEE 0.0 Working Group on Mobile Broadband Wireless Access IEEE C0.0-/0

More information

Hybrid Index Modeling Model for Memo System with Ml Sub Detector

Hybrid Index Modeling Model for Memo System with Ml Sub Detector IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 14-18 www.iosrjen.org Hybrid Index Modeling Model for Memo System with Ml Sub Detector M. Dayanidhy 1 Dr. V. Jawahar Senthil

More information