The Overview Report of S-band Ground Station Verification and Operation for Lean Satellite, HORYU-IV

Size: px
Start display at page:

Download "The Overview Report of S-band Ground Station Verification and Operation for Lean Satellite, HORYU-IV"

Transcription

1 The Overview Report of S-band Ground Station Verification and Operation for Lean Satellite, HORYU-IV BONSU Benjamin, TATSUO Shimizu, HORYU-IV Project Members, CHO Mengu Kyushu Institute of Technology Laboratory of Spacecraft Environment INteraction Engineering (La SEINE) October 19, /19/2016 1

2 Contents 1. Introduction 2. About of HORYU-IV Lean Satellite 3. Overview of S-band Ground Station 4. On-Ground Ground Station Verification Test Results 5. HORYU-IV Operation Status Report 6. On-Orbit Ground Station Verification Test Results 7. Conclusions and Lesson Learned 10/19/2016 2

3 Introduction Lean - satellite; Small/micro/nano/pico satellite. Untraditional risk-accepting development methodology. Low-cost and fast-delivery. Lean-satellite mostly developed by universities : Launch into Low Earth Orbit (LEO) for educational and research purposes Utilize amateur VHF/UHF bands for space ground communication Utilize data throughput of 1200kbps and 9600kbps Limited time window of communication search?biw=1164&bih As universities Lean satellite missions becomes sophisticated demand for higher data throughput and higher frequency for space ground communication are arising 10/19/2016 3

4 About HORYU-IV Project HORYU-IV Team 10/19/2016 4

5 Launch Date: 17 th February 2016 About HORYU-IV Lean Satellite Launch Time:17:45:34 JST Launched by : JAXA, H2A-202 rocket Altitude:575km Inclination:31 degrees Main Mission : To acquire images of discharge occurrence phenomenon on the experimental solar panels onboard 10/19/2016 5

6 HORYU-IV S-band Communication Requirements Schematics of HORYU-IV S-band communication subsystem Data Speed Transmitter:100kbps Receiver : 38kbps - 100kbps Center Frequency S-band : GHz Bandwidth 140kHz or more S-band Transmitter Power: 0.5W 10/19/2016 S-band Patch Antenna +X axis view 6

7 Overview of S-band Ground Station 10/19/2016 7

8 Components of S-band Dish Antenna system Developed and Installed by ELM and Microlab Comapnines 10/19/2016 8

9 System Diagram of S-band Ground Station Configuration ROOFTOP CONTROL ROOM Optical to RF convertor S-band Receiver Ethernet Hub Tracking PC Reception PC 10/19/ m S-band Parabolic Dish Antenna System RF Male N-type connector GHz Optic line Ethernet line 9

10 On-Ground S-band Ground Station Verification Results 10/19/

11 Environmental Interference Test Wi-Fi, Mobile Phones, WiMAX radio networks 26 meters Location: General Research Building 1 rooftop Monitoring interference signal 10/19/

12 Environmental Interference Results Results Interference signal Required operating frequency range ( GHz GHz) Interference signal 10/19/

13 Long Distance Communication Test (Before HORYU-IV launch) S-band ground station location Transmitter antenna Transmitter station location (Sarakura Mountain) Team at Sarakura Mountain Simulated distance of 2600km (path loss 168.3dB) 10/19/2016 S-band Dish antenna pointing Sarakura Mountain 11

14 Results Required operating frequency range ( GHz GHz) Signal to Noise ratio = 30dB Link Margin : 20.2dB 10/19/

15 Results of on-ground S-band receiver data rate results Result: 46kbps > Requirement: 38kbps PASSED 10/19/

16 HORYU-IV Operation Status Report 10/19/

17 First Day: HORYU-IV operation 10/19/

18 On-Orbit Ground Station Verification Results 10/19/

19 HORYU-IV on-orbit Link Margin Analysis Results Two days after HORYU-IV launch On-orbit margin << On-ground margin Signal to Noise Ratio : 13.37dB What could be the problem? Link Margin : 3.37dB 10/19/

20 Packets HORYU-IV S-band Downlink Operation and Main mission Data Rate Analysis Results (Day 10 day 43 from Launch) Good Packets Error Packets HORYU-IV S-band Downlink Data Packet Analysis Result: 5.4kbps << Requirement: 38kbps FAILED Day from Launch Average received data rate: 5.4kbps 10/19/

21 Discovered Problems Reasons 0 HORYU-IV attitude was not stabilized (passive control) to orient transmitter antenna to ground. 0S-band receiver system and its interface could not correct Doppler shift. 10/19/

22 Doppler shift impact on data reception Required operating frequency range ( GHz GHz) Packet loss Frequency shift due to Doppler effect No Doppler effect Packet loss Center frequency 10/19/

23 Mitigation: Doppler shift correction implementation Before Modification After Modification 10/19/

24 Packets Results after Doppler Shift Correction Good Packets Error Packets Implementation HORYU-IV S-band Downlink Data Packets Analysis Result: 40kbps > Requirement: 38kbps PASSED Day from Launch Average received data rate: 40kbps 10/19/

25 HORYU-IV stabilization impact on data reception HORYU-IV is NOT is stabilized 10/19/ Kyushu Institute of Technology ASTRO-H Piggy-back Satellite HORYU-IV Critical Design Review July 20, 2015

26 HORYU-IV on-orbit Link Margin Analysis Results after Stabilization On-orbit margin on-ground margin Link Margin : 19.62dB 10/19/

27 HORYU-IV Image Data Results Main mission image data before Doppler shift correction and satellite stabilization Main mission image data after Doppler shift correction and satellite stabilization Main mission data quality improved 10/19/

28 HORYU-IV Earth Observation Images Ad-Damer /Sudan Region Halayb/Egypt and Port- Sudan Region HORY-4 Arc Event Generator and Investigation Satellite HORYU-IV Image Google Map HORYU-IV Image Google Map Typhoon image captured on 2 nd September during 15:32 JST HORYU-IV pass around Kyushu Island /typhoon-no-12-approaching-kyushu/ 10/19/

29 Training of HORYU-IV Operators 10/19/

30 Conclusion 0 S-band ground station can able to downlink HORYU-IV main mission data to contribute to scientific research 0 Lean satellites communication using Wi-Fi frequency range is possible. 0 Modification of S-band ground station configuration corrected Doppler shift and improved data reception 0 Passive attitude can severely impact signal strength and makes data reception difficult 0 Received data rate could satisfied the S-band communication requirement 10/19/

31 Lessons Learned 0Verify ground station performances through long distance test prior to satellite launch 0Perform ground station testing with real satellite article 0Do not only rely on manufacturers if they have little experience, "Trust but verify" strategy 10/19/

32 Lessons Learned 0Implement already-proven commercial off the shelf communication systems 0Do not underestimate the importance of Doppler shift. Check the compliance with the Doppler shift before the launch 10/19/

33 APPRECIATION /19/

34 THANK YOU 10/19/

35 QUESTIONS AND COMMENTS 10/19/

36 Appendix 10/19/

37 Software developed for HORYU-IV downlink operations 10/19/

38 Doppler compensation software Doppler compensation software developed to operate on the receiver PC Doppler compensation software developed by ELM company to integrate with the ICOM-R9500 receiver 10/19/

39 10/19/

40 Packets After modification analysis results Status of AVC motoe mission downlink data analysis Average expected Packets (Ep) Average value obtained 512 packets 1packet = 4096 bytes Comments Average expected packet to be received from satellite Good Packets Error Packets 600 HORYU-IV S-band Downlink Data Packets Analysis Average total packets received (Tp) Average good packets received (Gp) 490packets ( bits ) packets ( bit) Average total packets recorded from decoder analysis Average good packets recorded from decoder analysis Average error packets received (Er) Average time for Data reception (T) 48packets Average error packets recorded from decoder analysis 360 seconds Approximate time of data reception Day from Launch 10/19/

41 Status of AVC motoe mission downlink data analysis Average Information Bit error rate (BER) Average received Data rate (Dr) Average value obtained Cont Comments x BER = Ei /Tp 40.2kbps Dr = (Gp /T) / 1000 Average Packet lost (P L ) 48.73% P L = (Ep Tp)/Ep x 100 Average quality data reception (Qd) Analyzed average error bits from Error packets (Ei) 86.4% Qd=(Gp/ Ep) x bits Estimated average error bits obtained error packets decoded data 10/19/

42 Packets Before modification Status of AVC motoe mission downlink data analysis Average expected Packets (Ep) Average value obtained 512 packets 1packet = 4096 bytes Comments Average expected packet to be received from satellite Good Packets Error Packets HORYU-IV S-band Downlink Data Packet Analysis 500 Average total packets received (Tp) Average good packets received (Gp) Average error packets received (Er) Average time for Data reception (T) packets ( ) packets ( bits) packets Average total packets recorded from decoder analysis Average good packets recorded from decoder analysis Average error packets recorded from decoder analysis 360 seconds Approximate time of data reception Day from Launch 10/19/

43 Cont Status of AVC motoe mission downlink data analysis Average Information Bit error rate (BER) Average received Data rate (Dr) Average value obtained Comments x BER = Ei /Tp 5.4kbps Dr = (Gp /T) / 1000 Average Packet lost (P L ) 48.73% P L = (Ep Tp)/Ep x 100 Average quality data reception (Qd) Analyzed average error bits from Error packets (Ei) 11.66% Qd=(Gp/ Ep) x bits Estimated average error bits obtained error packets decoded data 10/19/

44 Spectrum Analyzer Results Obtained Value Results Link Margin Analysis Results Link Margin = Received Eb/No Required Eb/No Required Eb/No : 11.5dB Transmitted Bit Rate: 100kbps (50dBHz) Received Eb/No (db) = C/N (received) - Transmitted Bit Rate + Bandwidth Received Eb/No (db) = Received Eb/No (db) = 14.77dB Link Margin (db) = Link Margin = 3.27dB Noise floor level (N) Received Signal Strength (C) Occupied Bandwidth ( Bw) Signal to Noise Ratio (C/N) -105Bm dBm 140kHz (51.4dBHz) 13.37dB Link Margin of 3.27dB obtained could not satisfy the design requirements. 3.27dB margin means the ground station can able to tolerate additional attenuation and still can decode the downlink data. 10/19/

45 10/19/

46 10/19/

47 Results Spectrum Analyzer Results Noise floor level (N) Received Signal Strength (C) Occupied Bandwidth ( Bw) Signal to Noise Ratio (C/N) Obtained Value -120dBm dBm 140kHz (51.4dBHz) 19.72dB C = dBm - coupler loss C = dBm +10dB C = -90.2dBm C/N = 29.72dB Link Margin Analysis Results Link Margin = Received Eb/No Required Eb/No Required Eb/No : 11.5dB Transmitted Bit Rate: 100kbps (50dBHz) Received Eb/No (db) = C/N (received) - Transmitted Bit Rate + Bandwidth Received Eb/No (db) = Received Eb/No (db) = 31.12dB Link Margin (db) = Link Margin = 19.62dB 8/24/

48 Required E b /No (Theory) 10/19/

49 Level convertor unit 10/19/

50 Upconvertor Unit 10/19/

51 Feed horn Configuration 10/19/

52 Schematic of S-band GS Configuration 10/19/

53 APPRECIATION Congratulations Prof. Mengu Cho 10/19/

54 Dish Antenna Gain Measurement 10/19/

55 APPRECIATION Congratulations Prof. Mengu Cho! 10/19/

Satellite Communications Testing

Satellite Communications Testing Satellite Communications Testing SATELLITE COMMUNICATIONS TESTING Traditionally, the satellite industry has relied on geosynchronous earth orbit (GEO) satellites that take years to build and require very

More information

Digital Communications Theory. Phil Horkin/AF7GY Satellite Communications Consultant

Digital Communications Theory. Phil Horkin/AF7GY Satellite Communications Consultant Digital Communications Theory Phil Horkin/AF7GY Satellite Communications Consultant AF7GY@arrl.net Overview Sending voice or data over a constrained channel is a balancing act trading many communication

More information

High Speed Data Downlink for NSF Space Weather CubeSats

High Speed Data Downlink for NSF Space Weather CubeSats High Speed Data Downlink for NSF Space Weather CubeSats National Science Foundation Meeting Monday August 31, 2009 Charles Swenson Satellite Data Flow Onboard Instruments R collected Spacecraft Memory

More information

Satellite Link Budget 6/10/5244-1

Satellite Link Budget 6/10/5244-1 Satellite Link Budget 6/10/5244-1 Link Budgets This will provide an overview of the information that is required to perform a link budget and their impact on the Communication link Link Budget tool Has

More information

2009 Small Satellite Conference Logan, Utah

2009 Small Satellite Conference Logan, Utah Exploiting Link Dynamics in LEO-to-Ground Communications 2009 Small Satellite Conference Logan, Utah Joseph Palmer jmp@lanl.gov Michael Caffrey mpc@lanl.gov Los Alamos National Laboratory Paper Abstract

More information

2009 CubeSat Developer s Workshop San Luis Obispo, CA

2009 CubeSat Developer s Workshop San Luis Obispo, CA Exploiting Link Dynamics in LEO-to-Ground Communications 2009 CubeSat Developer s Workshop San Luis Obispo, CA Michael Caffrey mpc@lanl.gov Joseph Palmer jmp@lanl.gov Los Alamos National Laboratory Paper

More information

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16]

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16] Code No: R05410409 Set No. 1 1. Discuss in detail the Design Consideration of a Satellite Communication Systems. 2. (a) What is a Geosynchronous Orbit? Discuss the advantages and disadvantages of these

More information

RADIO FREQUENCY AND MODULATION SYSTEMS PART 1: EARTH STATIONS AND SPACECRAFT

RADIO FREQUENCY AND MODULATION SYSTEMS PART 1: EARTH STATIONS AND SPACECRAFT Draft Recommendations for Space Data System Standards RADIO FREQUENCY AND MODULATION SYSTEMS PART 1: EARTH STATIONS AND SPACECRAFT DRAFT RECOMMENDED STANDARD CCSDS 401.0-B-27.1 RED/PINK SHEETS August 2017

More information

The CubeSTAR Project. Design of a Prototype Communication System for the CubeSTAR Nano-satellite. Master presentation by Johan Tresvig 24th Aug.

The CubeSTAR Project. Design of a Prototype Communication System for the CubeSTAR Nano-satellite. Master presentation by Johan Tresvig 24th Aug. Design of a Prototype Communication System for the CubeSTAR Nano-satellite Master presentation by Johan Tresvig 24th Aug. 2010 The CubeSTAR Project Student satellite project at the University of Oslo Scientific

More information

CubeSat Communications Review and Concepts. Workshop, July 2, 2009

CubeSat Communications Review and Concepts. Workshop, July 2, 2009 CubeSat Communications Review and Concepts CEDAR CubeSats Constellations and Communications Workshop, July 2, 29 Charles Swenson Presentation Outline Introduction slides for reference Link Budgets Data

More information

Global network operations of CubeSats constellation

Global network operations of CubeSats constellation Global network operations of CubeSats constellation Mengu Cho and Apiwat Jirawattanaphol Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology, Kitakyushu, Japan Naomi

More information

The Friis Transmission Formula

The Friis Transmission Formula The Friis Transmission Formula If we assume that the antennas are aligned for maximum transmission and reception, then in free space, P RX = G TXA e P TX 4πr 2 where A e is the receiving aperture of the

More information

Experiment of 348 Mbps downlink from 50-kg class satellite

Experiment of 348 Mbps downlink from 50-kg class satellite 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin, Germany IAA-B10-1302 Experiment of 348 Mbps downlink from 50-kg class satellite Tomoya Fukami, The University of Tokyo

More information

Design and Development of Ground Station Network for Nano-Satellites, Thailand Ground Station Network

Design and Development of Ground Station Network for Nano-Satellites, Thailand Ground Station Network Design and Development of Ground Station Network for Nano-Satellites, Thailand Ground Station Network Apiwat Jirawattanaphol 1,2,a, Suramate Chalermwisutkul 1, and Phongsatorn Saisujarit 1 1 King Mongkut's

More information

Technician Licensing Class

Technician Licensing Class Technician Licensing Class Talk to Outer Presented Space by Amateur Radio Technician Class Element 2 Course Presentation ELEMENT 2 SUB-ELEMENTS (Groupings) About Ham Radio Call Signs Control Mind the Rules

More information

Exploiting Link Dynamics in LEO-to-Ground Communications

Exploiting Link Dynamics in LEO-to-Ground Communications SSC09-V-1 Exploiting Link Dynamics in LEO-to-Ground Communications Joseph Palmer Los Alamos National Laboratory MS D440 P.O. Box 1663, Los Alamos, NM 87544; (505) 665-8657 jmp@lanl.gov Michael Caffrey

More information

Overview: Radio Frequency Spectrum

Overview: Radio Frequency Spectrum Overview: Radio Frequency Spectrum Krystal Wilson, Secure World Foundation Working Group on Spectrum and Operational Challenges with the Emergence of Small Satellites 15 th Space Generation Congress Guadalajara,

More information

Satellite Sub-systems

Satellite Sub-systems Satellite Sub-systems Although the main purpose of communication satellites is to provide communication services, meaning that the communication sub-system is the most important sub-system of a communication

More information

RAX: The Radio Aurora explorer

RAX: The Radio Aurora explorer RAX: Matt Bennett University of Michigan CubeSat Workshop Cal Poly, San Luis Obispo April 22 nd, 2009 Background Sponsored by National Science Foundation University of Michigan and SRI International Collaboration

More information

The FASTRAC Satellites

The FASTRAC Satellites The FASTRAC Satellites Sebastián Muñoz 7 th Annual CubeSat Developer s Workshop Cal Poly San Luis Obispo April 23, 2010 AGENDA The FASTRAC Project Program Status Mission Overview Mission Objectives Mission

More information

EXPERIMENTAL STATION FREQUENCY COORDINATION REQUEST 1 USING FREQUENCIES ALLOCATED TO THE AMATEUR AND AMATEUR-SATELLITE SERVICES

EXPERIMENTAL STATION FREQUENCY COORDINATION REQUEST 1 USING FREQUENCIES ALLOCATED TO THE AMATEUR AND AMATEUR-SATELLITE SERVICES EXPERIMENTAL STATION FREQUENCY COORDINATION REQUEST 1 USING FREQUENCIES ALLOCATED TO THE AMATEUR AND AMATEUR-SATELLITE SERVICES I. Coordination procedure. 1. IARU frequency coordination is provided through

More information

DICE Telemetry Overview and Current Status

DICE Telemetry Overview and Current Status DICE Telemetry Overview and Current Status CubeSat Workshop, April 2012 Jacob Gunther Overview DICE telemetry overview Operations experience and timeline Narrowband interference mitigation Frequency domain

More information

TELECOMMUNICATION SATELLITE TELEMETRY TRACKING AND COMMAND SUB-SYSTEM

TELECOMMUNICATION SATELLITE TELEMETRY TRACKING AND COMMAND SUB-SYSTEM TELECOMMUNICATION SATELLITE TELEMETRY TRACKING AND COMMAND SUB-SYSTEM Rodolphe Nasta Engineering Division ALCATEL ESPACE Toulouse, France ABSTRACT This paper gives an overview on Telemetry, Tracking and

More information

Satellite System Engineering. -- Communication Telemetry/Tracking/Telecommand (TT&C)

Satellite System Engineering. -- Communication Telemetry/Tracking/Telecommand (TT&C) 1 st APSCO & ISSI-BJ Space Science School Satellite System Engineering -- Communication Telemetry/Tracking/Telecommand (TT&C) Prof Dr Shufan Wu Chinese Academy of Science (CAS) Shanghai Engineering Centre

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK Course Name : SATELLITE COMMUNICATION Course Code : AEC Class

More information

University. Federal University of Santa Catarina (UFSC) Florianópolis/SC - Brazil. Brazil. Embedded Systems Group (UFSC)

University. Federal University of Santa Catarina (UFSC) Florianópolis/SC - Brazil. Brazil. Embedded Systems Group (UFSC) University 1 Federal University of Santa Catarina (UFSC) Florianópolis/SC - Brazil Brazil Agenda 2 Partnership Introduction Subsystems Payload Communication System Power System On-Board Computer Attitude

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2013 Wireless Transmission

More information

Hawk Institute for Space Sciences. Firefly Comms Plan. November 30, 2009

Hawk Institute for Space Sciences. Firefly Comms Plan. November 30, 2009 Hawk Institute for Space Sciences Firefly Comms Plan November 30, 2009 Firefly Operational View UMES POCC Pocomoke City Science Team Ground Station e.g. WFF Internet 2 Comms Plan Overview MicroHard MHX-425

More information

NCUBE: The first Norwegian Student Satellite. Presenters on the AAIA/USU SmallSat: Åge-Raymond Riise Eystein Sæther

NCUBE: The first Norwegian Student Satellite. Presenters on the AAIA/USU SmallSat: Åge-Raymond Riise Eystein Sæther NCUBE: The first Norwegian Student Satellite Presenters on the AAIA/USU SmallSat: Åge-Raymond Riise Eystein Sæther Motivation Build space related competence within: mechanical engineering, electronics,

More information

Update on MHz Band for CubeSat High Speed Data Downlink

Update on MHz Band for CubeSat High Speed Data Downlink Update on 460-470 MHz Band for CubeSat High Speed Data Downlink Fall 2010 AGU Side Meeting Thursday Dec 16, 2009 Charles Swenson Review 460-470 MhZ Band Image courtesy of http://si.smugmug.com/gallery/1674201_uxzmp/1/457184513_4s3ag

More information

KySat-2: Status Report and Overview of C&DH and Communications Systems Design

KySat-2: Status Report and Overview of C&DH and Communications Systems Design KySat-2: Status Report and Overview of C&DH and Communications Systems Design Jason Rexroat University of Kentucky Kevin Brown Morehead State University Twyman Clements Kentucky Space LLC 1 Overview Mission

More information

TIME TRANSFER EXPERIMENT BY TCE ON THE ETS-VIII SATELLITE

TIME TRANSFER EXPERIMENT BY TCE ON THE ETS-VIII SATELLITE TIME TRANSFER EXPERIMENT BY TCE ON THE ETS-VIII SATELLITE Fumimaru Nakagawa, Yasuhiro Takahashi, Jun Amagai, Ryo Tabuchi, Shin ichi Hama, and Mizuhiko Hosokawa National Institute of Information and Communications

More information

ITU/ITSO Workshop on Satellite Communications, AFRALTI, Nairobi Kenya, 8-12, August, Link Budget Analysis

ITU/ITSO Workshop on Satellite Communications, AFRALTI, Nairobi Kenya, 8-12, August, Link Budget Analysis ITU/ITSO Workshop on Satellite Communications, AFRALTI, Nairobi Kenya, 8-12, August, 2016 Link Budget Analysis Presenter: E. Kasule Musisi ITSO Consultant Email: kasule@datafundi.com Cell: +256 772 783

More information

Student Satellites, Implementation Models & Approaches in Sudan

Student Satellites, Implementation Models & Approaches in Sudan Institute of Space Research and Aerospace (ISRA) Satellite and Space Systems Department Student Satellites, Implementation Models & Approaches in Sudan ISNET/SUPARCO Workshop on Student Satellites November

More information

Development of a Satellite Tracking Ground Station for the nsight-1 CubeSat Mission

Development of a Satellite Tracking Ground Station for the nsight-1 CubeSat Mission Development of a Satellite Tracking Ground Station for the nsight-1 CubeSat Mission Presented by: Francois Visser Date: 13 December 2017 Acknowledgements Dr Lourens Visagie University of Stellenbosch Hendrik

More information

PhoneSat: Balloon Testing Results. Mike Safyan 2011 Summer CubeSat Developers Workshop

PhoneSat: Balloon Testing Results. Mike Safyan 2011 Summer CubeSat Developers Workshop PhoneSat: Balloon Testing Results Mike Safyan 2011 Summer CubeSat Developers Workshop 85 Why use a phone? Increase on-orbit processor capability by a factor of 10-100 Decrease cost by a factor of 10-1000

More information

TELEMETRY, TRACKING, COMMAND AND MONITORING SYSTEM IN GEOSTATIONARY SATELLITE

TELEMETRY, TRACKING, COMMAND AND MONITORING SYSTEM IN GEOSTATIONARY SATELLITE TELEMETRY, TRACKING, COMMAND AND MONITORING SYSTEM IN GEOSTATIONARY SATELLITE Alish 1, Ritambhara Pandey 2 1, 2 UG, Department of Electronics and Communication Engineering, Raj Kumar Goel Institute of

More information

DATASHEET. X-band Transmitter

DATASHEET. X-band Transmitter DATASHEET X-band Transmitter 1 Change Log... 3 2 Acronyms List... 4 3 System Overview... 5 4 Features and Benefits... 6 5 RF Characteristics... 6 6 Connectors... 8 6.1 Location... 8 6.2 Pinout: H1 - Stack

More information

SMALL SATELLITE REGULATION WRC-15 OUTCOME AND RESULTS OF THE ITU-R WP7B STUDIES

SMALL SATELLITE REGULATION WRC-15 OUTCOME AND RESULTS OF THE ITU-R WP7B STUDIES Small Satellite Symposium Santiago, Chile, 7-9 November 2016 SMALL SATELLITE REGULATION WRC-15 OUTCOME AND RESULTS OF THE ITU-R WP7B STUDIES Mr. Attila MATAS matas@itu.int @AttilaMatas Head, Space Publication

More information

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT SPACE SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT Satellite communications, earth observation, navigation and positioning and control stations indracompany.com SSCMI SPREAD SPECTRUM CHANNEL MEASUREMENT

More information

Chapter 6 Solution to Problems

Chapter 6 Solution to Problems Chapter 6 Solution to Problems 1. You are designing an FDM/FM/FDMA analog link that will occupy 36 MHz of an INTELSAT VI transponder. The uplink and downlink center frequencies of the occupied band are

More information

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Kristin Larson, Dave Gaylor, and Stephen Winkler Emergent Space Technologies and Lockheed Martin Space Systems 36

More information

Datasheet. Licensed Backhaul Radio. Model: AF-4X. Up to 687 Mbps Real Throughput, Up to 200+ km Range

Datasheet. Licensed Backhaul Radio. Model: AF-4X. Up to 687 Mbps Real Throughput, Up to 200+ km Range Licensed Backhaul Radio Model: AF-4X Up to 687 Mbps Real Throughput, Up to 200+ km Range Optimal Use of 4.9 GHz Radio Band for Public Safety Sector Ubiquiti s INVICTUS Custom Silicon Overview Ubiquiti

More information

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads John Buonocore 12 th Annual Developer s Workshop 22 April 2015 Cal Poly San Luis Obispo High Speed Data Downlink The need for wider bandwidth

More information

2013 RockSat-C Preliminary Design Review

2013 RockSat-C Preliminary Design Review 2013 RockSat-C Preliminary Design Review TEC (The Electronics Club) Eastern Shore Community College Melfa, VA Larry Brantley, Andrew Carlton, Chase Riley, Nygel Meece, Robert Williams Date 10/26/2012 Mission

More information

Ian D Souza (1), David Martin (2)

Ian D Souza (1), David Martin (2) NANO-SATTELITE DEMONSTRATION MISSION: THE DETECTION OF MARITIME AIS SIGNALS FROM LOW EARTH ORBIT SMALL SATELLITE SYSTEMS AND SERVICES SYMPOSIUM Pestana Conference Centre Funchal, Madeira - Portugal 31

More information

General Survey of Radio Frequency Bands 30 MHz to 3 GHz

General Survey of Radio Frequency Bands 30 MHz to 3 GHz General Survey of Radio Frequency Bands 30 MHz to 3 GHz Version 2.0 September 23, 2010 Prepared by: Shared Spectrum Company 1595 Spring Hill Road Suite 110 Vienna, VA 22182-2228 703-761-2818 Fax: 703-761-2817

More information

Antennas Orbits Modulation Noise Link Budgets U N I V E R S I T Y O F. Spacecraft Communications MARYLAND. Principles of Space Systems Design

Antennas Orbits Modulation Noise Link Budgets U N I V E R S I T Y O F. Spacecraft Communications MARYLAND. Principles of Space Systems Design Antennas Orbits Modulation Noise Link Budgets The Problem Pointing Loss Polarization Loss Atmospheric Loss, Rain Loss Space Loss Pointing Loss Transmitter Antenna SPACE CHANNEL Receiver Power Amplifier

More information

Recommendation ITU-R M (09/2015)

Recommendation ITU-R M (09/2015) Recommendation ITU-R M.1906-1 (09/2015) Characteristics and protection criteria of receiving space stations and characteristics of transmitting earth stations in the radionavigation-satellite service (Earth-to-space)

More information

(SDR) Based Communication Downlinks for CubeSats

(SDR) Based Communication Downlinks for CubeSats Software Defined Radio (SDR) Based Communication Downlinks for CubeSats Nestor Voronka, Tyrel Newton, Alan Chandler, Peter Gagnon Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D113 Bothell, WA

More information

X-band CubeSat Communication System Demonstration

X-band CubeSat Communication System Demonstration X-band CubeSat Communication System Demonstration Serhat Altunc, Obadiah Kegege, Steve Bundick, Harry Shaw, Scott Schaire, George Bussey, Gary Crum, Jacob C. Burke NASA Goddard Space Flight Center (GSFC)

More information

Lecturer Series ASTRONOMY. FH Astros. Telecommunication with Space Craft. Kurt Niel (University of Applied Sciences Upper Austria)

Lecturer Series ASTRONOMY. FH Astros. Telecommunication with Space Craft. Kurt Niel (University of Applied Sciences Upper Austria) Lecturer Series ASTRONOMY FH Astros Telecommunication with Space Craft Kurt Niel (University of Applied Sciences Upper Austria) Lecturer Series ASTRONOMY FH Astros Telecommunication with Space Craft Kurt

More information

SATELLIT COMMUNICATION

SATELLIT COMMUNICATION QUESTION BANK FOR SATELLITE COMMUNICATION UNIT I 1) Explain Kepler s laws. What are the fords that give rise to these laws? 2) Explain how a satellite is located with respect to earth. 3) Describe antenna

More information

Glossary of Satellite Terms

Glossary of Satellite Terms Glossary of Satellite Terms Satellite Terms A-D The following terms and definitions will help familiarize you with your Satellite solution. Adaptive Coding and Modulation (ACM) Technology which automatically

More information

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave HEMERA Team Members: Andrea Bellome, Giulia Broggi, Luca Collettini, Davide Di Ienno, Edoardo Fornari, Leandro Lucchese, Andrea

More information

Ascent Ground and Satellite Demonstration

Ascent Ground and Satellite Demonstration Ascent Ground and Satellite Demonstration By Ray Roberge, WA1CYB & Howie DeFelice, AB2S WA1CYB s1 Big Picture Goals Place more capable satellites into higher orbits Utilize software defined radios A programmable

More information

Satellite Communications

Satellite Communications Satellite Communications Part IV-Lecture 5-Satellite Link Design Lecturer Madeeha Owais 1 Learning Objectives Solving calculations of Link Budget for various satellite systems 2 Calculate uplink transmitter

More information

2310 to 2390 MHz, 3m distance MCS8 (MIMO) to 2500 MHz Restricted band MCS8 (MIMO)

2310 to 2390 MHz, 3m distance MCS8 (MIMO) to 2500 MHz Restricted band MCS8 (MIMO) 2310 to 2390 MHz, 3m distance MCS8 (MIMO) Lower band edge, Average (Low Channel) Lower band edge, Peak (Low Channel) 2483.5 to 2500 MHz Restricted band MCS8 (MIMO) Upper band edge, Peak (High Channel)

More information

Laboratory testing of LoRa modulation for CubeSat radio communications

Laboratory testing of LoRa modulation for CubeSat radio communications Laboratory testing of LoRa modulation for CubeSat radio communications Alexander Doroshkin, Alexander Zadorozhny,*, Oleg Kus 2, Vitaliy Prokopyev, and Yuri Prokopyev Novosibirsk State University, 639 Novosibirsk,

More information

Datasheet. 5 GHz Carrier Backhaul Radio. Model: AF-5X. Up to 500+ Mbps Real Throughput, Up to 200+ km Range. Full-Band Certification including DFS

Datasheet. 5 GHz Carrier Backhaul Radio. Model: AF-5X. Up to 500+ Mbps Real Throughput, Up to 200+ km Range. Full-Band Certification including DFS 5 GHz Carrier Backhaul Radio Model: AF-5X Up to 500+ Mbps Real Throughput, Up to 200+ km Range Full-Band Certification including DFS Ubiquiti s INVICTUS Custom Silicon Overview Ubiquiti Networks continues

More information

Recommendation ITU-R SF.1486 (05/2000)

Recommendation ITU-R SF.1486 (05/2000) Recommendation ITU-R SF.1486 (05/2000) Sharing methodology between fixed wireless access systems in the fixed service and very small aperture terminals in the fixed-satellite service in the 3 400-3 700

More information

Quick Site Testing with the 8800SX

Quick Site Testing with the 8800SX Quick Site Testing with the 8800SX Site Testing with the 8800SX Basic Tests 5 site testing involves several tests to verify site operation. NOTE: This is not intended to be a complete commissioning procedure.

More information

Ground Station Design for STSAT-3

Ground Station Design for STSAT-3 Technical Paper Int l J. of Aeronautical & Space Sci. 12(3), 283 287 (2011) DOI:10.5139/IJASS.2011.12.3.283 Ground Station Design for STSAT-3 KyungHee Kim*, Hyochoong Bang*, Jang-Soo Chae**, Hong-Young

More information

Sustaining the Vision from GHANASAT-1 into GHANASAT-2

Sustaining the Vision from GHANASAT-1 into GHANASAT-2 Sustaining the Vision from GHANASAT-1 into GHANASAT-2 United Nation-South Africa Symposium on Basic Space Science Technology 13 th December 2017 jquansah@anuc.edu.gh By: Quansah Joseph [All Nations University,

More information

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite Dave Williamson Director, Strategic Programs Tyvak Tyvak: Satellite Solutions for Multiple Organizations

More information

Unguided Transmission Media

Unguided Transmission Media CS311 Data Communication Unguided Transmission Media by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

RECOMMENDATION ITU-R S *

RECOMMENDATION ITU-R S * Rec. ITU-R S.1339-1 1 RECOMMENDATION ITU-R S.1339-1* Rec. ITU-R S.1339-1 SHARING BETWEEN SPACEBORNE PASSIVE SENSORS OF THE EARTH EXPLORATION-SATELLITE SERVICE AND INTER-SATELLITE LINKS OF GEOSTATIONARY-SATELLITE

More information

Wireless Technology for Aerospace Applications. June 3 rd, 2012

Wireless Technology for Aerospace Applications. June 3 rd, 2012 Wireless Technology for Aerospace Applications June 3 rd, 2012 OUTLINE The case for wireless in aircraft and aerospace applications System level limits of wireless technology Security Power (self powered,

More information

Introduction. Satellite Research Centre (SaRC)

Introduction. Satellite Research Centre (SaRC) SATELLITE RESEARCH CENTRE - SaRC Introduction The of NTU strives to be a centre of excellence in satellite research and training of students in innovative space missions. Its first milestone satellite

More information

Doodle Labs Prism-WiFi Transceiver NM-4900 High Performance COFDM/MIMO Broadband Transceiver with minipcie

Doodle Labs Prism-WiFi Transceiver NM-4900 High Performance COFDM/MIMO Broadband Transceiver with minipcie Doodle Labs Prism-WiFi Transceiver NM-4900 High Performance COFDM/MIMO Broadband Transceiver with minipcie Prism-WiFi Transceiver Overview Doodle Labs Prism-WiFi are frequency shifted long range Industrial

More information

PolySat Launch and Operations

PolySat Launch and Operations PolySat Launch and Operations Cubesat Developers Summer Workshop Logan, Utah 12 August 2007 PolySat Objective: Engineering Education Objective: Provide a reliable bus system to allow for flight qualification

More information

Achieving capacities over 1Gbps. Martins Dzelde Senior Sales Engineer

Achieving capacities over 1Gbps. Martins Dzelde Senior Sales Engineer Achieving capacities over 1Gbps Martins Dzelde Senior Sales Engineer Agenda Spectrum Availability Ethernet data rate & link budget Mounting multiple radios to single antenna Case study: 1.7 Gbps links

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 4.3 Communications Satellite Payload - Hardware Elements Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science

More information

UNIVERSITY OF NAIROBI Radio Frequency Interference in Satellite Communications Systems

UNIVERSITY OF NAIROBI Radio Frequency Interference in Satellite Communications Systems UNIVERSITY OF NAIROBI Radio Frequency Interference in Satellite Communications Systems Project No. 090 Mitei Ronald Kipkoech F17/2128/04 Supervisor: Dr.V.K Oduol Examiner: Dr. Gakuru OBJECTIVES To study

More information

THE OPS-SAT NANOSATELLITE MISSION

THE OPS-SAT NANOSATELLITE MISSION THE OPS-SAT NANOSATELLITE MISSION Aerospace O.Koudelka, TU Graz M.Wittig MEW Aerospace D.Evans ESA 1 Contents 1) Introduction 2) ESA s OPS-SAT Mission 3) System Design 4) Communications Experiments 5)

More information

Dynamic Sciences International, Inc. Detection with Direction

Dynamic Sciences International, Inc. Detection with Direction Dynamic Sciences International, Inc Detection with Direction CORPORATE OVERVIEW WHO WE ARE Dynamic Sciences International, Inc. (DSII) is a public corporation Serving customers worldwide since 1972. DSII

More information

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1 ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS Homework Question 1 ECE 271 HOMEWORK-1 Allocated channel bandwidth for commercial TV is 6 MHz. a. Find the maximum number of analog

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

I SARA 08/10/13. Pre-Decisional Information -- For Planning and Discussion Purposes Only

I SARA 08/10/13. Pre-Decisional Information -- For Planning and Discussion Purposes Only 1 Overview ISARA Mission Summary Payload Description Experimental Design ISARA Mission Objectives: Demonstrate a practical, low cost Ka-band High Gain Antenna (HGA) on a 3U CubeSat Increase downlink data

More information

Precision Validation, Maintenance and Repair of Satellite Earth Stations

Precision Validation, Maintenance and Repair of Satellite Earth Stations Precision Validation, Maintenance and Repair of Satellite Earth Stations September 18, 2014 Co-sponsored by Keysight Technologies 2014 Tom Hoppin Application Specialist Component Test Division Keysight

More information

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK 1. Write the advantages and disadvantages of Satellite Communication. 2. Distinguish between active and

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

LABORATORY EXERCISES

LABORATORY EXERCISES LABORATORY EXERCISES You can write the answers on this sheet, or use a separate sheet if necessary. The deadline for returning these exercises can be seen on the course web page. If you run into problems,

More information

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton Relative Navigation, Timing & Data Communications for CubeSat Clusters Nestor Voronka, Tyrel Newton Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100x678 voronka@tethers.com

More information

The Orbcomm Experience

The Orbcomm Experience The Orbcomm Experience Jochen Harms OHB Technology Director of New Ventures Universitätsallee 27-29 28359 Bremen Germany Tel: +49 421 2020 9849 Fax: +49 421 2020 700 Email: harms@ohb-technology.de INTRODUCTION

More information

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0 Technical Brief AN205 Rev A0 The LoRa Protocol By John Sonnenberg Raveon Technologies Corp Overview The LoRa (short for Long Range) modulation scheme is a modulation technique combined with a data encoding

More information

INSTALLATION AND OPERATING MANUAL

INSTALLATION AND OPERATING MANUAL INSTALLATION AND OPERATING MANUAL FOR RBDA-PCS-1/25W-90-A INDOOR REPEATER TABLE OF CONTENTS PARAGRAPH PAGE NO BDA OVERVIEW 3 BDA BLOCK DIAGRAM DESCRIPTION 3 FCC INFORMATION FOR USER 3 BDA BLOCK DIAGRAM

More information

RF Board Design for Next Generation Wireless Systems

RF Board Design for Next Generation Wireless Systems RF Board Design for Next Generation Wireless Systems Page 1 Introduction Purpose: Provide basic background on emerging WiMax standard Introduce a new tool for Genesys that will aide in the design and verification

More information

Status of Telecommunication in W- band and possible applications: satellite broadband connection and networks of mobile phones

Status of Telecommunication in W- band and possible applications: satellite broadband connection and networks of mobile phones Status of Telecommunication in W- band and possible applications: satellite broadband connection and networks of mobile phones ARES & CTIF, Interdepartmental Center for TeleInfrastructure, University of

More information

Technical Bulletin. DIFFERENT OPERATING MODES, SPECTRAL BEHAVIOUR & DATA THROUGHPUT Prepared by: Jack Van der Star, P.Eng.

Technical Bulletin. DIFFERENT OPERATING MODES, SPECTRAL BEHAVIOUR & DATA THROUGHPUT Prepared by: Jack Van der Star, P.Eng. DIFFERENT OPERATING MODES, SPECTRAL BEHAVIOUR & DATA THROUGHPUT Prepared by: Jack Van der Star, P.Eng. This technical bulletin provides observations of spectrum and data throughput behavior under different

More information

K/Ka Band for Space Operation Services, Pros and Cons. ITU International Satellite Symposium 2017 Ing. Hernan Sineiro

K/Ka Band for Space Operation Services, Pros and Cons. ITU International Satellite Symposium 2017 Ing. Hernan Sineiro K/Ka Band for Space Operation Services, Pros and Cons ITU International Satellite Symposium 2017 Ing. Hernan Sineiro Spacecraft Operation Historically the S-Band was used for LEO satellite tracking, telemetry

More information

A Flight-Proven 2.4GHz ISM Band COTS Communications System for Small Satellites

A Flight-Proven 2.4GHz ISM Band COTS Communications System for Small Satellites SSC07-XI-11 A Flight-Proven 2.4GHz ISM Band COTS Communications System for Small Satellites Ignacio A. Mas Robotics Systems Laboratory, Santa Clara University 500 El Camino Real, Santa Clara, CA 95053;

More information

Space Systems Engineering

Space Systems Engineering Space Systems Engineering This course studies the space systems engineering referring to spacecraft examples. It covers the mission analysis and design, system design approach, systems engineering process

More information

The M-Cubed/COVE Mission

The M-Cubed/COVE Mission The M-Cubed/COVE Mission Matt Bennett 1, Andrew Bertino 2, James Cutler 2, Charles Norton 1, Paula Pingree 1, John Springmann 2, Scott Tripp 2 CubeSat Developers Workshop April 18, 2012 1 Jet Propulsion

More information

Industrial Wireless Systems

Industrial Wireless Systems Application Considerations Don Pretty Principal Engineer Geometric Controls Inc Bethlehem, PA Sheet 1 Ethernet Dominates on the Plant Floor Sheet 2 Recognize Any of These? Sheet 3 Answers: 10 BASE 2 RG

More information

TECHNICAL ANNEX 5G In-Band and Out-Of-Band Limits and Protection of FSS Earth Stations

TECHNICAL ANNEX 5G In-Band and Out-Of-Band Limits and Protection of FSS Earth Stations TECHNICAL ANNEX 5G In-Band and Out-Of-Band Limits and Protection of FSS Earth Stations The C-Band Alliance ( CBA ) reviewed and analyzed key technical questions raised in the opening round of comments

More information

Test Plan for Hearing Aid Compatibility

Test Plan for Hearing Aid Compatibility Test Plan for Hearing Aid Compatibility Version Number 3.1 February 2017 2017 CTIA - The Wireless Association. All rights reserved. CTIA hereby grants to CTIA Authorized Testing Laboratories (CATLs), and

More information

A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications

A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications 1 A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications By: G. James Wells Dr. Robert Zee University of Toronto Institute for Aerospace Studies Space Flight Laboratory August

More information

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS WHITE PAPER JULY 2017 1 Table of Contents Basic Information... 3 Link Loss Budget Analysis... 3 Singlemode vs. Multimode... 3 Dispersion vs. Attenuation...

More information

4 channel low power Active DAS tray with power monitoring and attenuation control (+18dBm maximum average

4 channel low power Active DAS tray with power monitoring and attenuation control (+18dBm maximum average Active DCC Brochure DCC500 Series Products DAS Control Rack (DCR) A broadband active multi-channel device with programmable uplink/downlink variable attenuators and RMS power monitors for remote or local

More information