Lecture XII: Ideal filters

Size: px
Start display at page:

Download "Lecture XII: Ideal filters"

Transcription

1 BME 171: Signals and Systems Duke University October 29, 2008

2 This lecture Plan for the lecture: 1 LTI systems with sinusoidal inputs 2 Analog filtering frequency-domain description: passband, stopband amplitude and phase response of ideal filters time-domain description 3 Detailed example: ideal lowpass filter 4 Nonideal filters

3 LTI systems with sinusoidal inputs Consider an LTI system with impulse response h(t): x(t) h(t) y(t) LTI y(t) = x(t) h(t) = In the frequency domain we have x(t λ)h(λ)dλ Y () = H()X(), where X() = F[x(t)], H() = F[h(t)], Y () = F[y(t)]. Consider a sinusoidal input of the form x(t) = Acos( 0 t + θ 0 ), where A is the amplitude, 0 is the frequency, and θ 0 is the phase.

4 LTI systems with sinusoidal inputs x(t) = Acos( 0 t + θ 0 ) X() = πa [ e jθ0 δ( + 0 ) + e jθ0 δ( 0 ) ] Y () = H()X() = πa [ e jθ0 H()δ( + 0 ) + e jθ0 H()δ( 0 ) ] = πa [ e jθ0 H( 0 )δ( + 0 ) + e jθ0 H( 0 )δ( 0 ) ] [ = πa e j(θ0+ H(0)) H( 0 ) δ( + 0 ) ] +e j(θ0+ H(0)) H( 0 ) δ( 0 ) y(t) = F 1 [Y ()] = A H( 0 ) cos( 0 t + θ 0 + H( 0 )) Thus, the action of the LTI system with impulse response h(t) on a sinusoid with amplitude A, frequency 0 and phase θ 0 is to transform the amplitude as A A H( 0 ) and the phase as θ 0 θ 0 + H( 0 ).

5 LTI systems with sinusoidal inputs Many signals encountered in practice are finite sums of sinusoids: x(t) = N A k cos( k t + θ k ) k=1 The action of an LTI system with impulse response h(t) on such an input is, by linearity, given by y(t) = N A k H( k ) cos( k t + θ k + H( k )) k=1 Thus, an LTI system changes the amplitude ratios A k A l and the relative phases θ k θ l among the different frequency components k, l = 1,...,N: A k A k H( k) A l A l H( l ) θ k θ l θ k θ l + H( k ) H( l )

6 Analog filtering These considerations naturally lead us to the notion of filtering: processing of signals in order to enhance certain frequency components and to reject certain others. For example, if a signal consists of a low-frequency information-bearing portion and a high-frequency noise portion, we can employ a filter to reject the high frequencies and thus remove the noise. We will look at four kinds of filters: 1 low-pass filters pass all frequencies in the range B, for some B > 0 and reject all others 2 high-pass filters pass all frequencies in the range B, for some B > 0 and reject all others 3 bandpass filters pass all frequencies in the range B 1 B 2 for some B 1, B 2 > 0 with B 1 < B 2 and reject all others 4 bandstop filters pass all frequencies in the range B 1 and B 2 for some B 1, B 2 > 0 with B 1 < B 2 and reject all others

7 Analog filtering: frequency domain description It is convenient to look at filters in the frequency domain. For each of the four kinds of filters, we will specify the amplitude response H() and the phase response H(). We start with the amplitude response. For the four filters we have defined above we have: H LP () 1 H HP () 1 -B 0 B -B 0 B lowpass highpass H BP () 1 H BS () 1 -B 2 -B 1 0 B 1 B 2 -B 2 -B 1 0 B 1 B 2 bandpass bandstop

8 Some filtering terminology Given a filter H(), the set of frequencies such that H() > 0 is called the passband of the filter; the set of frequencies such that H() = 0 is called the stopband of the filter. filter passband stopband lowpass B > B highpass B < B bandpass B 1 B 2 < B 1 and > B 2 bandstop B 1 and B 2 B 1 < < B 2 If the input to a filter is a sinusoid Acos( 0 t + θ 0 ), then the amplitude of the output will be equal to: A, if the frequency 0 is in the passband of the filter 0, if the frequency 0 is in the stopband of the filter

9 Ideal filters Next, we need to specify the phase response H() of the filter. We will call a filter H() ideal if { 1, if is in the passband H() = 0, if is in the stopband and H() = where t d > 0 is some constant. { td, if is in the passband 0, if is in the stopband The reason for calling such filters ideal will become clear shortly.

10 Phase response of ideal filters H LP () H HP () -B 0 Bt d B -B 0 Bt d B -Bt d -Bt d lowpass highpass H BP () H BS () B 1 B 2 B 1 B 2 B 2 t d B 2 t d B 1 t d -B 1 -B 2 B 1 t d -B 1 -B 2 0 -B 1 t d 0 -B 1 t d -B 2 t d -B 2 t d bandpass bandstop

11 Ideal filters with sinusoidal inputs Let s see what happens when we feed a sinusoidal signal x(t) = Acos( 0 t + θ 0 ) into an ideal filter H(). We have already seen that the output will be y(t) = A H( 0 ) cos( 0 t + θ + H( 0 )). Since H() = 1 when is in the passband and 0 when is in the stopband, while H() = t d when is in the passband and 0 otherwise, we can further write { Acos(0 (t t y(t) = d ) + θ 0 ), if 0 is in the passband 0, if 0 is in the stopband In other words, if the frequency of the sinusoid 0 is in the passband of the filter, then the output y(t) of the filter is a time-delayed version of the input x(t): y(t) = x(t t d ).

12 Ideal filters with sinusoidal inputs This explains why we use the term ideal: an ideal filter does not distort the input signal, only delays it (provided the input frequency is in the passband). We can generalize these results to periodic signals that can be represented by sums of sinusoids, x(t) = A k cos( k t + θ t ), k=1 as well as to aperiodic signals that have a Fourier transform, x(t) X(). In the latter case, it is convenient to visualize the action of the filter in the frequency domain.

13 Detailed example: ideal lowpass filter Let us consider in detail the lowpass filter whose amplitude and phase response are given by H LP () = p 2B () and H LP () = t d p 2B (), where p 2B () is a rectangle of unit height and width 2B centered at = 0. We have H LP () = e jt d p 2B (), so that the impulse response has the form h LP (t) = F 1 [ e jt d p 2B () ] = B [ ] B π sinc π (t t d) Note that the frequency response H LP () is bandlimited, hence the impulse response h LP (t) cannot be timelimited. This implies that an ideal lowpass filter is acausal and therefore cannot be operated in real time.

14 Nonideal filters In fact, it can be shown that any ideal filter is necessarily acausal, and therefore cannot be operated in real time. In practice, we have to resort to causal approximations of ideal filters. For example, an ideal lowpass filter can be approximated by an RC filter whose frequency response is described by H RC () = 1 (RC)2 + 1 and H RC () = tan 1 ( RC) 1 -B 0 B -B 0 B

Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221

Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221 Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221 Inspiring Message from Imam Shafii You will not acquire knowledge unless you have 6 (SIX) THINGS Intelligence

More information

EELE503. Modern filter design. Filter Design - Introduction

EELE503. Modern filter design. Filter Design - Introduction EELE503 Modern filter design Filter Design - Introduction A filter will modify the magnitude or phase of a signal to produce a desired frequency response or time response. One way to classify ideal filters

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 Date: November 18, 2010 Course: EE 313 Evans Name: Last, First The exam is scheduled to last 75 minutes. Open books

More information

Final Exam Solutions June 14, 2006

Final Exam Solutions June 14, 2006 Name or 6-Digit Code: PSU Student ID Number: Final Exam Solutions June 14, 2006 ECE 223: Signals & Systems II Dr. McNames Keep your exam flat during the entire exam. If you have to leave the exam temporarily,

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam Date: December 18, 2017 Course: EE 313 Evans Name: Last, First The exam is scheduled to last three hours. Open

More information

Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf oca Raton: CRC Press LLC, Transfer Functions of Filters Richard C. Dorf University of California,

More information

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No Final Exam EE313 Signals and Systems Fall 1999, Prof. Brian L. Evans, Unique No. 14510 December 11, 1999 The exam is scheduled to last 50 minutes. Open books and open notes. You may refer to your homework

More information

Final Exam Solutions June 7, 2004

Final Exam Solutions June 7, 2004 Name: Final Exam Solutions June 7, 24 ECE 223: Signals & Systems II Dr. McNames Write your name above. Keep your exam flat during the entire exam period. If you have to leave the exam temporarily, close

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 2017 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

F I R Filter (Finite Impulse Response)

F I R Filter (Finite Impulse Response) F I R Filter (Finite Impulse Response) Ir. Dadang Gunawan, Ph.D Electrical Engineering University of Indonesia The Outline 7.1 State-of-the-art 7.2 Type of Linear Phase Filter 7.3 Summary of 4 Types FIR

More information

4. Design of Discrete-Time Filters

4. Design of Discrete-Time Filters 4. Design of Discrete-Time Filters 4.1. Introduction (7.0) 4.2. Frame of Design of IIR Filters (7.1) 4.3. Design of IIR Filters by Impulse Invariance (7.1) 4.4. Design of IIR Filters by Bilinear Transformation

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

Sampling and Signal Processing

Sampling and Signal Processing Sampling and Signal Processing Sampling Methods Sampling is most commonly done with two devices, the sample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquires a continuous-time signal

More information

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified

More information

ECE503: Digital Filter Design Lecture 9

ECE503: Digital Filter Design Lecture 9 ECE503: Digital Filter Design Lecture 9 D. Richard Brown III WPI 26-March-2012 WPI D. Richard Brown III 26-March-2012 1 / 33 Lecture 9 Topics Within the broad topic of digital filter design, we are going

More information

Experiment 4- Finite Impulse Response Filters

Experiment 4- Finite Impulse Response Filters Experiment 4- Finite Impulse Response Filters 18 February 2009 Abstract In this experiment we design different Finite Impulse Response filters and study their characteristics. 1 Introduction The transfer

More information

1. Find the magnitude and phase response of an FIR filter represented by the difference equation y(n)= 0.5 x(n) x(n-1)

1. Find the magnitude and phase response of an FIR filter represented by the difference equation y(n)= 0.5 x(n) x(n-1) Lecture 5 1.8.1 FIR Filters FIR filters have impulse responses of finite lengths. In FIR filters the present output depends only on the past and present values of the input sequence but not on the previous

More information

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters Simple Digital Filters Chapter 7B Part B Simple FIR Digital Filters LTI Discrete-Time Systems in the Transform-Domain Simple Digital Filters Simple IIR Digital Filters Comb Filters 3. Simple FIR Digital

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 Date: October 18, 2013 Course: EE 445S Evans Name: Last, First The exam is scheduled to last 50 minutes. Open books

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters

IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters (ii) Ability to design lowpass IIR filters according to predefined specifications based on analog

More information

Continuous-Time Analog Filters

Continuous-Time Analog Filters ENGR 4333/5333: Digital Signal Processing Continuous-Time Analog Filters Chapter 2 Dr. Mohamed Bingabr University of Central Oklahoma Outline Frequency Response of an LTIC System Signal Transmission through

More information

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 1 Introduction

More information

Chapter 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING 1.6 Analog Filters 1.7 Applications of Analog Filters

Chapter 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING 1.6 Analog Filters 1.7 Applications of Analog Filters Chapter 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING 1.6 Analog Filters 1.7 Applications of Analog Filters Copyright c 2005 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org July 14, 2018

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

EE202 Circuit Theory II , Spring

EE202 Circuit Theory II , Spring EE202 Circuit Theory II 2018-2019, Spring I. Introduction & Review of Circuit Theory I (3 Hrs.) Introduction II. Sinusoidal Steady-State Analysis (Chapter 9 of Nilsson - 9 Hrs.) (by Y.Kalkan) The Sinusoidal

More information

Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 2017 ELEC 3004: Systems 1. Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 2017 ELEC 3004: Systems 1. Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 017 ELEC 3004: Systems 1 017 School of Information Technology and Electrical Engineering at The University of Queensland

More information

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP DIGITAL FILTERS!! Finite Impulse Response (FIR)!! Infinite Impulse Response (IIR)!! Background!! Matlab functions 1!! Only the magnitude approximation problem!! Four basic types of ideal filters with magnitude

More information

Chapter 5 THE APPLICATION OF THE Z TRANSFORM. 5.6 Transfer Functions for Digital Filters 5.7 Amplitude and Delay Distortion

Chapter 5 THE APPLICATION OF THE Z TRANSFORM. 5.6 Transfer Functions for Digital Filters 5.7 Amplitude and Delay Distortion Chapter 5 THE APPLICATION OF THE Z TRANSFORM 5.6 Transfer Functions for Digital Filters 5.7 Amplitude and Delay Distortion Copyright c 2005- Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

More information

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

More information

Design of infinite impulse response (IIR) bandpass filter structure using particle swarm optimization

Design of infinite impulse response (IIR) bandpass filter structure using particle swarm optimization Standard Scientific Research and Essays Vol1 (1): 1-8, February 13 http://www.standresjournals.org/journals/ssre Research Article Design of infinite impulse response (IIR) bandpass filter structure using

More information

8: IIR Filter Transformations

8: IIR Filter Transformations DSP and Digital (5-677) IIR : 8 / Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width There are explicit formulae for pole/zero positions. Butterworth:

More information

EELE 4310: Digital Signal Processing (DSP)

EELE 4310: Digital Signal Processing (DSP) EELE 4310: Digital Signal Processing (DSP) Chapter # 10 : Digital Filter Design (Part One) Spring, 2012/2013 EELE 4310: Digital Signal Processing (DSP) - Ch.10 Dr. Musbah Shaat 1 / 19 Outline 1 Introduction

More information

Digital Filters FIR and IIR Systems

Digital Filters FIR and IIR Systems Digital Filters FIR and IIR Systems ELEC 3004: Systems: Signals & Controls Dr. Surya Singh (Some material adapted from courses by Russ Tedrake and Elena Punskaya) Lecture 16 elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

DT Filters 2/19. Atousa Hajshirmohammadi, SFU

DT Filters 2/19. Atousa Hajshirmohammadi, SFU 1/19 ENSC380 Lecture 23 Objectives: Signals and Systems Fourier Analysis: Discrete Time Filters Analog Communication Systems Double Sideband, Sub-pressed Carrier Modulation (DSBSC) Amplitude Modulation

More information

Chapter 7 Filter Design Techniques. Filter Design Techniques

Chapter 7 Filter Design Techniques. Filter Design Techniques Chapter 7 Filter Design Techniques Page 1 Outline 7.0 Introduction 7.1 Design of Discrete Time IIR Filters 7.2 Design of FIR Filters Page 2 7.0 Introduction Definition of Filter Filter is a system that

More information

Handout 2: Fourier Transform

Handout 2: Fourier Transform ENGG 2310-B: Principles of Communication Systems Handout 2: Fourier ransform 2018 19 First erm Instructor: Wing-Kin Ma September 3, 2018 Suggested Reading: Chapter 2 of Simon Haykin and Michael Moher,

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Lecture 9 Discrete-Time Processing of Continuous-Time Signals Alp Ertürk alp.erturk@kocaeli.edu.tr Analog to Digital Conversion Most real life signals are analog signals These

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmission Fundamentals Characterization of Communication Channels Fundamental Limits in Digital Transmission CSE 323, Winter 200 Instructor: Foroohar Foroozan Chapter 3 Digital Transmission

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 1 FIR as a

More information

CHAPTER 6 Frequency Response, Bode. Plots, and Resonance

CHAPTER 6 Frequency Response, Bode. Plots, and Resonance CHAPTER 6 Frequency Response, Bode Plots, and Resonance CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

MULTIRATE DIGITAL SIGNAL PROCESSING

MULTIRATE DIGITAL SIGNAL PROCESSING AT&T MULTIRATE DIGITAL SIGNAL PROCESSING RONALD E. CROCHIERE LAWRENCE R. RABINER Acoustics Research Department Bell Laboratories Murray Hill, New Jersey Prentice-Hall, Inc., Upper Saddle River, New Jersey

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Signals. Continuous valued or discrete valued Can the signal take any value or only discrete values?

Signals. Continuous valued or discrete valued Can the signal take any value or only discrete values? Signals Continuous time or discrete time Is the signal continuous or sampled in time? Continuous valued or discrete valued Can the signal take any value or only discrete values? Deterministic versus random

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2015 Lecture #5 Bekkeng, 29.1.2015 Content Aliasing Nyquist (Sampling) ADC Filtering Oversampling Triggering Analog Signal Information

More information

Handout 13: Intersymbol Interference

Handout 13: Intersymbol Interference ENGG 2310-B: Principles of Communication Systems 2018 19 First Term Handout 13: Intersymbol Interference Instructor: Wing-Kin Ma November 19, 2018 Suggested Reading: Chapter 8 of Simon Haykin and Michael

More information

1. Clearly circle one answer for each part.

1. Clearly circle one answer for each part. TB 1-9 / Exam Style Questions 1 EXAM STYLE QUESTIONS Covering Chapters 1-9 of Telecommunication Breakdown 1. Clearly circle one answer for each part. (a) TRUE or FALSE: Absolute bandwidth is never less

More information

PHYS225 Lecture 15. Electronic Circuits

PHYS225 Lecture 15. Electronic Circuits PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Systems Prof. Mark Fowler Note Set #19 C-T Systems: Frequency-Domain Analysis of Systems Reading Assignment: Section 5.2 of Kamen and Heck 1/17 Course Flow Diagram The arrows here show

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to increase the sampling rate by an integer

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

Example: Telephone line is a bandpass lter which passes only Hz thus in the

Example: Telephone line is a bandpass lter which passes only Hz thus in the CHAPTER 3 FILTERING AND SIGNAL DISTORTION page 3.1 We can think of a lter in both frequency and time domain Example: Telephone line is a bandpass lter which passes only 300-3400 Hz thus in the frequency

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

GEORGIA INSTITUTE OF TECHNOLOGY. SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters

GEORGIA INSTITUTE OF TECHNOLOGY. SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters Date: 19. Jul 2018 Pre-Lab: You should read the Pre-Lab section of

More information

LECTURER NOTE SMJE3163 DSP

LECTURER NOTE SMJE3163 DSP LECTURER NOTE SMJE363 DSP (04/05-) ------------------------------------------------------------------------- Week3 IIR Filter Design -------------------------------------------------------------------------

More information

Signal Processing. Introduction

Signal Processing. Introduction Signal Processing 0 Introduction One of the premiere uses of MATLAB is in the analysis of signal processing and control systems. In this chapter we consider signal processing. The final chapter of the

More information

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system Last lecture Introduction to statistics s? Random? Deterministic? Probability density functions and probabilities? Properties of random signals. Today s menu Effects of noise and interferences in measurement

More information

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu Lecture 2: SIGNALS 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Signals and the classification of signals Sine wave Time and frequency domains Composite signals Signal bandwidth Digital signal Signal

More information

Frequency-Response Masking FIR Filters

Frequency-Response Masking FIR Filters Frequency-Response Masking FIR Filters Georg Holzmann June 14, 2007 With the frequency-response masking technique it is possible to design sharp and linear phase FIR filters. Therefore a model filter and

More information

Project 2. Project 2: audio equalizer. Fig. 1: Kinter MA-170 stereo amplifier with bass and treble controls.

Project 2. Project 2: audio equalizer. Fig. 1: Kinter MA-170 stereo amplifier with bass and treble controls. Introduction Project 2 Project 2: audio equalizer This project aims to motivate our study o ilters by considering the design and implementation o an audio equalizer. An equalizer (EQ) modiies the requency

More information

Acoustics, signals & systems for audiology. Week 4. Signals through Systems

Acoustics, signals & systems for audiology. Week 4. Signals through Systems Acoustics, signals & systems for audiology Week 4 Signals through Systems Crucial ideas Any signal can be constructed as a sum of sine waves In a linear time-invariant (LTI) system, the response to a sinusoid

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at certain rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth requirement

More information

MITOCW MITRES_6-007S11lec18_300k.mp4

MITOCW MITRES_6-007S11lec18_300k.mp4 MITOCW MITRES_6-007S11lec18_300k.mp4 [MUSIC PLAYING] PROFESSOR: Last time, we began the discussion of discreet-time processing of continuous-time signals. And, as a reminder, let me review the basic notion.

More information

UNIT IV FIR FILTER DESIGN 1. How phase distortion and delay distortion are introduced? The phase distortion is introduced when the phase characteristics of a filter is nonlinear within the desired frequency

More information

What if the bandpass and complex baseband signals are random processes? How are their statistics (autocorrelation, power density) related?

What if the bandpass and complex baseband signals are random processes? How are their statistics (autocorrelation, power density) related? .3 Bandpass Random Processes [P4.1.4].3-1 What if the bandpass and complex baseband signals are random processes? How are their statistics (autocorrelation, power density) related?.3.1 Complex Random Processes

More information

Biosignal filtering and artifact rejection. Biosignal processing I, S Autumn 2017

Biosignal filtering and artifact rejection. Biosignal processing I, S Autumn 2017 Biosignal filtering and artifact rejection Biosignal processing I, 52273S Autumn 207 Motivation ) Artifact removal power line non-stationarity due to baseline variation muscle or eye movement artifacts

More information

Filters. Phani Chavali

Filters. Phani Chavali Filters Phani Chavali Filters Filtering is the most common signal processing procedure. Used as echo cancellers, equalizers, front end processing in RF receivers Used for modifying input signals by passing

More information

EE 311 February 13 and 15, 2019 Lecture 10

EE 311 February 13 and 15, 2019 Lecture 10 EE 311 February 13 and 15, 219 Lecture 1 Figure 4.22 The top figure shows a quantized sinusoid as the darker stair stepped curve. The bottom figure shows the quantization error. The quantized signal to

More information

zt ( ) = Ae find f(t)=re( zt ( )), g(t)= Im( zt ( )), and r(t), and θ ( t) if z(t)=r(t) e

zt ( ) = Ae find f(t)=re( zt ( )), g(t)= Im( zt ( )), and r(t), and θ ( t) if z(t)=r(t) e Homework # Fundamentals Review Homework or EECS 562 (As needed or plotting you can use Matlab or another sotware tool or your choice) π. Plot x ( t) = 2cos(2π5 t), x ( t) = 2cos(2π5( t.25)), and x ( t)

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #25 Wednesday, November 5, 23 Aliasing in the impulse invariance method: The impulse invariance method is only suitable for filters with a bandlimited

More information

Signals and Filtering

Signals and Filtering FILTERING OBJECTIVES The objectives of this lecture are to: Introduce signal filtering concepts Introduce filter performance criteria Introduce Finite Impulse Response (FIR) filters Introduce Infinite

More information

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer.

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer. Sampling of Continuous-Time Signals Reference chapter 4 in Oppenheim and Schafer. Periodic Sampling of Continuous Signals T = sampling period fs = sampling frequency when expressing frequencies in radians

More information

8.5 Modulation of Signals

8.5 Modulation of Signals 8.5 Modulation of Signals basic idea and goals measuring atomic absorption without modulation measuring atomic absorption with modulation the tuned amplifier, diode rectifier and low pass the lock-in amplifier

More information

Electrical & Computer Engineering Technology

Electrical & Computer Engineering Technology Electrical & Computer Engineering Technology EET 419C Digital Signal Processing Laboratory Experiments by Masood Ejaz Experiment # 1 Quantization of Analog Signals and Calculation of Quantized noise Objective:

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Electronics e e3 e4 e Ex Ex P-block Documentation, Seriecom, Pulse sensor,,, P, series and parallel K AB Pulse sensors, Menu program Start of program task Kirchhoffs laws Node analysis Two

More information

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications EE4900/EE6420: Digital Communications 1 Lecture 2 Review of Signals and Systems: Part 1 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

Infinite Impulse Response (IIR) Filter. Ikhwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jakarta

Infinite Impulse Response (IIR) Filter. Ikhwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jakarta Infinite Impulse Response (IIR) Filter Ihwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jaarta The Outline 8.1 State-of-the-art 8.2 Coefficient Calculation Method for IIR Filter 8.2.1 Pole-Zero Placement

More information

UNIT II IIR FILTER DESIGN

UNIT II IIR FILTER DESIGN UNIT II IIR FILTER DESIGN Structures of IIR Analog filter design Discrete time IIR filter from analog filter IIR filter design by Impulse Invariance, Bilinear transformation Approximation of derivatives

More information

Chapter 4 Applications of the Fourier Series. Raja M. Taufika R. Ismail. September 29, 2017

Chapter 4 Applications of the Fourier Series. Raja M. Taufika R. Ismail. September 29, 2017 BEE2143 Signals & Networks Chapter 4 Applications of the Fourier Series Raja M. Taufika R. Ismail Universiti Malaysia Pahang September 29, 2017 Outline Circuit analysis Average power and rms values Spectrum

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

ECE 429 / 529 Digital Signal Processing

ECE 429 / 529 Digital Signal Processing ECE 429 / 529 Course Policy & Syllabus R. N. Strickland SYLLABUS ECE 429 / 529 Digital Signal Processing SPRING 2009 I. Introduction DSP is concerned with the digital representation of signals and the

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

Brief Introduction to Signals & Systems. Phani Chavali

Brief Introduction to Signals & Systems. Phani Chavali Brief Introduction to Signals & Systems Phani Chavali Outline Signals & Systems Continuous and discrete time signals Properties of Systems Input- Output relation : Convolution Frequency domain representation

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Signal Representation and Baseband Processing Lesson 1 Nyquist Filtering and Inter Symbol Interference After reading this lesson, you will learn about: Power spectrum of a random binary sequence;

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 2016 Laboratory Project #4 Assigned: Week of March 14, 2016 Due Date: Laboratory Section, Week of April 4, 2016 Report Format and Guidelines for Laboratory

More information

Signal processing preliminaries

Signal processing preliminaries Signal processing preliminaries ISMIR Graduate School, October 4th-9th, 2004 Contents: Digital audio signals Fourier transform Spectrum estimation Filters Signal Proc. 2 1 Digital signals Advantages of

More information

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK.

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK. EECS 3213 Fall 2014 L12: Modulation Sebastian Magierowski York University 1 Outline Review Passband Modulation ASK, FSK, PSK Constellations 2 1 Underlying Idea Attempting to send a sequence of digits through

More information