Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Size: px
Start display at page:

Download "Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220"

Transcription

1 19-128; Rev 2; 11/99 Low-Cost, +2.7 to +5.5, Micropower General Description The low-cost, fully integrated temperature switches assert a logic signal when their die temperature crosses a factory-programmed threshold. Operating from a +2.7 to +5.5 supply, these devices feature two on-chip, temperature-dependent voltage references and a comparator. They are available with factory-trimmed temperature trip thresholds from -45 C to +115 C in 1 C increments, and are accurate to ±.5 C (typ) or ±6 C (max). These devices require no external components and typically consume 3µA supply current. Hysteresis is pin-selectable at +2 C or +1 C. The / have an active-low, open-drain output intended to interface with a microprocessor (µp) reset input. The / have an activehigh, push-pull output intended to directly drive fancontrol logic. The / are offered with hot-temperature thresholds (+35 C to +115 C), asserting when the temperature is above the threshold. The / are offered with cold-temperature thresholds (-45 C to +15 C), asserting when the temperature is below the threshold. The are offered in eight standard temperature versions; contact the factory for pricing and availability of nonstandard temperature versions. They are available in 5-pin SOT23 and 7-pin TO-22 packages. Typical Operating Circuit +2.7 TO +5.5 INT µp Features ±.5 C (typical) Threshold Accuracy Over Full Temperature Range No External Components Required Low Cost 3µA Supply Current Factory-Programmed Thresholds from -45 C to +115 C in 1 C Increments Open-Drain Output (/) Push-Pull Output (/) Pin-Selectable +2 C or +1 C Hysteresis SOT23-5 and TO22-7 Packages Ordering Information PART* TEMP. RANGE PIN-PACKAGE UK -T -55 C to +125 C 5 SOT23-5 CM -T -55 C to +125 C 7 TO-22-7 UK -T -55 C to +125 C 5 SOT23-5 CM -T -55 C to +125 C 7 TO-22-7 UK -T -55 C to +125 C 5 SOT23-5 CM -T -55 C to +125 C 7 TO-22-7 UK -T -55 C to +125 C 5 SOT23-5 CM -T -55 C to +125 C 7 TO-22-7 *These parts are offered in eight standard temperature versions with a minimum order of 2,5 pieces. To complete the suffix information, add P or N for positive or negative trip temperature, and select an available trip point in degrees centigrade. For example, the UKP65-T describes a in a SOT23-5 package with a +65 C threshold. Contact the factory for pricing and availability of nonstandard temperature versions (minimum order 1, pieces). Applications µp Temperature Monitoring in High-Speed Computers Temperature Control Selector Guide and Pin Configurations appear at end of data sheet. Temperature Alarms Fan Control Patents Pending Maxim Integrated Products 1 For free samples & the latest literature: or phone For small orders, phone

2 Low-Cost, +2.7 to +5.5, Micropower ABSOLUTE MAXIMUM RATINGS Supply oltage ( ) to +7 () to +7 () to ( +.3) () to +7 () to ( +.3) All Other Pins to ( +.3) Input Current (all pins)...2ma Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Output Current (all pins)...2ma Continuous Power Dissipation (T A = +7 C) 5-Pin SOT23-5 (derate 7.1mW/ C above +7 C)...571mW Operating Temperature Range C to +125 C Storage Temperature Range C to +165 C Lead Temperature (soldering, 1sec)...+3 C ( = +2.7 to +5.5, R PULL-UP = 1kΩ (/ only), T A = T MIN to T MAX, unless otherwise noted. Typical values are at T A = +25 C.) (Note 1) PARAMETER Supply oltage Range Supply Current Temperature Threshold Accuracy (Note 2) Temperature Threshold Hysteresis Input Threshold (Note 3) Output oltage High Output oltage Low Open-Drain Output Leakage Current SYMBOL I CC T TH T IH IL OH OL CONDITIONS MIN TYP MAX C to -25 C -6 ± C to +15 C -4 ± C to +65 C -4 ± C to +115 C -6 ±.5 6 = 2 = 1.8 x.2 x I SOURCE = 5µA, > 2.7 (/ only).8 x I SOURCE = 8µA, > 4.5 (/ only) I SINK = 1.2mA, > 2.7 I SINK = 3.2mA, > 4.5 = 2.7, = 5.5 (), = 5.5 () UNITS µa C C na Note 1: 1% production tested at T A = +25 C. Specifications over temperature limits are guaranteed by design. Note 2: The are available with internal, factory-programmed temperature trip thresholds from -45 C to +115 C in +1 C increments (see Selector Guide). Note 3: Guaranteed by design. 2

3 Low-Cost, +2.7 to +5.5, Micropower PERCENTAGE OF PARTS SAMPLED (%) Typical Operating Characteristics ( = +5, R PULL-UP = 1kΩ (/), T A = +25 C, unless otherwise noted.) TRIP THRESHOLD ACCURACY SAMPLE SIZE = ACCURACY ( C) TOC-A SUPPLY CURRENT (µa) SUPPLY CURRENT vs. TEMPERATURE TEMPERATURE ( C) TOC1 OUTPUT SOURCE RESISTANCE (Ω) / OUTPUT SOURCE RESISTANCE vs. TEMPERATURE = 2.7 = 3.3 = TEMPERATURE ( C) TOC2 OUTPUT SINK RESISTANCE (Ω) OUTPUT SINK RESISTANCE vs. TEMPERATURE = 2.7 = 3.3 = 5. TOC3 +15 C/div SOT23 THERMAL STEP RESPONSE IN PERFLUORINATED FLUID TOC4 MOUNTED ON.75in 2 OF 2 oz. COPPER +1 C +25 C C/div SOT23 THERMAL STEP RESPONSE IN STILL AIR TOC5 MOUNTED ON.75in 2 OF 2 oz. COPPER +1 C +25 C TEMPERATURE ( C) 5sec/div 2sec/div ERESIS ( C) = ERESIS vs. TRIP TEMPERATURE = = = TOC8 START-UP AND POWER-DOWN (T < T TH ) TOC7 A B START-UP DELAY (T > T TH ) TOC7A A B TRIP TEMPERATURE ( C) TRACE A: OLTAGE, R PULL-UP = 1kΩ TRACE B: PULSE DRIEN FROM 3.3 CMOS LOGIC OUTPUT TRACE A: OLTAGE, R PULL-UP = 1kΩ TRACE B: PULSE DRIEN FROM 3.3 CMOS LOGIC OUTPUT 3

4 Low-Cost, +2.7 to +5.5, Micropower 1, 2 1, PIN 1, 2 1, Supply Input (+2.7 to +5.5) 5 5 NAME 5 FUNCTION Pin Description Ground. Not internally connected. Tie both ground pins together close to the chip. Pin 2 provides the lowest thermal resistance to the die. Hysteresis Input. Connect to for +2 C hysteresis, or connect to for +1 C hysteresis. Open-Drain, Active-Low Output. goes low when the die temperature exceeds the factory-programmed temperature threshold. Connect to a 1kΩ pull-up resistor. May be pulled up to a voltage higher than. Push-Pull Active-High Output. goes high when the die temperature exceeds the factory-programmed temperature threshold. Open-Drain, Active-Low Output. goes low when the die temperature goes below the factory-programmed temperature threshold. Connect to a 1kΩ pull-up resistor. May be pulled up to a voltage higher than. 5 Push-Pull Active-High Output. goes high when the die temperature falls below the factory-programmed temperature threshold. General Description The fully integrated temperature switches incorporate two temperature-dependent references and a comparator. One reference exhibits a positive temperature coefficient and the other a negative temperature coefficient (Figure 1). The temperature at which the two reference voltages are equal determines the temperature trip point. Pin-selectable +2 C or +1 C hysteresis keeps the output from oscillating when the die temperature approaches the threshold temperature. The / have an activelow, open-drain output structure that can only sink current. The / have an active-high, push-pull output structure that can sink or source current. The internal power-on reset circuit guarantees the output is at T TH = +25 C state at start-up for 5µs. The are available with factorypreset temperature thresholds from -45 C to +115 C in 1 C increments. Table 1 lists the available temperature threshold ranges. The / outputs are intended to interface with a microprocessor (µp) reset input (Figure 2). The / outputs are intended for applications such as driving a fan control (Figure 3). Table 1. Factory-Programmed Threshold Range PART THRESHOLD (T TH ) RANGE +35 C < T TH < +115 C +35 C < T TH < +115 C -45 C < T TH < +15 C -45 C < T TH < +15 C Hysteresis Input The pin is a CMOS-compatible input that selects hysteresis at either a high level (+1 C for = ) or a low level (+2 C for = ). Hysteresis prevents the output from oscillating when the temperature approaches the trip point. The pin should not float. Drive close to ground or. Other input voltages cause increased supply current. The actual amount of hysteresis depends on the part s programmed trip threshold. (See the Typical Operating Characteristics graphs.) 4

5 Low-Cost, +2.7 to +5.5, Micropower POSITIE POSITIE NEGATIE NETWORK COLD +25 C T TH WITH 1kΩ PULL-UP HOT TEMP NEGATIE NETWORK COLD +25 C T TH HOT TEMP WITH 1kΩ PULL-UP POSITIE NEGATIE NETWORK COLD T TH +25 C HOT TEMP POSITIE NEGATIE NETWORK COLD T TH +25 C HOT TEMP Figure 1. Block and Functional Diagrams 5

6 Low-Cost, +2.7 to +5.5, Micropower +3.3 µp INT SHUTDOWN OR RESET R PULL-UP 1k HEAT Figure 2. Microprocessor Alarm/Reset Applications Information Thermal Considerations The supply current is typically 3µA. When used to drive high-impedance loads, the devices dissipate negligible power. Therefore, the die temperature is essentially the same as the package temperature. The key to accurate temperature monitoring is good thermal contact between the package and the device being monitored. In some applications, the SOT23-5 package may be small enough to fit underneath a socketed µp, allowing the device to monitor the µp s temperature directly. The TO-22 package can monitor the temperature of a heat sink directly, and presents the lower thermal resistance of the two packages. Use the monitor s output to reset the µp, assert an interrupt, or trigger an external alarm. Accurate temperature monitoring depends on the thermal resistance between the device being monitored and the die. Heat flows in and out of plastic packages, primarily through the leads. Pin 2 of the SOT23-5 package provides the lowest thermal resistance to the die. Short, wide copper traces leading to the temperature monitor ensure that heat transfers quickly and reliably. The rise in die temperature due to self-heating is given by the following formula: T J = P DISSIPATION x θ JA where P DISSIPATION is the power dissipated by the, and θ JA is the package s thermal resistance. The typical thermal resistance is 14 C/W for the SOT23-5 package and 75 C/W for the TO-22 package. To limit the effects of self-heating, minimize the output currents. For example, if the or sink 1mA, the output voltage is guaranteed to be less than.3. Therefore, an additional.3mw of +5 µp HEAT FAN Figure 3. Overtemperature Fan Control power is dissipated within the IC. This corresponds to a.42 C shift in the die temperature in the SOT23-5. Temperature-Window Alarm The temperature switch outputs assert when the die temperature is outside the factoryprogrammed range. Combining the outputs of two devices creates an over/undertemperature alarm. The / and the / are designed to form two complementary pairs, each containing one cold trip-point output and one hot trip-point output. The assertion of either output alerts the system to an out-of-range temperature. The / push/pull output stages can be ORed to produce a thermal out-of-range alarm. More favorably, a / can be directly wire-ored with a single external resistor to accomplish the same task (Figure 4). The temperature window alarms shown in Figure 4 can be used to accurately determine when a device s temperature falls out of the -5 C to +75 C range. The thermal-overrange signal can be used to assert a thermal shutdown, power-up, recalibration, or other temperaturedependent function. Low-Cost, Fail-Safe Temperature Monitor In high-performance/high-reliability applications, multiple temperature monitoring is important. The high-level integration and low cost of the facilitate the use of multiple temperature monitors to increase system reliability. Figure 5 s application uses two s with different temperature thresholds to ensure that fault conditions that can overheat the monitored device cause no permanent damage. The first temperature monitor activates the fan when the die temperature exceeds +45 C. The second triggers a system shutdown if the die temperature reaches +75 C. The second temperature monitor s output asserts when a wide variety of destructive fault conditions occur, including latchups, short circuits, and cooling-system failures. 6

7 Low-Cost, +2.7 to +5.5, Micropower +5 P75 N5 +5 OERTEMP UNDERTEMP R PULL-UP 1k OUT OF RANGE OUT OF RANGE µp HEAT HEAT +5 P75 P45 TEMPERATURE FAULT FAN CONTROL Figure 5. Low-Power, High-Reliability, Fail-Safe Temperature Monitor P75 N5 Figure 4. Temperature-Window Alarms Table 2. Device Marking Codes for SOT23-5 Package DEICE CODE MINIMUM ORDER UKP35 ABZF UKP45 ABZR UKP55 ACFW UKP65 ABZS UKP75 ACF UKP85 ACDP UKP95 ABZT UKP15 ACFU UKP115 ACAG UKP35 ABZG UKP45 ABZU UKP55 ACGC UKP65 ABZ UKP75 ACGB UKP85 ACGA UKP95 ABZW DEICE CODE MINIMUM ORDER UKP15 ACFZ UKP115 ACFY UKN45 ADIZ UKN35 ACAQ UKN25 ACAP UKN15 ACFX UKN5 ACAN UKP5 ABZX UKP15 ACAM UKN45 ACAX UKN35 ACAW UKN25 ACA UKN15 ACGD UKN5 ACAT UKP5 ABZY UKP15 ADKE 7

8 Low-Cost, +2.7 to +5.5, Micropower PART OUTPUT STAGE TRIP TEMP THRESHOLD STANDARD TEMPERATURE THRESHOLDS ( C) Open- Drain Push-Pull Open- Drain Push-Pull Hot Hot Cold Cold Selector Guide 1 5 () SOT23-5 TO-22-7 Pin Configurations TOP IEW 1 5 () SOT23-5 TO () () ( ) ARE FOR. ( ) ARE FOR. TRANSISTOR COUNT: 237 SUBSTRATE CONNECTED TO Chip Information Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 8 Maxim Integrated Products, 12 San Gabriel Drive, Sunnyvale, CA Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

PART* MAX6509HAUK-T MAX6510CAUT-T** MAX6510HAUT-T** TOP VIEW INT GND GND OUT. Maxim Integrated Products 1

PART* MAX6509HAUK-T MAX6510CAUT-T** MAX6510HAUT-T** TOP VIEW INT GND GND OUT. Maxim Integrated Products 1 19-1617; Rev 2; 11/03 Resistor-Programmable General Description The are fully integrated, resistorprogrammable temperature switches with thresholds set by an external resistor. They require only one external

More information

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors 19-2625; Rev 2; 12/05 Ultra-Low-oltage µp Reset Circuits and General Description The microprocessor (µp) supervisory circuits monitor ultra-low-voltage power supplies in µp and digital systems. They provide

More information

3-Pin, Ultra-Low-Voltage, Low-Power µp Reset Circuits

3-Pin, Ultra-Low-Voltage, Low-Power µp Reset Circuits 19-1411; Rev 1; 6/00 3-Pin, Ultra-Low-oltage, Low-Power General Description The // microprocessor (µp) supervisory circuits monitor the power supplies in 1.8 to 3.3 µp and digital systems. They increase

More information

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay General Description The MAX6412 MAX6420 low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed to assert a reset signal whenever the supply voltage

More information

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay. Maxim Integrated Products 1

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay. Maxim Integrated Products 1 19-2336; Rev 2; 12/05 Low-Power, Single/Dual-Voltage µp Reset Circuits General Description The low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed

More information

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1 19-2804; Rev 2; 12/05 5-Pin Watchdog Timer Circuit General Description The is a low-power watchdog circuit in a tiny 5- pin SC70 package. This device improves system reliability by monitoring the system

More information

High-Accuracy μp Reset Circuit

High-Accuracy μp Reset Circuit General Description The MAX6394 low-power CMOS microprocessor (μp) supervisory circuit is designed to monitor power supplies in μp and digital systems. It offers excellent circuit reliability by providing

More information

150mA, Low-Dropout Linear Regulator with Power-OK Output

150mA, Low-Dropout Linear Regulator with Power-OK Output 9-576; Rev ; /99 5mA, Low-Dropout Linear Regulator General Description The low-dropout (LDO) linear regulator operates from a +2.5V to +6.5V input voltage range and delivers up to 5mA. It uses a P-channel

More information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1 19-1422; Rev 2; 1/1 Low-Dropout, 3mA General Description The MAX886 low-noise, low-dropout linear regulator operates from a 2.5 to 6.5 input and is guaranteed to deliver 3mA. Typical output noise for this

More information

Low-Voltage, 1.8kHz PWM Output Temperature Sensors

Low-Voltage, 1.8kHz PWM Output Temperature Sensors 19-266; Rev 1; 1/3 Low-Voltage, 1.8kHz PWM Output Temperature General Description The are high-accuracy, low-power temperature sensors with a single-wire output. The convert the ambient temperature into

More information

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset 9-2523; Rev ; /5 Microprocessor Supervisory Reset Circuits General Description The microprocessor (µp) supervisory circuits monitor single power-supply voltages from +.8 to +5. and assert a reset if the

More information

Low-Cost, Remote SOT Temperature Switches

Low-Cost, Remote SOT Temperature Switches 19-1819; Rev ; 1/ Low-Cost, Remote SOT Temperature Switches General Description The are fully integrated, remote temperature switches that use an external P-N junction (typically a diode-connected transistor)

More information

Low-Cost, Remote Temperature Switch

Low-Cost, Remote Temperature Switch 19-1819; Rev 3; 2/11 Low-Cost, Remote Temperature Switch General Description The is a fully integrated, remote temperature switch that uses an external P-N junction (typically a diode-connected transistor)

More information

Setup Period. General Description

Setup Period. General Description General Description The MAX6443 MAX6452 low-current microprocessor reset circuits feature single or dual manual reset inputs with an extended setup period. Because of the extended setup period, short switch

More information

Current-Limited Switch for Single USB Port

Current-Limited Switch for Single USB Port 9-57; Rev ; / Current-Limited Switch for Single USB Port General Description The is a current-limited, 6mΩ switch with built-in fault blanking. Its accurate preset current limit of.6a to.6a makes it ideally

More information

MANUAL RESET (MR) (RESET)/ RESET RESET MAX16084 MAX16085 MAX16086 GND. Maxim Integrated Products 1

MANUAL RESET (MR) (RESET)/ RESET RESET MAX16084 MAX16085 MAX16086 GND. Maxim Integrated Products 1 19-5903; Rev 0; 6/11 General Description The family of supervisory circuits monitors voltages from +1.1V to +5V using a factory-set reset threshold. The MAX16084/MAX16085/MAX16086 offer a manual reset

More information

PART* MAX812_EUS-T TOP VIEW

PART* MAX812_EUS-T TOP VIEW 19-11; Rev ; /98 -Pin µp oltage Monitors General Description The are low-power microprocessor (µp) supervisory circuits used to monitor power supplies in µp and digital systems. They provide excellent

More information

High-Voltage, Low-Power Linear Regulators for

High-Voltage, Low-Power Linear Regulators for 19-3495; Rev ; 11/4 High-oltage, Low-Power Linear Regulators for General Description The are micropower, 8-pin TDFN linear regulators that supply always-on, keep-alive power to CMOS RAM, real-time clocks

More information

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1 19-2584; Rev ; 1/2 Low-Noise, Low-Dropout, 2mA General Description The low-noise, low-dropout linear regulator operates from a 2.5V to 6.5V input and delivers up to 2mA. Typical output noise is 3µV RMS,

More information

3-Pin Microprocessor Reset Circuits

3-Pin Microprocessor Reset Circuits 19-0344; Rev 4; 12/99 3-Pin Microprocessor Reset Circuits General Description The MAX803/MAX809/MAX810 are microprocessor (µp) supervisory circuits used to monitor the power supplies in µp and digital

More information

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN 19-3869; Rev 1; 1/11 Low-oltage, High-Accuracy, Quad Window General Description The are adjustable quad window voltage detectors in a small thin QFN package. These devices are designed to provide a higher

More information

Low-Voltage, High-Accuracy, Triple/Quad Voltage µp Supervisory Circuits in SOT Package

Low-Voltage, High-Accuracy, Triple/Quad Voltage µp Supervisory Circuits in SOT Package 19-2324; Rev 2; 12/05 Low-oltage, High-Accuracy, Triple/Quad General Description The precision triple/quad voltage microprocessor (µp) supervisory circuits monitor up to four system-supply voltages and

More information

V CC 2.7V TO 5.5V. Maxim Integrated Products 1

V CC 2.7V TO 5.5V. Maxim Integrated Products 1 19-3491; Rev 1; 3/07 Silicon Oscillator with Reset Output General Description The silicon oscillator replaces ceramic resonators, crystals, and crystal-oscillator modules as the clock source for microcontrollers

More information

500mA Low-Dropout Linear Regulator in UCSP

500mA Low-Dropout Linear Regulator in UCSP 19-272; Rev ; 1/2 5mA Low-Dropout Linear Regulator in UCSP General Description The low-dropout linear regulator operates from a 2.5V to 5.5V supply and delivers a guaranteed 5mA load current with low 12mV

More information

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1 9-3697; Rev 0; 4/05 3-Pin Silicon Oscillator General Description The is a silicon oscillator intended as a low-cost improvement to ceramic resonators, crystals, and crystal oscillator modules as the clock

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-1951; Rev 3; 1/5 SOT3 Power-Supply Sequencers General Description The are power-supply sequencers for dual-voltage microprocessors (µps) and multivoltage systems. These devices monitor a primary supply

More information

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications.

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications. 9-77; Rev a; /98 High-Precision, Low-oltage, General Description The is a precision micropower operational amplifier with flexible power-supply capability. Its guaranteed µ maximum offset voltage (5µ typ)

More information

TOP VIEW RESET INPUT (RESET) RESET 2. Maxim Integrated Products 1

TOP VIEW RESET INPUT (RESET) RESET 2. Maxim Integrated Products 1 19-11; Rev ; 1/5 -Pin µp oltage Monitors General Description The are low-power microprocessor (µp) supervisory circuits used to monitor power supplies in µp and digital systems. They provide excellent

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-3474; Rev 2; 8/07 Silicon Oscillator with Low-Power General Description The dual-speed silicon oscillator with reset is a replacement for ceramic resonators, crystals, crystal oscillator modules, and

More information

Quad Voltage µp Supervisory Circuit in SOT Package

Quad Voltage µp Supervisory Circuit in SOT Package 19-1756; Rev 3; 12/05 Quad Voltage µp Supervisory Circuit General Description The is a precision quad voltage monitor with microprocessor (µp) supervisory reset timing. The device can monitor up to four

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0525; Rev 3; 1/07 EVALUATION KIT AVAILABLE Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/quad-voltage monitors and sequencers that are offered in a small TQFN package.

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0622; Rev 0; 8/06 Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/ quad-voltage monitors and sequencers that are offered in a small thin QFN package. These devices offer

More information

in SC70 Packages Features General Description Ordering Information Applications

in SC70 Packages Features General Description Ordering Information Applications in SC7 Packages General Description The MAX6672/MAX6673 are low-current temperature sensors with a single-wire output. These temperature sensors convert the ambient temperature into a 1.4kHz PWM output,

More information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References 19-2457; Rev 2; 11/03 Precision, Low-Power, 6-Pin SOT23 General Description The are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications

More information

Reset in SOT23-3. General Description. Ordering Information. Applications. Typical Operating Circuit. Pin Configuration

Reset in SOT23-3. General Description. Ordering Information. Applications. Typical Operating Circuit. Pin Configuration General Description The MAX633/ combine a precision shunt regulator with a power-on reset function in a single SOT23-3 package. They offer a low-cost method of operating small microprocessor (µp)-based

More information

Low-Dropout, 300mA Linear Regulators in SOT23

Low-Dropout, 300mA Linear Regulators in SOT23 19-1859; Rev 4; 7/9 Low-Dropout, 3mA Linear Regulators in SOT23 General Description The low-dropout linear regulators operate from a 2.5V to 5.5V input and deliver up to 3mA continuous (5mA pulsed) current.

More information

PART MAX1658C/D MAX1659C/D TOP VIEW

PART MAX1658C/D MAX1659C/D TOP VIEW 19-1263; Rev 0; 7/97 350mA, 16.5V Input, General Description The linear regulators maximize battery life by combining ultra-low supply currents and low dropout voltages. They feature Dual Mode operation,

More information

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6 19-164; Rev 1; 3/ ±15k ESD-Protected, bps, 1 General Description The / single RS-3 transmitters in a SOT3-6 package are for space- and cost-constrained applications requiring minimal RS-3 communications.

More information

High-Voltage, Low-Power Linear Regulators for Notebook Computers

High-Voltage, Low-Power Linear Regulators for Notebook Computers 19-1225; Rev 3; 9/4 High-Voltage, Low-Power Linear Regulators General Description The are micropower, SOT23-5 linear regulators that supply always-on, keep-alive power to CMOS RAM and microcontrollers

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains

More information

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver 19-2425; Rev 0; 4/02 General Description The interfaces between the control area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. It is primarily intended for industrial

More information

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs 9-63; Rev ; /3 Low-Cost, Micropower, High-Side Current-Sense General Description The low-cost, micropower, high-side current-sense supervisors contain a highside current-sense amplifier, bandgap reference,

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-1812; Rev ; 1/1 5mA, Low-Dropout, General Description The low-dropout linear regulator operates from a +2.5V to +5.5V supply and delivers a guaranteed 5mA load current with low 12mV dropout. The high-accuracy

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs The MAX99 was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. A Maxim replacement

More information

MAX6340/MAX6421 MAX6426

MAX6340/MAX6421 MAX6426 19-2440; Rev 4; 12/05 Low-Power, SC70/SOT µp Reset Circuits with General Description The low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices perform a single

More information

DS600. ±0.5 Accurate Analog-Output Temperature Sensor

DS600. ±0.5 Accurate Analog-Output Temperature Sensor www.maxim-ic.com GENERAL DESCRIPTION The is a ±0.5 C accurate analog-output temperature sensor. This accuracy is valid over its entire operating voltage range of and the wide temperature range of -20 C

More information

Power-Supply Monitor with Reset

Power-Supply Monitor with Reset 9-036; Rev. 2; 2/05 Power-Supply Monitor with Reset General Description The provides a system reset during power-up, power-down, and brownout conditions. When falls below the reset threshold, goes low

More information

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay General Description The MAX6412 MAX6420 low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed to assert a reset signal whenever the supply voltage

More information

Low-Cost, Remote SOT Temperature Switches

Low-Cost, Remote SOT Temperature Switches 19-1819; Rev 2; 10/04 Low-Cost, Remote SOT Temperature Switches General Description The are fully integrated, remote temperature switches that use an external P-N junction (typically a diode-connected

More information

ENABLE RESET EN RESETIN

ENABLE RESET EN RESETIN 19-4000; Rev 2; 8/09 High-Voltage Watchdog Timers with General Description The are microprocessor (µp) supervisory circuits for high-input-voltage and low-quiescent-current applications. These devices

More information

Single/Dual/Quad High-Speed, Ultra Low-Power, Single-Supply TTL Comparators

Single/Dual/Quad High-Speed, Ultra Low-Power, Single-Supply TTL Comparators 19-129; Rev. 3; 7/94 Single/Dual/Quad High-Speed, Ultra Low-Power, General Description The MAX97/MAX98/MAX99 dual, quad, and single high-speed, ultra low-power voltage comparators are designed for use

More information

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog 19-1078; Rev 4; 9/10 +5V, Low-Power µp Supervisory Circuits General Description The * low-power microprocessor (µp) supervisory circuits provide maximum adjustability for reset and watchdog functions.

More information

Low-Power, 1%-Accurate Battery Monitors in µdfn and SC70 Packages

Low-Power, 1%-Accurate Battery Monitors in µdfn and SC70 Packages 9-3774; Rev 4; 5/9 Low-Power, %-Accurate Battery General Description The low-power, %-accurate battery monitors are available in the ultra-small µdfn package (.mm x.5mm) and SC7 packages. These low-power

More information

60V, 50mA, Ultra-Low Quiescent Current, Linear Regulator

60V, 50mA, Ultra-Low Quiescent Current, Linear Regulator General Description The MAX17651 ultra-low quiescent current, high-voltage linear regulator is ideal for use in industrial and batteryoperated systems. The device operates from a 4V to 60V input voltage,

More information

MAX6711L/M/R/S/T/Z, MAX6712L/M/R/S/T/Z, MAX6713L/M/R/S/T/Z. 4-Pin SC70 Microprocessor Reset Circuits with Manual Reset Input

MAX6711L/M/R/S/T/Z, MAX6712L/M/R/S/T/Z, MAX6713L/M/R/S/T/Z. 4-Pin SC70 Microprocessor Reset Circuits with Manual Reset Input General Description The MAX6711/MAX6712/MAX6713 are microprocessor (µp) supervisory circuits used to monitor the power supplies in µp and digital systems. They provide excellent circuit reliability and

More information

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors EVALUATION KIT AVAILABLE MAX16132 MAX16135 General Description The MAX16132 MAX16135 are low-voltage, ±1% accurate, single, dual, triple, and quad-volt age μp supervisors that monitor up to 4 system-supply

More information

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1 19-2575; Rev 0; 10/02 One-to-Four LVCMOS-to-LVPECL General Description The low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS inputs to four differential LVPECL outputs.

More information

PART MAX3183. MAX3181EUK-T -40 C to +85 C 5 SOT23-5 ADKG MAX3182EUK-T -40 C to +85 C 5 SOT23-5 ADKH MAX3183EUK-T -40 C to +85 C 5 SOT23-5 ADKI

PART MAX3183. MAX3181EUK-T -40 C to +85 C 5 SOT23-5 ADKG MAX3182EUK-T -40 C to +85 C 5 SOT23-5 ADKH MAX3183EUK-T -40 C to +85 C 5 SOT23-5 ADKI 19-1444; Rev 1; 7/99 +3 to +5.5, 1.5Mbps General Description The MAX318MAX3183 are single RS-232 receivers in a SOT23-5 package for space- and cost-cotrained applicatio requiring minimal RS-232 communicatio.

More information

Micropower Adjustable Overvoltage Protection Controllers

Micropower Adjustable Overvoltage Protection Controllers 19-1791; Rev ; 1/ Micropower Adjustable Overvoltage General Description The MAX187/MAX188 monitor up to five supply rails for an overvoltage condition and provide a latched output when any one of the five

More information

45V, 400mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay

45V, 400mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay EVALUATION KIT AVAILABLE MAX587 45V, 4mA, Low-Quiescent-Current General Description The MAX587 high-voltage linear regulator operates from an input voltage of 6.5V to 45V and delivers up to 4mA of output

More information

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors General Description The MAX16132 MAX16135 are low-voltage, ±1% accurate, single, dual, triple, and quad-volt age μp supervisors that monitor up to 4 system-supply voltages for undervoltage and overvoltage

More information

4-Pin μp Voltage Monitors with Manual Reset Input MAX811/MAX812

4-Pin μp Voltage Monitors with Manual Reset Input MAX811/MAX812 General Description The MAX811/MAX81 are low-power microprocessor (µp) supervisory circuits used to monitor power supplies in µp and digital systems. They provide excellent circuit reliability and low

More information

Dual, Low-Noise, Low-Dropout, 160mA Linear Regulators in SOT23

Dual, Low-Noise, Low-Dropout, 160mA Linear Regulators in SOT23 19-1818; Rev 1; 1/1 Dual, Low-Noise, Low-Dropout, 16mA Linear General Description The dual, low-noise, low-dropout linear regulators operate from a +2.5V to +6.5V input and deliver up to 16mA each of continuous

More information

Low-Cost Microprocessor Supervisory Circuits with Battery Backup

Low-Cost Microprocessor Supervisory Circuits with Battery Backup General Description The / microprocessor (μp) supervisory circuits reduce the complexity and number of components required for power-supply monitoring and battery control functions in μp systems. These

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-267; Rev ; 7/1 Low-Dropout, Constant-Current General Description The low-dropout bias supply for white LEDs is a high-performance alternative to the simple ballast resistors used in conventional white

More information

Sequencing/Supervisory Circuits

Sequencing/Supervisory Circuits Click here for production status of specific part numbers. MAX1652/MAX1653 General Description The MAX1652/MAX1653 are a family of small, low-power, high-voltage monitoring circuits with sequencing capability.

More information

High-Speed, 3V/5V, Rail-to-Rail, Single-Supply Comparators MAX961/MAX962

High-Speed, 3V/5V, Rail-to-Rail, Single-Supply Comparators MAX961/MAX962 19-119; Rev 0; 9/96 High-Speed, 3/, Rail-to-Rail, General Description The are high-speed, single/dual comparators with internal hysteresis. These devices are optimized for single +3 or + operation. The

More information

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1 19-2141; Rev ; 8/1 75Ω/Ω/Ω Switchable Termination General Description The MAX346/MAX347/MAX348 are general-purpose line-terminating networks designed to change the termination value of a line, depending

More information

Low-Input-Voltage, 500mA LDO Regulator with RESET in SOT and TDFN

Low-Input-Voltage, 500mA LDO Regulator with RESET in SOT and TDFN 19-3664; Rev ; 4/5 Low-Input-Voltage, 5mA LDO Regulator General Description The low-dropout linear regulator operates from a +1.62V to +3.6V supply and delivers a guaranteed 5mA continuous load current

More information

10µA, Low-Dropout, Precision Voltage References MAX872/MAX874. General Description. Features. Applications. Ordering Information

10µA, Low-Dropout, Precision Voltage References MAX872/MAX874. General Description. Features. Applications. Ordering Information 9-; Rev 2; 6/97, Low-Dropout, General Description The / precision 2. and 4.96 micropower voltage references consume a maximum of only and operate from supply voltages up to. The combination of ultra-low

More information

Low-Cost Microprocessor Supervisory Circuits with Battery Backup

Low-Cost Microprocessor Supervisory Circuits with Battery Backup 19-0130; Rev 2; 11/05 Low-Cost Microprocessor Supervisory General Description The microprocessor (µp) supervisory circuits reduce the complexity and number of components required for power-supply monitoring

More information

ECL/PECL Dual Differential 2:1 Multiplexer

ECL/PECL Dual Differential 2:1 Multiplexer 19-2484; Rev 0; 7/02 ECL/PECL Dual Differential 2:1 Multiplexer General Description The fully differential dual 2:1 multiplexer (mux) features extremely low propagation delay (560ps max) and output-to-output

More information

nanopower, Tiny Supervisor with Manual Reset Input

nanopower, Tiny Supervisor with Manual Reset Input General Description The MAX16140 is an ultra-low-current, single-channel supervisory IC in a tiny, 4-bump, wafer-level package (WLP). The MAX16140 monitors the V CC voltage from 1.7V to 4.85V in 50mV increments

More information

Low-Cost, Precision, High-Side Current-Sense Amplifier MAX4172. Features

Low-Cost, Precision, High-Side Current-Sense Amplifier MAX4172. Features 19-1184; Rev 0; 12/96 Low-Cost, Precision, High-Side General Description The is a low-cost, precision, high-side currentsense amplifier for portable PCs, telephones, and other systems where battery/dc

More information

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator ADP3367*

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator ADP3367* a FEATURES Low Dropout: 50 mv @ 200 ma Low Dropout: 300 mv @ 300 ma Low Power CMOS: 7 A Quiescent Current Shutdown Mode: 0.2 A Quiescent Current 300 ma Output Current Guaranteed Pin Compatible with MAX667

More information

Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package

Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package 19-2041; Rev 1; 8/01 oltage Detectors in 4-Bump (2 X 2) General Description The is a family of ultra-low power circuits used for monitoring battery, power-supply, and regulated system voltages. Each detector

More information

3.0V/3.3V Microprocessor Supervisory Circuits MAX690T/S/R, MAX704T/S/R, MAX802T/S/R, MAX804 MAX806T/S/R. Features

3.0V/3.3V Microprocessor Supervisory Circuits MAX690T/S/R, MAX704T/S/R, MAX802T/S/R, MAX804 MAX806T/S/R. Features , MAX804 General Description These microprocessor (µp) supervisory circuits reduce the complexity and number of components required for power-supply monitoring and battery-control functions in µp systems.

More information

PART NC OUT OUT RESET OUTPUT

PART NC OUT OUT RESET OUTPUT 19-1654; Rev 3; 1/12 Low-Dropout, Low I Q, 1A Linear Regulator General Description The low-dropout linear regulator (LDO) operates from +2.5 to +5.5 and delivers a guaranteed 1A load current with a low

More information

MAX4914B/MAX4915A/B/ 100mA/200mA/300mA Current-Limit Switches MAX4917A/B with Low Shutdown Reverse Current General Description Benefits and Features

MAX4914B/MAX4915A/B/ 100mA/200mA/300mA Current-Limit Switches MAX4917A/B with Low Shutdown Reverse Current General Description Benefits and Features General Description The MAX4914B/MAX4915A/B/ family of switches feature internal current limiting to prevent damage to host devices due to faulty load conditions. These analog switches have a low 0.2Ω

More information

LP3470 Tiny Power On Reset Circuit

LP3470 Tiny Power On Reset Circuit Tiny Power On Reset Circuit General Description The LP3470 is a micropower CMOS voltage supervisory circuit designed to monitor power supplies in microprocessor (µp) and other digital systems. It provides

More information

±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers

±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers 19-498; Rev 1; 1/ ±15k ESD-Protected, 1Mbps, 3/5, eneral Description The are rugged, low-power, quad, RS-422/RS-485 receivers with electrostatic discharge (ESD) protection for use in harsh environments.

More information

RT9807. Micro-Power Voltage Detector with Manual Reset. General Description. Features. Applications. Pin Configurations. Ordering Information RT9807-

RT9807. Micro-Power Voltage Detector with Manual Reset. General Description. Features. Applications. Pin Configurations. Ordering Information RT9807- Micro-Power Voltage Detector with Manual Reset General Description The is a micro-power voltage detector with deglitched manual reset input which supervises the power supply voltage level for microprocessors

More information

PART TOP VIEW. OUT 3.3V AT 100mA POK. Maxim Integrated Products 1

PART TOP VIEW. OUT 3.3V AT 100mA POK. Maxim Integrated Products 1 9-600; Rev ; 6/00 General Description The is a buck/boost regulating charge pump that generates a regulated output voltage from a single lithium-ion (Li+) cell, or two or three NiMH or alkaline cells for

More information

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C)

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C) 19-2241; Rev 1; 8/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The cold-junction-compensation thermocouple-to-digital converter performs cold-junction compensation and digitizes

More information

Overvoltage Protection Controllers with Status FLAG

Overvoltage Protection Controllers with Status FLAG 19-3044; Rev 1; 4/04 Overvoltage Protection Controllers with Status General Description The are overvoltage protection ICs that protect low-voltage systems against voltages of up to 28V. If the input voltage

More information

PART MXD1013C/D MXD1013PD MXD1013UA MXD1013SE PART NUMBER EXTENSION (MXD1013 )

PART MXD1013C/D MXD1013PD MXD1013UA MXD1013SE PART NUMBER EXTENSION (MXD1013 ) 19-094; Rev 0; /97 -in-1 Silicon Delay Line General Description The contai three independent, monolithic, logic-buffered delay lines with delays ranging from 10 to 200. Nominal accuracy is ±2 for a 10

More information

3V to 5.5V, up to 250kbps True RS-232 Transceiver with 4µA AutoShutdown Plus and Power-On Reset

3V to 5.5V, up to 250kbps True RS-232 Transceiver with 4µA AutoShutdown Plus and Power-On Reset 19-1253; Rev ; 8/97 3 to 5.5, up to 25kbps True RS-232 Transceiver General Description The MAX332 combines a microprocessor (µp) supervisory circuit with an RS-232 transceiver. The power-on reset performs

More information

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz 19-3530; Rev 0; 1/05 Low-Jitter, 8kHz Reference General Description The low-cost, high-performance clock synthesizer with an 8kHz input reference clock provides six buffered LVTTL clock outputs at 35.328MHz.

More information

5Ω, Quad, SPST, CMOS Analog Switches

5Ω, Quad, SPST, CMOS Analog Switches 9-393; Rev ; 8/99 5Ω, Quad, SPST, CMOS Analog Switches General Description The quad analog switches feature 5Ω max on-resistance. On-resistance is matched between switches to.5ω max and is flat (.5Ω max)

More information

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver General Description The MAX3053 interfaces between the control area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. It is primarily intended for industrial systems requiring

More information

MAX471CSA. I LOAD TO LOAD or CHARGER LOGIC SUPPLY DISCHARGE/CHARGE

MAX471CSA. I LOAD TO LOAD or CHARGER LOGIC SUPPLY DISCHARGE/CHARGE 19-; Rev 2; 12/96 Precision, High-Side General Description The / are complete, bidirectional, highside current-sense amplifiers for portable PCs, telephones, and other systems where battery/dc power-line

More information

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP 19-579; Rev ; 12/1 EVALUATION KIT AVAILABLE Rail-to-Rail, 2kHz Op Amp General Description The op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

Low-Voltage, High-Accuracy, Triple/Quad Voltage μp Supervisory Circuits in SOT Package

Low-Voltage, High-Accuracy, Triple/Quad Voltage μp Supervisory Circuits in SOT Package General Description The MAX6700/MAX6710 precision triple/quad voltage microprocessor (μp) supervisory circuits monitor up to four system-supply voltages and assert a single reset if any supply voltage

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-9; Rev ; 7/ +V Precision Voltage Reference General Description The is a precision voltage reference that is pretrimmed to within ±.1% of V. The reference features excellent temperature stability (as

More information

Automotive Temperature Range Spread-Spectrum EconOscillator

Automotive Temperature Range Spread-Spectrum EconOscillator General Description The MAX31091 is a low-cost clock generator that is factory trimmed to output frequencies from 200kHz to 66.6MHz with a nominal accuracy of ±0.25%. The device can also produce a center-spread-spectrum

More information

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches 19-2418; Rev ; 4/2 Quad, Rail-to-Rail, Fault-Protected, General Description The are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard

More information

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers 19-3; Rev 1; 3/11 ±1kV ESD-Protected Mbps, 3V to.v, SOT3 General Description The MAX38E/MAX381E/MAX383E/MAX384E are single receivers designed for RS-48 and RS-4 communication. These devices guarantee data

More information

Ultra-Small, Adjustable Sequencing/ Supervisory Circuits

Ultra-Small, Adjustable Sequencing/ Supervisory Circuits General Description The MAX6895 MAX6899 is a family of small, lowpower, voltage-monitoring circuits with sequencing capability. These miniature devices offer tremendous flexibility with an adjustable threshold

More information

Single LVDS/Anything-to-LVPECL Translator

Single LVDS/Anything-to-LVPECL Translator 9-2808; Rev 0; 4/03 Single LVDS/Anything-to-LVPECL Translator General Description The is a fully differential, high-speed, anything-to-lvpecl translator designed for signal rates up to 2GHz. The s extremely

More information

LVDS/Anything-to-LVPECL/LVDS Dual Translator

LVDS/Anything-to-LVPECL/LVDS Dual Translator 19-2809; Rev 1; 10/09 LVDS/Anything-to-LVPECL/LVDS Dual Translator General Description The is a fully differential, high-speed, LVDS/anything-to-LVPECL/LVDS dual translator designed for signal rates up

More information