Potentiometer Tutorial Cornerstone Electronics Technology and Robotics I Week 8

Size: px
Start display at page:

Download "Potentiometer Tutorial Cornerstone Electronics Technology and Robotics I Week 8"

Transcription

1 Potentiometer Tutorial Cornerstone Electronics Technology and Robotics I Week 8 Electricity and Electronics, Section 3.5, Potentiometers: o Potentiometers: A potentiometer is a type of variable resistor that is used in circuits having low power. They are used to divide voltage and they come with three terminals. o Symbol: The resistance between A and C is constant and the value of the potentiometer. The resistance between A and B & B and C changes according to the position of the wiper. o Construction: Basic Potentiometer Construction o Moving the wiper of a potentiometer: In the figures below, the resistance R AC remains 100 in all three cases. R AB and R BC change as the wiper rotates. 1

2 o The value printed on a potentiometer is the maximum value (R AC ). o Show samples o Tripots (trimmer potentiometers or trimmers): Small potentiometers with or without knobs. Wear out after as little as one hundred turns. Single vs. multi-turn tripots Values: The first two numbers of the printed value are the two digits of the value. The third digit of the printed value is the number of zeros to add to the end of the first two digits. For example, a tripot labeled 221 has a value of 220 ohms; a tripot labeled 123 has a value of 12,000 ohms. o Complete Potentiometer Lab 1 Potentiometers o Rheostats: A 2 terminal variable resistor Symbol: Any three-terminal potentiometer can be used as a twoterminal variable resistor, by not connecting to the 3rd terminal. It is common practice to connect the wiper terminal to the unused end of the resistance track. Complete Potentiometer Lab 2 Rheostats Complete Potentiometer Lab 3 Brightness Balancing Circuit o Thermistor: A thermistor is a type of resistor with resistance varying according to its temperature A main advantage of thermistors for temperature measurement is their extremely high sensitivity. Another advantage of the thermistor is its relatively high resistance. 2

3 The major tradeoff for the high resistance and sensitivity of the thermistor is its highly nonlinear output and relatively limited operating range. They are used in temperature measuring circuits. Complete Potentiometer Lab 4 Thermistors Suggested homework, Student Activity Sheets 3-2,

4 Electronics Technology and Robotics I Week 8 Potentiometer Lab 1 Potentiometers Purpose: The purpose of this lab is have the student read tripot values and to help the student understand the function of a potentiometer. Apparatus and Materials: o 7 Tripots furnished by the instructor o 1 Digital Multimeter o 1 5 K Ohm Potentiometer Procedure: o Read and record the labeled values of 7 tripots. Measure the resistance of each tripot using a DMM and record its value. o Testing potentiometers: Test for maximum resistance of the potentiometer with a DMM, and compare with value printed on the side of the potentiometer. Turn the potentiometer shaft and then flip the DMM leads. How does the maximum resistance value of the potentiometer react? Using the DMM, measure and record the resistance R AB, R BC, and R AC at three different positions of the potentiometer. Results: o Tripot Values: 4

5 o Testing potentiometers: Conclusions: o In the potentiometer test, how does R AC relate to R AB and R BC? o Is R AC consistent in the potentiometer test? 5

6 Electronics Technology and Robotics I Week 8 Potentiometer Lab 2 Rheostats Purpose: The purpose of this lab is to help the student understand the function of a rheostat. Apparatus and Materials: o 1 Breadboard with a 9 V Power Supply o 1 25 K Ohm Potentiometer o Ohm Resistor o 1 - LED Procedure: o Variable brightness LED circuit: Wire each circuit below, adjust R1, and compare the results. Circuit 1 Circuit 2 Circuit 3 Results: Conclusions: o Does it matter which of the three circuits is used to control the LED? o What is the purpose of the 470 ohm resistor? 6

7 Electronics Technology and Robotics I Week 8 Potentiometer Lab 3 Brightness Balancing Circuit Purpose: The purpose of this lab is to have the student begin wiring the control circuit for the robot Sandwich. Apparatus and Materials: o 1 Breadboard with a 9 V Power Supply o 2 DMMs o Ohm Potentiometer o Ohm Resistor o 2 - LEDs Procedure: o Wire the breadboard circuit below. Place the circuit on the breadboard as shown in the drawing. o By measuring the voltages at Test Points 1 and 2, balance the voltage drops across LED1 and LED2. Note: The test points will be used in future lessons. 7

8 Electronics Technology and Robotics I Week 8 Potentiometer Lab 4 Thermistor Purpose: The purpose of this lab is to acquaint the student with the basic operation of a thermistor. Apparatus and Materials: o 1 Lab Thermometer o 1 Lab Beaker o 1 DMM o 1 Breadboard with a 9 V Power Supply o 1 Switch o 1 10 K Ohm Thermistor o 1 10 K Ohm Resistor o 1 50 K Ohm Potentiometer o 1 1 K Ohm Resistor o Op Amp Integrated Circuit o 1 - LED Procedure: o First, measure the resistance of the thermistor as it is taken from room temperature and placed in a beaker filled with ice water. Note the changes in resistance as it cools. o Now using a 10 K thermistor, wire the thermistor circuit found below. o At room temperature, adjust R3 until the LED turns off. Place the thermistor between your fingers to heat it up and to turn on the LED. o If the LED remains off, reverse the connections to pins 2 and 3 which will reverse the operation. Thermistor Used in an Op Amp Comparator Circuit 8

Electronics Technology and Robotics I Week 5 Resistors and Potentiometers

Electronics Technology and Robotics I Week 5 Resistors and Potentiometers Electronics Technology and Robotics I Week 5 Resistors and Potentiometers Administration: o Prayer o Turn in quiz o Using two switches, design a circuit that correspond to an AND gate. Resistors: o Function:

More information

Circuit LED 1 LED 2 A on or off on or off B on or off on or off C on or off on or off

Circuit LED 1 LED 2 A on or off on or off B on or off on or off C on or off on or off Cornerstone Electronics Technology and Robotics Week 8 Chapter 3, Introduction to Basic Electrical Circuit Materials Continued Administration: o Prayer o Turn in quiz Review LED s: o Wire the following

More information

Electronics Review 1 Cornerstone Electronics Technology and Robotics II Week 1

Electronics Review 1 Cornerstone Electronics Technology and Robotics II Week 1 Electronics Review 1 Cornerstone Electronics Technology and Robotics II Week 1 Administration: o Prayer o Welcome back o Review Quiz 1 Review: o Reading meters: When a current or voltage value is unknown,

More information

Figure 1: Basic Relationships for a Comparator. For example: Figure 2: Example of Basic Relationships for a Comparator

Figure 1: Basic Relationships for a Comparator. For example: Figure 2: Example of Basic Relationships for a Comparator Cornerstone Electronics Technology and Robotics I Week 16 Voltage Comparators Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit: To

More information

Lighting Tutorial Cornerstone Electronics Technology and Robotics I Week 7

Lighting Tutorial Cornerstone Electronics Technology and Robotics I Week 7 Lighting Tutorial Cornerstone Electronics Technology and Robotics I Week 7 Electricity and Electronics, Section 3.4, Lighting o Symbol: o Incandescent lamp: The current flows through a tungsten filament

More information

BME/ISE 3511 Bioelectronics I - Laboratory Exercise #4. Variable Resistors (Potentiometers and Rheostats)

BME/ISE 3511 Bioelectronics I - Laboratory Exercise #4. Variable Resistors (Potentiometers and Rheostats) BME/ISE 3511 Bioelectronics I - Laboratory Exercise #4 Variable Resistors (Potentiometers and Rheostats) Introduction: Variable resistors are known by several names (potentiometer, rheostat, variable resistor,

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Kirchhoff's Laws and Voltage and Current Division

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Kirchhoff's Laws and Voltage and Current Division University of Portland EE 271 Electrical Circuits Laboratory Experiment: Kirchhoff's Laws and Voltage and Current Division I. Objective The objective of this experiment is to determine the relationship

More information

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 kω, 2.7 kω, 5.1 kω, 10 kω, two, Decade Resistor Box, potentiometer, 10 kω Thermistor, Multimeter Owner s Manual

More information

Experiment 1: Circuits Experiment Board

Experiment 1: Circuits Experiment Board 01205892C AC/DC Electronics Laboratory Experiment 1: Circuits Experiment Board EQUIPMENT NEEDED: AC/DC Electronics Lab Board: Wire Leads Dcell Battery Graph Paper Purpose The purpose of this lab is to

More information

General Lab Notebook instructions (from syllabus)

General Lab Notebook instructions (from syllabus) Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 k, 2.7 k, 5.1 k, 10 k, two Decade Resistor Box, potentiometer, 10 k Thermistor, Multimeter Owner s Manual General

More information

o Semiconductor Diode Symbol: The cathode contains the N-type material and the anode contains the P-type material.

o Semiconductor Diode Symbol: The cathode contains the N-type material and the anode contains the P-type material. Cornerstone Electronics Technology and Robotics I Week 16 Diodes and Transistor Switches Administration: o Prayer o Turn in quiz Review: o Design and wire a voltage divider that divides your +9 V voltage

More information

Cornerstone Electronics Technology and Robotics I Week 19 Electrical Relays

Cornerstone Electronics Technology and Robotics I Week 19 Electrical Relays Cornerstone Electronics Technology and Robotics I Week 19 Electrical Relays Administration: o Prayer o Turn in quiz o Review voltage regulators: Review SPST, SPDT, DPST, DPDT switches http://cornerstonerobotics.org/curriculum/lessons_year1/er%20week8,%

More information

Exercise 1: The Rheostat

Exercise 1: The Rheostat Potentiometers and Rheostats DC Fundamentals Exercise 1: The Rheostat EXERCISE OBJECTIVE When you have completed this exercise, you will be able to vary current by using a rheostat. You will verify your

More information

Direct Current Waveforms

Direct Current Waveforms Cornerstone Electronics Technology and Robotics I Week 20 DC and AC Administration: o Prayer o Turn in quiz Direct Current (dc): o Direct current moves in only one direction in a circuit. o Though dc must

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

Oregon State University Lab Session #1 (Week 3)

Oregon State University Lab Session #1 (Week 3) Oregon State University Lab Session #1 (Week 3) ENGR 201 Electrical Fundamentals I Equipment and Resistance Winter 2016 EXPERIMENTAL LAB #1 INTRO TO EQUIPMENT & OHM S LAW This set of laboratory experiments

More information

2 Thermistor + Op-Amp + Relay = Sensor + Actuator

2 Thermistor + Op-Amp + Relay = Sensor + Actuator Physics 221 - Electronics Temple University, Fall 2005-6 C. J. Martoff, Instructor On/Off Temperature Control; Controlling Wall Current with an Op-Amp 1 Objectives Introduce the method of closed loop control

More information

Resistance and Ohm s Law

Resistance and Ohm s Law esistance and Ohm s Law Name D TA Partners Date Section Please be careful about the modes of the multimeter. When you measure a voltage, you are not allowed to use current mode (A), and vice versa. Otherwise,

More information

Physics 310 Lab 6 Op Amps

Physics 310 Lab 6 Op Amps Physics 310 Lab 6 Op Amps Equipment: Op-Amp, IC test clip, IC extractor, breadboard, silver mini-power supply, two function generators, oscilloscope, two 5.1 k s, 2.7 k, three 10 k s, 1 k, 100 k, LED,

More information

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To understand and gain insight about how a

More information

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Data Conversion and Lab Lab 1 Fall Operational Amplifiers Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

More information

Resistors and voltage. CSE1010 Jeffrey A. Meunier

Resistors and voltage. CSE1010 Jeffrey A. Meunier Resistors and voltage CSE1010 Jeffrey A. Meunier Consider this circuit Consider this circuit 5 Volt power supply Consider this circuit A resistive load Consider this circuit A resistive load (the load

More information

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2 EE 101 Spring 2006 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20051222JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it

More information

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY Objectives Preparation Tools To see the inner workings of a commercial mechatronic system and to construct a simple manual motor speed controller and current

More information

Block Diagram of a DC Power Supply. Wiring diagrams are used to help with the actual circuit wiring.

Block Diagram of a DC Power Supply. Wiring diagrams are used to help with the actual circuit wiring. Electronics Technology and Robotics I Week 3 Schematics, Conductors, and Insulators Administration: o Prayer o Review measuring voltage, current, and resistance w/ DMM Electrical Diagrams: o Schematic

More information

Lab #2 Voltage and Current Division

Lab #2 Voltage and Current Division In this experiment, we will be investigating the concepts of voltage and current division. Voltage and current division is an application of Kirchoff s Laws. Kirchoff s Voltage Law Kirchoff s Voltage Law

More information

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES EXPERIMENT 4: ERROR SIGNAL CHARACTERIZATION In this laboratory experience we will use the two

More information

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches Cornerstone Electronics Technology and Robotics II H-Bridges and Electronic Motor Control 4 Hour Class Administration: o Prayer o Debriefing Botball competition Four States of a DC Motor with Terminals

More information

DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 03. Resistors

DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 03. Resistors MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 03 Resistors Roll. No: Checked by: Date: Grade: Object: To become familiar with resistors,

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

Part 1: DC Concepts and Measurement

Part 1: DC Concepts and Measurement EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 1 DC Concepts and Measurement: Ohm's Law, Voltage ad Current Introduction to Analog Discovery Scope Last week we introduced

More information

Workshop 9: First steps in electronics

Workshop 9: First steps in electronics King s Maths School Robotics Club Workshop 9: First steps in electronics 1 Getting Started Make sure you have everything you need to complete this lab: Arduino for power supply breadboard black, red and

More information

EET 1150 Lab 6 Ohm s Law

EET 1150 Lab 6 Ohm s Law Name EQUIPMENT and COMPONENTS Digital Multimeter Trainer with Breadboard Resistors: 220, 1 k, 1.2 k, 2.2 k, 3.3 k, 4.7 k, 6.8 k Red light-emitting diode (LED) EET 1150 Lab 6 Ohm s Law In this lab you ll

More information

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise Lecture Week 4 Homework Voltage Divider Equivalent Circuit Observation Exercise Homework: P6 Prove that the equation relating change in potential energy to voltage is dimensionally consistent, using the

More information

Breadboard Primer. Experience. Objective. No previous electronics experience is required.

Breadboard Primer. Experience. Objective. No previous electronics experience is required. Breadboard Primer Experience No previous electronics experience is required. Figure 1: Breadboard drawing made using an open-source tool from fritzing.org Objective A solderless breadboard (or protoboard)

More information

The Field Effect Transistor

The Field Effect Transistor FET, OPAmps I. p. 1 Field Effect Transistors and Op Amps I The Field Effect Transistor This lab begins with some experiments on a junction field effect transistor (JFET), type 2N5458, and then continues

More information

3.5 Types of Resistors

3.5 Types of Resistors 7 Chapter 3 Resistance IN-PROCESS LERNING CHECK 4 Explain what is meant by the terms positive temperature coefficient and negative temperature coefficient. To which category does aluminum belong? (nswers

More information

Laboratory Project 1a: Power-Indicator LED's

Laboratory Project 1a: Power-Indicator LED's 2240 Laboratory Project 1a: Power-Indicator LED's Abstract-You will construct and test two LED power-indicator circuits for your breadboard in preparation for building the Electromyogram circuit in Lab

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

Auto Diagnosis Test #2 Review

Auto Diagnosis Test #2 Review Auto Diagnosis Test #2 Review Your own hand written notes may be used for the 1 st 10 minutes of the test For the Most Effective Personal Review, Look Over the On Line Study Guide Multimedia Based on Chapters

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Lab 1: DC Measurements (R, V, I)

Lab 1: DC Measurements (R, V, I) Lab 1: DC Measurements (R, V, I) Introduction Resistors are the most common component found in all electrical and electronic circuits. Resistors are found in many shapes, sizes, and values. The most common

More information

EECS40 Lab Introduction to Lab: Guide

EECS40 Lab Introduction to Lab: Guide Aschenbach, Konrad Muthuswamy, Bharathwaj EECS40 Lab Introduction to Lab: Guide Objective The student will use the following circuit elements and laboratory equipment to make basic circuit measurements:

More information

Cornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial

Cornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial Cornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial Administration: o Prayer o Voltage Divider Review: Divide +9 V source in half using 1K resistors. Solve for current. Electricity

More information

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

Operational Amplifiers

Operational Amplifiers Objective Operational Amplifiers Understand the basics and general concepts of operational amplifier (op amp) function. Build and observe output of a comparator and an amplifier (inverting amplifier).

More information

Experiment #4: Voltage Division, Circuit Reduction, Ladders, and Bridges

Experiment #4: Voltage Division, Circuit Reduction, Ladders, and Bridges SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #4: Division, Circuit Reduction, Ladders, and Bridges EQUIPMENT

More information

Lab# 13: Introduction to the Digital Logic

Lab# 13: Introduction to the Digital Logic Lab# 13: Introduction to the Digital Logic Revision: October 30, 2007 Print Name: Section: In this lab you will become familiar with Physical and Logical Truth tables. As well as asserted high, asserted

More information

PS 12b Lab 1c IV Curves

PS 12b Lab 1c IV Curves Names: 1.) 2.) 3.) PS 12b Lab 1c IV Curves Learning Goal: Understand I- V curves for ohmic and non- ohmic devices (light bulb, resistor, Light Emitting Diode (LED), and Thermistor. Work with a Field Effect

More information

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 6 Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS Goal The goals of this experiment are: - Verify the operation of a differential ADC; - Find the

More information

Module 0: Introduction to Electronics

Module 0: Introduction to Electronics Module 0: Introduction to Electronics Contents 1 Objectives and Learning Goals 1 2 Roadmap and Milestones 2 3 Lab Procedures 2 3.1 DC measurements..................................... 2 3.2 Impedance and

More information

The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual

The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual Name: Partner(s): Desk #: Date: Purpose The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual The purpose of this lab is to examine the functions of operational amplifiers (op amps)

More information

Lab #6: Op Amps, Part 1

Lab #6: Op Amps, Part 1 Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #6: Op Amps, Part 1 Scope: Study basic Op-Amp circuits: voltage follower/buffer and the inverting configuration. Home preparation: Review Hambley chapter

More information

Lab 10. Magnetic-Levitation Controller

Lab 10. Magnetic-Levitation Controller Lab 10. Magnetic-Levitation Controller INTRODUCTION In this lab you will build a 5 op-amp module magnetic levitation controller. Many ideas and concepts from previous labs will be incorporated in this

More information

The answer is R= 471 ohms. So we can use a 470 ohm or the next higher one, a 560 ohm.

The answer is R= 471 ohms. So we can use a 470 ohm or the next higher one, a 560 ohm. Introducing Resistors & LED s P a g e 1 Resistors are used to adjust the voltage and current in a circuit. The higher the resistance value, the more electrons it blocks. Thus, higher resistance will lower

More information

Instructional Demos, In-Class Projects, & Hands-On Homework: Active Learning for Electrical Engineering using the Analog Discovery

Instructional Demos, In-Class Projects, & Hands-On Homework: Active Learning for Electrical Engineering using the Analog Discovery Instructional Demos, In-Class Projects, & Hands-On Homework: Active Learning for Electrical Engineering using the Analog Discovery by Dr. Gregory J. Mazzaro Dr. Ronald J. Hayne THE CITADEL, THE MILITARY

More information

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law EENG-201 Experiment # 1 Series Circuit and Parallel Circuits I. Objectives Upon completion of this experiment, the student should be able to: 1. ead and use the resistor color code. 2. Use the digital

More information

Technological Studies. - Applied Electronics (H) TECHNOLOGICAL STUDIES HIGHER APPLIED ELECTRONICS OP-AMPS. Craigmount High School 1

Technological Studies. - Applied Electronics (H) TECHNOLOGICAL STUDIES HIGHER APPLIED ELECTRONICS OP-AMPS. Craigmount High School 1 TECHNOLOGICAL STUDIES HIGHER APPLIED ELECTRONICS OP-AMPS Craigmount High School 1 APPLIED ELECTRONICS Outcome 2 - Design and construct electronic systems, based on operational amplifiers, to meet given

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps University of Portland EE 271 Electrical Circuits Laboratory Experiment: Op Amps I. Objective The objective of this experiment is to learn how to use an op amp circuit to prevent loading and to amplify

More information

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits ame & Surname: D: Date: EEE 20 Circuit Theory - Laboratory Kirchoff s Laws, Series-Parallel Circuits List of topics for this laboratory: Ohm s Law Kirchoff s Current Law(KCL) Kirchoff s Voltage Law(KVL)

More information

Circuits: Light-Up Creatures Student Advanced version

Circuits: Light-Up Creatures Student Advanced version Circuits: Light-Up Creatures Student Advanced version In this lab you will explore current, voltage and resistance and their relationships as given by the Ohm s law. You will also explore of how resistance

More information

Class #6: Experiment The 555-Timer & Pulse Width Modulation

Class #6: Experiment The 555-Timer & Pulse Width Modulation Class #6: Experiment The 555-Timer & Pulse Width Modulation Purpose: In this experiment we look at the 555-timer, a device that uses digital devices and other electronic switching elements to generate

More information

Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms

Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms OBJECTIVES 1. Become familiar with a DC power supply and setting the output voltage. 2. Learn how to measure voltages & currents using a Digital

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 3 TITLE : Operational Amplifier (Op-Amp) OUTCOME : Upon completion of this unit, the student should be able to: 1. Gain

More information

Adjustable Parametric Equalizer Hardware Description

Adjustable Parametric Equalizer Hardware Description Adjustable Parametric Equalizer Hardware Description Adam Grunke April 27, 2004 ETEC 474 Professor Morton Introduction The Adjustable Parametric Equalizer (APE) allows the professional audio engineer to

More information

Lab 2.4 Arduinos, Resistors, and Circuits

Lab 2.4 Arduinos, Resistors, and Circuits Lab 2.4 Arduinos, Resistors, and Circuits Objectives: Investigate resistors in series and parallel and Kirchoff s Law through hands-on learning Get experience using an Arduino hat you need: Arduino Kit:

More information

Experiment 7: PID Motor Speed Control

Experiment 7: PID Motor Speed Control Experiment 7: PID Motor Speed Control Introduction The error output, Ve, of the tachometer circuit from experiment 6 will be connected to the input of a PID controller. The output of the PID controller,

More information

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors Meters, DC sources, and DC circuits with resistors 0. Prior to lab Read through the lab and do as many of the calculations as possible. Then, learn how to determine resistance values using the color codes.

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #6: Operational Amplifiers

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #6: Operational Amplifiers INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL 008 Laboratory #: Operational Amplifiers Goal: Study the use of the operational amplifier in a number of different configurations: inverting

More information

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I)

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) Student ID: 2018 Fall 1 Introduction This lab session introduces some very basic concepts

More information

LA502 Assembly guide Main PCB Resistors - (2)

LA502 Assembly guide Main PCB Resistors - (2) LA502 Assembly guide Safety warning The kits are main powered and use potentially lethal voltages. Under no circumstance should someone undertake the realisation of a kit unless he has full knowledge about

More information

Electricity Transition Questions Applied General in Science

Electricity Transition Questions Applied General in Science Electricity Transition Questions Applied General in Science Marks: 62 marks Pass = 30% Comments: Merit = 45% Distinction = 65% Name: Teacher: MDS Date: Q1. (a) Draw one line from each circuit symbol to

More information

Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II

Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II Administration: o Prayer PicBasic Pro Programs Used in This Lesson: o General PicBasic Pro Program Listing:

More information

LAB 5 OPERATIONAL AMPLIFIERS

LAB 5 OPERATIONAL AMPLIFIERS LAB 5 OPERATIONAL AMPLIFIERS PRE-LAB CALCULATIONS: Use circuit analysis techniques learned in class to analyze the circuit in Figure 5.2. Solve for Vo assuming that the effective resistance of the LED

More information

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018 PURPOSE The purpose of this project is for you to become familiar with some of the language, parts, and tools used in electrical engineering. You will also be introduced to some simple rule and laws. MATERIALS

More information

Experiment #1: Solid State Diodes Testing & Characterization. Type Value Symbol Name Multisim Part Description Resistor 1MΩ R 2 Basic/Resistor ---

Experiment #1: Solid State Diodes Testing & Characterization. Type Value Symbol Name Multisim Part Description Resistor 1MΩ R 2 Basic/Resistor --- SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #1: Solid State Diodes Testing & Characterization COMPONENTS

More information

ENGR 120 LAB #2 Electronic Tools and Ohm s Law

ENGR 120 LAB #2 Electronic Tools and Ohm s Law ENGR 120 LAB #2 Electronic Tools and Ohm s Law Objectives Understand how to use a digital multi-meter, power supply and proto board and apply that knowledge to constructing circuits to demonstrate ohm

More information

AC/DC ELECTRONICS LABORATORY

AC/DC ELECTRONICS LABORATORY Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model EM-8656 012-05892A 1/96 AC/DC ELECTRONICS LABORATORY 1995 PASCO scientific

More information

Oct 10 & 17 EGR 220: Engineering Circuit Theory Due Oct 17 & 24 Lab 4: Op Amp Circuits

Oct 10 & 17 EGR 220: Engineering Circuit Theory Due Oct 17 & 24 Lab 4: Op Amp Circuits Oct 10 & 17 EGR 220: Engineering Circuit Theory Due Oct 17 & 24 Lab 4: Op Amp Circuits Objective The objective of this lab is to build simple op amp circuits and compare observed behavior with theoretical

More information

Experiment EB2: IC Multivibrator Circuits

Experiment EB2: IC Multivibrator Circuits EEE1026 Electronics II: Experiment Instruction Learning Outcomes Experiment EB2: IC Multivibrator Circuits LO1: Explain the principles and operation of amplifiers and switching circuits LO2: Analyze high

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 1 : Introduction to Diode Name Matric No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI KEJURUTERAAN UTARA

More information

Industrial Electricity

Industrial Electricity Industrial Electricity Name DUE //7 or //7 (Your next lab day) Prelab: efer to the tables on Page 5. Show work neatly and completely on separate paper for any entry labeled calculated. You do not need

More information

LAB 2 Circuit Tools and Voltage Waveforms

LAB 2 Circuit Tools and Voltage Waveforms LAB 2 Circuit Tools and Voltage Waveforms OBJECTIVES 1. Become familiar with a DC power supply and setting the output voltage. 2. Learn how to measure voltages & currents using a Digital Multimeter. 3.

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

EXPERIMENT 3 Circuit Construction and Operational Amplifier Circuits

EXPERIMENT 3 Circuit Construction and Operational Amplifier Circuits ELEC 2010 Lab Manual Experiment 3 PRE-LAB Page 1 of 8 EXPERIMENT 3 Circuit Construction and Operational Amplifier Circuits Introduction In this experiment you will learn how to build your own circuits

More information

EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits

EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits Objectives Investigation of amplifier circuits containing operational amplifiers. (Note: This is a two-part lab and may be done in two consecutive

More information

Programming PIC Microcontrollers in PicBasic Pro LCD Lesson 3 Cornerstone Electronics Technology and Robotics II

Programming PIC Microcontrollers in PicBasic Pro LCD Lesson 3 Cornerstone Electronics Technology and Robotics II Programming PIC Microcontrollers in PicBasic Pro LCD Lesson 3 Cornerstone Electronics Technology and Robotics II Administration: o Prayer PicBasic Pro Programs Used in This Lesson: o General PicBasic Pro

More information

Summer Vacation Homework Physics O'3

Summer Vacation Homework Physics O'3 Summer vacation Homework Physics O'3 1 (a) A sound wave in air consists of alternate compressions and rarefactions along its path. Explain how a compression differs from a rarefaction. 1 Explain, in terms

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Exercise 1: AND/NAND Logic Functions

Exercise 1: AND/NAND Logic Functions Exercise 1: AND/NAND Logic Functions EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the operation of an AND and a NAND logic gate. You will verify your results

More information

Materials: resistors: (5) 1 kω, (4) 2 kω, 2.2 kω, 3 kω, 3.9 kω digital multimeter (DMM) power supply w/ leads breadboard, jumper wires

Materials: resistors: (5) 1 kω, (4) 2 kω, 2.2 kω, 3 kω, 3.9 kω digital multimeter (DMM) power supply w/ leads breadboard, jumper wires Lab 6: Electrical Engineering Technology References: 1. Resistor (electronic) color code: http://en.wikipedia.org/wiki/electronic_color_code 2. Resistor color code tutorial: http://www.michaels-electronics-lessons.com/resistor-color-code.html

More information

Prepare for this experiment!

Prepare for this experiment! Notes on Experiment #10 Prepare for this experiment! Read the P-Amp Tutorial before going on with this experiment. For any Ideal p Amp with negative feedback you may assume: V - = V + (But not necessarily

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors In this exercise you will explore the use of the potentiometer and the tachometer as angular position and velocity sensors.

More information

Simple Circuits Experiment

Simple Circuits Experiment Physics 8.02T 1 Fall 2001 Simple Circuits Experiment Introduction Our world is filled with devices that contain electrical circuits in which various voltage sources cause currents to flow. We use radios,

More information

Lab 06: Ohm s Law and Servo Motor Control

Lab 06: Ohm s Law and Servo Motor Control CS281: Computer Systems Lab 06: Ohm s Law and Servo Motor Control The main purpose of this lab is to build a servo motor control circuit. As with prior labs, there will be some exploratory sections designed

More information

Electrical Measurements

Electrical Measurements Electrical Measurements. OBJECTIES: This experiment covers electrical measurements, including use of the volt-ohmmeter and oscilloscope. Concepts including Ohm's Law, Kirchoff's Current and oltage Laws,

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

1. Each group will get one aluminum BUD chassis (also called BUD box ).

1. Each group will get one aluminum BUD chassis (also called BUD box ). I. INTRODUCTION At the beginning of this lab, each group will be given an aluminum box called a BUD box or a BUD chassis. ( BUD is just the name of a company that makes these boxes.) Each BUD box has a

More information