LTC Linear Phase 8th Order Lowpass Filter FEATURES APPLICATIONS DESCRIPTION TYPICAL APPLICATION

Size: px
Start display at page:

Download "LTC Linear Phase 8th Order Lowpass Filter FEATURES APPLICATIONS DESCRIPTION TYPICAL APPLICATION"

Transcription

1 LTC69-7 Linear Phase 8th Order Lowpass Fiter FEATURES n 8th Order, Linear Phase Fiter in SO-8 Package n Raised Cosine Ampitude Response n 43 Attenuation at 2 f CUTOFF n Wideband Noise: 4μV RMS n Operates from Singe 5V Suppy to ±5V Power Suppies n Cock-Tunabe to 2kHz with ±5V Suppies n Cock-Tunabe to 2kHz with Singe 5V Suppy APPLICATIONS n Digita Communication Fiter n Antiaiasing Fiter with Linear Phase n Smoothing Fiters DESCRIPTION The LTC 69-7 is a monoithic, cock-tunabe, inear phase, 8th order owpass fiter. The ampitude response of the fi ter approximates a raised cosine fi ter with an apha of one. The gain at the cutoff frequency is 3 and the attenuation at twice the cutoff frequency is 43. The cutoff frequency of the LTC69-7 is set by an externa cock and is equa to the cock frequency divided by 25. The ratio of the interna samping frequency to the cutoff frequency is 5: that is, the input signa is samped twice per cock cyce to ower the risk of aiasing. The LTC69-7 can be operated from a singe 5V suppy up to dua ±5V suppies. The gain and phase response of the LTC69-7 can be used in digita communication systems where puse shaping and channe bandwidth imiting must be carried out. Any system that requires an anaog fiter with inear phase and sharper ro off than conventiona Besse fiters can use the LTC69-7. The LTC69-7 has a wide dynamic range. With ±5V suppies and an input range of.v RMS to 2V RMS, the signa-to-(noise + THD) ratio is 6. The wideband noise of the LTC69-7 is 4μV RMS. Unike other LTC69-X fiters, the typica passband gain of the LTC69-7 is equa to V/V. The LTC69-7 is avaiabe in an SO-8 package. Other fiter responses with ower power/speed specifications can be obtained. Pease contact LTC Marketing. L, LT, LTC and LTM are registered trademarks of Linear Technoogy Corporation. TYPICAL APPLICATION Singe 5V Suppy, Linear Phase khz Lowpass Fiter Frequency Response.47μF.μF 5V V IN AGND V OUT V + V LTC69-7 NC NC V IN CLK V OUT 69-7 TA GAIN () TA2 697fa

2 LTC69-7 ABSOLUTE MAXIMUM RATINGS Tota Suppy Votage (V + to V )... 2V Power Dissipation... 4mW Operating Temperature Range LTC69-7C... C to 7 C LTC69-7I... 4 C to 85 C Storage Temperature C to 5 C Lead Temperature (Sodering, sec)... 3 C PIN CONFIGURATION AGND V + 2 NC 3 V IN 4 TOP VIEW S8 PACKAGE 8-LEAD PLASTIC SO T JMAX = 25 C, θ JA = 3 C/W V OUT V NC CLK ORDER INFORMATION LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE LTC69-7CS8#PBF LTC69-7CS8#TRPBF Lead Pastic SO C to 7 C LTC69-7IS8#PBF LTC69-7IS8#TRPBF 697I 8-Lead Pastic SO 4 C to 85 C Consut LTC Marketing for parts specifi ed with wider operating temperature ranges. Consut LTC Marketing for information on non-standard ead based fi nish parts. For more information on ead free part marking, go to: For more information on tape and ree specifications, go to: ELECTRICAL CHARACTERISTICS The denotes specifi cations which appy over the fu operating temperature range. f CUTOFF is the fi ter s cutoff frequency and is equa to f CLK /25. The f CLK signa eve is TTL or CMOS (max cock rise or fa time μs), R L = k, T A = 25 C, uness otherwise specifi ed. A AC gains are measured reative to the passband gain. SYMBOL CONDITIONS MIN TYP MAX UNITS Passband Gain (f IN.2f CUTOFF ) Gain at.25f CUTOFF Gain at.5f CUTOFF Gain at.75f CUTOFF Gain at f CUTOFF, f TEST = khz, V IN = V RMS V S = 4.75V, f CLK = 5kHz f TEST = khz, V IN =.5V RMS, f TEST = 25kHz, V IN = V RMS.55 V S = 4.75V, f CLK = 5kHz f TEST = 5kHz, V IN =.5V RMS.3, f TEST = 5kHz, V IN = V RMS.4 V S = 4.75V, f CLK = 5kHz f TEST = khz, V IN =.5V RMS.6, f TEST = 75kHz, V IN = V RMS 2. V S = 4.75V, f CLK = 5kHz f TEST = 5kHz, V IN =.5V RMS.5, f TEST = khz, V IN = V RMS 4. V S = 4.75V, f CLK = 5kHz f TEST = 2kHz, V IN =.5V RMS 3.3. ±.75 ±.9. ±.75 ± fa

3 LTC69-7 ELECTRICAL CHARACTERISTICS The denotes specifi cations which appy over the fu operating temperature range. f CUTOFF is the fi ter s cutoff frequency and is equa to f CLK /25. The f CLK signa eve is TTL or CMOS (max cock rise or fa time μs), R L = k, T A = 25 C, uness otherwise specifi ed. A AC gains are measured reative to the passband gain. SYMBOL CONDITIONS MIN TYP MAX UNITS Gain at.5f CUTOFF Gain at 2.f CUTOFF Gain at 5.f CUTOFF Gain at f CUTOFF (6kHz) Phase at.5f CUTOFF Phase at f CUTOFF Passband Phase Deviation from Linear Phase (Note ) Output DC Offset (Input at GND) Output Votage Swing Power Suppy Current, f TEST = 5kHz, V IN = V RMS 9 V S = 4.75V, f CLK = 5kHz f TEST = 3kHz, V IN =.5V RMS 2, f TEST = 2kHz, V IN = V RMS 55 V S = 4.75V, f CLK = 5kHz f TEST = 4kHz, V IN =.5V RMS V S = 4.75V, f CLK = 5kHz f TEST = khz, V IN =.5V RMS , f CLK = 4MHz 2. f TEST = 6kHz, V IN = V RMS, Deg f TEST = 5kHz, Deg f TEST = khz, f CLK = 5kHz 3. Deg, f CLK = 5kHz V S = 4.75V, f CLK = 4kHz, I SOURCE /I SINK ma, R L = k V S = 4.75V, I SOURCE /I SINK ma, R L = k, f CLK = 5kHz V S = 4.75V, f CLK = 4kHz ± ± mv mv V V P-P ma ma ma ma Note : Stresses beyond those isted under Absoute Maximum Ratings may cause permanent damage to the device. Exposure to any Absoute Maximum Rating condition for extended periods may affect device reiabiity and ifetime. Note 2: Phase Deviation = /2(Phase at Hz Phase at f CUTOFF ) (Phase at Hz Phase at.5f CUTOFF ) Phase at Hz = 8 (guaranteed by design) Exampe: An LTC69-7 has Phase at.5f CUTOFF = 3.5 and Phase at f CUTOFF = 235. Passband Phase Deviation from Linear Phase = /2[8 ( 235 )] [(8 ( 3.5 )] = 3 697fa 3

4 LTC69-7 TYPICAL PERFORMANCE CHARACTERISTICS GAIN () Passband Gain vs Frequency f CLK = 5kHz f C = 2kHz V IN = 2V RMS G GAIN () Transition Band Gain vs Frequency f CLK = 5kHz f C = 2kHz V IN = 2V RMS G2 GAIN () Stopband Gain vs Frequency f CLK = 5kHz f C = 2kHz V IN = 2V RMS G3 GAIN () Gain vs Frequency f CLK = 25kHz f C = khz V IN = V RMS GAIN () Passband Gain vs Cock Frequency V IN = 2V RMS f CLK = 4.5MHz f CLK = 4MHz f CLK = 3.5MHz f CLK = 3MHz f CLK = 5MHz GAIN () Passband Gain vs Frequency T A = 4 C T A = 85 C T A = 25 C f CLK = 4MHz f C = 6kHz V IN = 2V RMS G G G6 GAIN () Gain vs Suppy Votage f CLK = 2MHz f C = 8kHz V IN =.5V RMS G7 GAIN () Passband Gain vs Cock Frequency f CLK = 2MHz f CLK =.5MHz V IN = V RMS f CLK = 3MHz G8 GAIN () Passband Gain vs Frequency f C = khz V IN = V RMS T A = 4 C T A = 25 C T A = 85 C G fa

5 TYPICAL PERFORMANCE CHARACTERISTICS LTC Passband Gain and Phase vs Frequency f C = khz Passband Gain and Deay vs Frequency f C = khz GAIN () PHASE GAIN PHASE (DEG) GAIN () DELAY GAIN DELAY (μs) G 69-7 G2 PHASE DIFFERENCE (DEG) Phase Matching vs Frequency THD + Noise vs Input (V P-P ) THD + Noise vs Frequency 7 C 25 C.75 f CLK 2.5MHz.5 PHASE DIFFERENCE BETWEEN.25 ANY TWO UNITS (SAMPLE OF 2 REPRESENTATIVE UNITS) FREQUENCY (f CUTOFF /FREQUENCY) 69-7 G THD + NOISE () f CLK = MHz f C = 4kHz f IN = khz INPUT (V P-P ) 69-7 G3 THD + NOISE () f C = khz, V IN = V P-P, V IN = 2V P-P 69-7 G4 Transient Response Output Offset vs Cock Frequency 4.3 Output Votage Swing vs Temperature V/DIV.ms/DIV f CLK = 5kHz f CUTOFF = 2kHz V IN = 4V P-P SQUARE WAVE AT khz 69-7 G5 OUTPUT OFFSET (mv) CLOCK FREQUENCY (MHz) VOLTAGE SWING (V) (AGND AT 2.5V) f CLK = 5kHz f CUTOFF = 2kHz R L = k I SOURCE /I SINK ma TEMPERATURE ( C) 69-7 G G7 697fa 5

6 LTC69-7 TYPICAL PERFORMANCE CHARACTERISTICS VOLTAGE SWING (V) Output Votage Swing vs Temperature f CUTOFF = khz R L = k I SOURCE /I SINK = ma TEMPERATURE ( C) SUPPLY CURRENT (ma) Suppy Current vs Suppy Votage f CLK = Hz 25 C 85 C 4 C SUPPLY VOLTAGE (±V) SUPPLY CURRENT (ma) Suppy Current vs Cock Frequency CLOCK FREQUENCY (MHz) 69-7 G G G2 PIN FUNCTIONS AGND (Pin ): Anaog Ground. The quaity of the anaog signa ground can affect the fiter performance. For either singe or dua suppy operation, an anaog ground pane surrounding the package is recommended. The anaog ground pane shoud be connected to any digita ground at a singe point. For dua suppy operation, Pin shoud be connected to the anaog ground pane. For singe suppy operation, Pin shoud be bypassed to the anaog ground pane with a capacitor.47μf or arger. An interna resistive divider biases Pin to haf the tota power suppy. Pin shoud be buffered if used to bias other ICs. Figure shows the connections for singe suppy operation. V +, V (Pins 2, 7): Power Suppies. The V + (Pin 2) and V (Pin 7) shoud be bypassed with a.μf capacitor to an adequate anaog ground. The fiter s power suppies shoud be isoated from other digita or high votage anaog suppies. A ow noise inear suppy is recommended. Using switching power suppies wi ower the signa-to-noise ratio of the fiter. Unike previous monoithic fi ters, the power suppies can be appied in any order, that is, the positive suppy can be appied before the negative suppy and vice versa. Figure 2 shows the connections for dua suppy operation. 6 NC (Pins 3, 6): No Connection. Pins 3 and 6 are not connected to any interna circuitry; they shoud be tied to ground. V IN (Pin 4): Fiter Input. The fi ter input pin is internay connected to the inverting inputs of two op amps through a 36k resistor for each op amp. This parae combination creates an 8k input impedance. ANALOG GROUND PLANE.47μF V +.μf STAR SYSTEM GROUND V IN 8 AGND V OUT 2 7 V + V 3 LTC NC NC 4 5 V IN CLK DIGITAL GROUND PLANE V OUT k CLOCK SOURCE 69-7 F Figure. Connections for Singe Suppy Operation 697fa

7 LTC69-7 PIN FUNCTIONS ANALOG GROUND PLANE V +.μf STAR SYSTEM GROUND V IN AGND V OUT V + V LTC69-7 NC NC V IN CLK DIGITAL GROUND PLANE V OUT.μF k CLOCK SOURCE V a dua or singe suppy operation. A puse generator can be used as a cock source provided the high eve on-time is greater than.42μs (V S = ± 5V). Sine waves ess than khz are not recommended for cock sources because excessive sow cock rise or fa times generate interna cock jitter. The maximum cock rise or fa time is μs. The cock signa shoud be routed from the right side of the IC package to avoid couping into any input or output anaog signa path. A k resistor between the cock source and the cock input (Pin 5) wi sow down the rise and fa times of the cock to further reduce charge couping, Figure. Figure 2. Connections for Dua Suppy Operation 69 F2 CLK (Pin 5): Cock Input. Any TTL or CMOS cock source with a square wave output and 5% duty cyce (±%) is an adequate cock source for the device. The power suppy for the cock source shoud not necessariy be the fi ter s power suppy. The anaog ground of the fi ter shoud ony be connected to the cock s ground at a singe point. Tabe shows the cock s ow and high eve threshod vaue for Tabe. Cock Source High and Low Threshods POWER SUPPLY HIGH LEVEL LOW LEVEL Dua Suppy = ±5V.5V.5V Singe Suppy = V 6.5V 5.5V Singe Suppy = 5V.5V.5V V OUT (Pin 8): Fiter Output. Pin 8 is the output of the fiter, and it can source 23mA or sink 6mA. The tota harmonic distortion of the fi ter wi degrade when driving coaxia cabes or oads ess than 2k without an output buffer. APPLICATIONS INFORMATION Temperature Behavior The power suppy current of the LTC69-7 has a positive temperature coefficient. The GBW product of its interna op amps is neary constant and the speed of the device does not degrade at high temperatures. Cock Feedthrough The cock feedthrough is defined as the RMS vaue of the cock frequency and its harmonics that are present at the fiter s output (Pin 8). The cock feedthrough is tested with the input (Pin 4) shorted to the AGND pin and depends on PC board ayout and on the vaue of the power suppies. With proper ayout techniques the vaues of the cock feedthrough are shown on Tabe 2. Tabe 2. Cock Feedthrough V S CLOCK FEEDTHROUGH 5V 4μV RMS ±5V 85μV RMS Any parasitic switching transients during the rising and faing edges of the incoming cock are not part of the cock feedthrough specifications. Switching transients have frequency contents much higher than the appied cock; their ampitude strongy depends on scope probing techniques as we as grounding and power suppy bypassing. The cock feedthrough can be reduced by adding a singe RC owpass fiter at the output (Pin 8) of the LTC fa 7

8 LTC69-7 APPLICATIONS INFORMATION Wideband Noise The wideband noise of the fiter is the tota RMS vaue of the device s noise spectra density and determines the operating signa-to-noise ratio. Most of the wideband noise frequency contents ie within the fiter passband. The wideband noise cannot be reduced by adding post fitering. The tota wideband noise is neary independent of the cock frequency and depends sighty on the power suppy votage (see Tabe 3). The cock feedthrough specifi cations are not part of the wideband noise. Tabe 3. Wideband Noise V S CLOCK FEEDTHROUGH 4.75V 25μV RMS ±5V 4μV RMS Aiasing Aiasing is an inherent phenomenon of samped data systems and it occurs for input frequencies approaching the samping frequency. The interna samping frequency of the LTC69-7 is 5 times its f CUTOFF frequency. For instance if a 48kHz, mv RMS signa is appied at the input of an LTC69-7 operating with a 5% duty cyce 25kHz cock, a 2kHz, 74μV RMS aias signa wi appear at the fiter output. Tabe 4 shows detais. Tabe 4. Aiasing INPUT FREQUENCY V IN = V RMS OUTPUT LEVEL Reative to Input OUTPUT FREQUENCY Aiased Frequency f CLK /f C = 25:, f CUTOFF = khz 4kHz (or 6kHz) 59.9 khz 47kHz (or 53kHz) kHz 48kHz (or 52kHz) kHz 48.5kHz (or 5.5kHz) 8.3.5kHz 49kHz (or 52kHz) 2.9.kHz 49.5kHz (or 5.5kHz).65.5kHz Speed Limitations To avoid op amp sew rate imiting, the signa ampitude shoud be kept beow a specified eve as shown in Tabe 5. Tabe 5. Maximum V IN vs V S and Cock V S MAXIMUM CLOCK MAXIMUM V IN 5V 2.5MHz 34mV RMS (f IN 2kHz) ±5V 4.5MHz.2V RMS (f IN 4kHz) 8 697fa

9 PACKAGE DESCRIPTION S8 Package 8-Lead Pastic Sma Outine (Narrow.5) (LTC DWG # 5-8-6) LTC BSC.45 ± ( ) NOTE MIN.6 ± ( ).5.57 ( ) NOTE 3.3 ±.5 TYP RECOMMENDED SOLDER PAD LAYOUT ( ) ( ) 8 TYP ( ).4. (..254).6.5 (.46.27) NOTE: INCHES. DIMENSIONS IN (MILLIMETERS).4.9 ( ) TYP 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED.6" (.5mm).5 (.27) BSC SO fa 9

10 LTC69-7 TYPICAL APPLICATION Cock Tunabe, Noninverting, Linear Phase 8th Order Fiter to 2kHz f CUTOFF 5pF k 5V.μF 5V AGND V OUT V + V LTC69-7 NC NC 5V μf.μf k + LT 354 5V.μF.μF V OUT V IN V IN CLK f CLK 5MHz 69-7 TA3 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC64-3 Linear Phase, Besse 8th Order Fiter f CLK /f C = 75/ or 5/, Very Low Noise LTC64-7 Linear Phase, 8th Order Lowpass Fiter f CLK /f C = 5/ or /, f C(MAX) = khz LTC64-7 Low Power, Linear Phase Lowpass Fiter f CLK /f C = 5/ or /, I S = 2.5mA, LTC264-7 Linear Phase 8th Order Lowpass Fiter f CLK /f C = 25/ or 5/, f C(MAX) = 2kHz LTC 39 REV A PRINTED IN USA Linear Technoogy Corporation 63 McCarthy Bvd., Mipitas, CA (48) FAX: (48) LINEAR TECHNOLOGY CORPORATION fa

LTC kHz Continuous Time, Linear Phase Lowpass Filter FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LTC kHz Continuous Time, Linear Phase Lowpass Filter FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION FEATURES DESCRIPTION n th Order, 0kHz Linear Phase Fiter in an SO- n Differentia Inputs and Outputs n Operates on a Singe or a ± Suppy n Low Offset: m Typica n db THD and SNR n db SNR n Shutdown Mode n

More information

DESCRIPTIO. LTC Low Power, 8th Order Progressive Elliptic, Lowpass Filter

DESCRIPTIO. LTC Low Power, 8th Order Progressive Elliptic, Lowpass Filter LTC9- Low Power, th Order Progressive Elliptic, Lowpass Filter FEATRES th Order Elliptic Filter in SO- Package Operates from Single.V to ±V Power Supplies db at.f CTOFF db at.f CTOFF db at f CTOFF Wide

More information

LT1176/LT Step-Down Switching Regulator FEATURES APPLICATIONS DESCRIPTION TYPICAL APPLICATION

LT1176/LT Step-Down Switching Regulator FEATURES APPLICATIONS DESCRIPTION TYPICAL APPLICATION Step-Down Switching Reguator FEATURES n 1.2A Onboard Switch n 100kHz Switching Frequency n Exceent Dynamic Behavior n DIP and Surface Mount Packages n Ony 8mA Quiescent Current n Preset 5 Output Avaiabe

More information

FEATURES TYPICAL APPLICATIO. LTC Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter DESCRIPTIO APPLICATIO S FEATRES Pin Selectable Butterworth or Bessel Response ma Supply Current with ±V Supplies f CTOFF up to khz µv RMS Wideband Noise THD

More information

LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps FEATURES DESCRIPTION APPLICATIONS

LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps FEATURES DESCRIPTION APPLICATIONS FEATURES n Rai-to-Rai Input and Output n 475 Max V OS from V + to V n Gain-Bandwidth Product: MHz n Sew Rate: 6V/μs n Low Suppy Current per Ampifi er: 1.7mA n Input Offset Current: 65 Max n Input Bias

More information

FEATURES APPLICATIONS TYPICAL APPLICATION

FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Reguates Whie Sourcing or Sinking Current n Provides Termination for up to 27 SCSI Lines n μa Quiescent Current n Utraow Power Shutdown Mode n Current Limit and Therma Shutdown Protection n

More information

FEATURES APPLICATIO S TYPICAL APPLICATIO. LTC Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter DESCRIPTIO

FEATURES APPLICATIO S TYPICAL APPLICATIO. LTC Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter DESCRIPTIO LTC- Low Noise, th Order, Clock Sweepable Elliptic Lowpass Filter FEATRES th Order Filter in a -Pin Package No External Components : Clock to Center Ratio µv RMS Total Wideband Noise.% THD or Better khz

More information

LT1630/LT MHz, 10V/µs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps. Applications. Typical Application

LT1630/LT MHz, 10V/µs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps. Applications. Typical Application Features n Gain-Bandwidth Product: 3MHz n Sew Rate: V/µs n Low Suppy Current per Ampifier: 3.5mA n Input Common Mode Range Incudes Both Rais n Output Swings Rai-to-Rai n Input Offset Votage, Rai-to-Rai:

More information

LT1782 Micropower, Over-The-Top SOT-23, Rail-to-Rail Input and Output Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT1782 Micropower, Over-The-Top SOT-23, Rail-to-Rail Input and Output Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Operates with Inputs Above n Rai-to-Rai Input and Output n Micropower: Suppy Current Max n Operating Temperature Range: 4 C to 2 C n Low Profie (mm) ThinSOT Package n Low Input Offset otage:

More information

LT2178/LT µA Max, Dual and Quad, Single Supply, Precision Op Amps DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT2178/LT µA Max, Dual and Quad, Single Supply, Precision Op Amps DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n SO Package with Standard Pinout n Suppy Current per Ampifi er: 7μA Max n Offset otage: 7μ Max n Offset Current: 25pA Max n Input Bias Current: 5nA Max n otage Noise:.9μ P-P,.Hz to Hz n Current

More information

LT Dual Very Low Noise, Differential Amplifi er and 15MHz Lowpass Filter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT Dual Very Low Noise, Differential Amplifi er and 15MHz Lowpass Filter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Dua Differentia Ampifi er with MHz Lowpass Fiters th Order Fiters Approximates Chebyshev Response Guaranteed Phase and Gain Matching Resistor-Programmabe Differentia Gain n 7 Signa-to-Noise

More information

LT1881/LT1882 Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps DESCRIPTION FEATURES

LT1881/LT1882 Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps DESCRIPTION FEATURES FEATURES n Offset Votage: 5 Maximum (LT88A) n Input Bias Current: 2 Maximum (LT88A) n Offset Votage Drift:.8/ C Maximum n Rai-to-Rai Output Swing n Suppy Range: 2.7V to 36V n Operates with Singe or Spit

More information

LT Dual Very Low Noise, Differential Amplifi er and 5MHz Lowpass Filter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT Dual Very Low Noise, Differential Amplifi er and 5MHz Lowpass Filter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Dua Differentia Ampifi er with MHz Lowpass Fiters 4th Order Fiters Approximates Chebyshev Response Guaranteed Phase and Gain Matching Resistor-Programmabe Differentia Gain n >8 Signa-to-Noise

More information

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO Linear Phase, DC Accurate, Low Power, 0th Order Lowpass Filter FEATRES One External R Sets Cutoff Frequency Root Raised Cosine Response ma Supply Current with a Single Supply p to khz Cutoff on a Single

More information

APPLICATIONS n Driving A/D Converters n Low Voltage Signal Processing n Active Filters n Rail-to-Rail Buffer Amplifi ers n Video Line Driver

APPLICATIONS n Driving A/D Converters n Low Voltage Signal Processing n Active Filters n Rail-to-Rail Buffer Amplifi ers n Video Line Driver FEATURES n 3dB Bandwidth: 3MHz, A V = n Gain-Bandwidth Product: 8MHz, A V n Sew Rate: 3V/μs n Wide Suppy Range:.V to.v n Large Output Current: 8mA n Low Distortion, MHz: 9dBc n Input Common Mode Range

More information

LTC2050/LTC2050HV Zero-Drift Operational Amplifi ers in SOT-23 DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LTC2050/LTC2050HV Zero-Drift Operational Amplifi ers in SOT-23 DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Maximum Offset Votage of μv n Maximum Offset Votage Drift of nv/ C n Noise:.μV P-P (.Hz to Hz Typ) n Votage Gain: (Typ) n PSRR: (Typ) n CMRR: (Typ) n Suppy Current:.8mA (Typ) n Suppy Operation:.7V

More information

LT Very Low Noise, Differential Amplifi er and 2.5MHz Lowpass Filter FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LT Very Low Noise, Differential Amplifi er and 2.5MHz Lowpass Filter FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION FEATURES n ±.db (Max) Rippe 4th Order Lowpass Fiter with.mhz Cutoff n Programmabe Differentia Gain via Two Externa Resistors n Adjustabe Output Common Mode otage n Operates and Specifi ed with,, ± Suppies

More information

LT6100 Precision, Gain Selectable High Side Current Sense Amplifier. Applications. Typical Application

LT6100 Precision, Gain Selectable High Side Current Sense Amplifier. Applications. Typical Application Features n Input Offset otage: 3µ (Max) n Sense Inputs Up to 8 n.5 Gain Accuracy n Pin Seectabe Gain:, 2.5, 2, 25,, 5/ n Separate Power Suppy: 2.7 to 36 n Operating Current: 6µA n Sense Input Current (

More information

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES 12-Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES Buffered True Rail-to-Rail Voltage Output Maximum DNL Error:.5LSB 12-Bit Resolution Supply Operation: 3V to 5V Output Swings from V to V REF

More information

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S FEATURES Differential or Single-Ended Gain Block: ± (db) db Bandwidth: MHz Slew Rate: /µs Low Cost Output Current: ±ma Settling Time: ns to.% CMRR at MHz: db Differential Gain Error:.% Differential Phase

More information

LTC1798 Series Micropower Low Dropout References FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LTC1798 Series Micropower Low Dropout References FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION Micropower Low Dropout References FEATURES n mv Max Dropout at ma Output Current n µa Typical Quiescent Current n.% Max Initial Accuracy n No Output Capacitor Required n Output Sources ma, Sinks ma n ppm/

More information

LT6203X High Temperature 175 C Dual 100MHz, Rail-to-Rail Input and Output, Ultralow 1.9nV/ Hz Noise, Low Power Op Amp Description

LT6203X High Temperature 175 C Dual 100MHz, Rail-to-Rail Input and Output, Ultralow 1.9nV/ Hz Noise, Low Power Op Amp Description Features Appications LT3X High Temperature 7 C Dua MHz, Rai-to-Rai Input and Output, Utraow.9nV/ Hz Noise, Low Power Op Amp Description Extreme High Temperature Operation: C to 7 C Low Noise Votage:.9nV/

More information

LT6011/LT6012 Dual/Quad 135µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp. Applications. Typical Application

LT6011/LT6012 Dual/Quad 135µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp. Applications. Typical Application Features n 6 Maximum Offset Votage n 3 Maximum Input Bias Current n 3µA Suppy Current per Ampifier n Rai-to-Rai Output Swing n 2dB Minimum Votage Gain, V S = ±V n./ C Maximum V OS Drift n 4nV/ Hz Input

More information

LT1880 SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT1880 SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Offset Votage: 15μV Max n Input Bias Current: 9 Max n Offset Votage Drift: 1.2μV/ C Max n Rai-to-Rai Output Swing n Operates with Singe or Spit Suppies n Open-Loop Votage Gain: 1 Miion Min n

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

DESCRIPTIO FEATURES APPLICATIO S. LTC1063 DC Accurate, Clock-Tunable 5th Order Butterworth Lowpass Filter TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LTC1063 DC Accurate, Clock-Tunable 5th Order Butterworth Lowpass Filter TYPICAL APPLICATIO FEATRES Clock-Tunable Cutoff Frequency mv DC Offset (Typical) db CMRR (Typical) Internal or External Clock µv RMS Clock Feedthrough : Clock-to-Cutoff Frequency Ratio 9µV RMS Total Wideband Noise.% THD

More information

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application Features n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns ( Step, ) n Specified at and Supplies n Low Distortion, 9.dB for khz, P-P n Maximum Input Offset oltage:

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

DESCRIPTIO FEATURES. LTC1065 DC Accurate, Clock-Tunable Linear Phase 5th Order Bessel Lowpass Filter APPLICATIO S TYPICAL APPLICATIO

DESCRIPTIO FEATURES. LTC1065 DC Accurate, Clock-Tunable Linear Phase 5th Order Bessel Lowpass Filter APPLICATIO S TYPICAL APPLICATIO FEATRES Clock-Tunable Cutoff Frequency mv DC Offset (Typical) db CMR (Typical) Internal or External Clock µv RMS Clock Feedthrough : Clock-to-Cutoff Frequency Ratio µv RMS Total Wideband Noise.% Noise

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns (μ, Step) n Specifi ed at and Supplies n Maximum Input Offset oltage: μ n Low Distortion: 9. for khz,

More information

LT1366/LT1367 LT1368/LT1369 Dual and Quad Precision Rail-to-Rail Input and Output Op Amps. Applications. Typical Application

LT1366/LT1367 LT1368/LT1369 Dual and Quad Precision Rail-to-Rail Input and Output Op Amps. Applications. Typical Application Features n Input Common Mode Range Incudes Both Rais n Output Swings Rai-to-Rai n Low Input Offset otage: 5 n High Common Mode Rejection Ratio: 9 n High A OL : >/ Driving k Load n Low Input Bias Current:

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

LT1366/LT1367 LT1368/LT1369 Dual and Quad Precision Rail-to-Rail Input and Output Op Amps. Applications. Typical Application

LT1366/LT1367 LT1368/LT1369 Dual and Quad Precision Rail-to-Rail Input and Output Op Amps. Applications. Typical Application Features n Input Common Mode Range Incudes Both Rais n Output Swings Rai-to-Rai n Low Input Offset otage: 5 n High Common Mode Rejection Ratio: 9 n High A OL : >/ Driving k Load n Low Input Bias Current:

More information

HA MHz Video Buffer. Features. Applications. Ordering Information. Pinouts. Data Sheet February 6, 2006 FN2924.8

HA MHz Video Buffer. Features. Applications. Ordering Information. Pinouts. Data Sheet February 6, 2006 FN2924.8 HA-533 Data Sheet February 6, 26 FN2924.8 25MHz Video Buffer The HA-533 is a unity gain monolithic IC designed for any application requiring a fast, wideband buffer. Featuring a bandwidth of 25MHz and

More information

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S 5MHz, 5V/µs, A V Operational Amplifier FEATRES Gain-Bandwidth: 5MHz Gain of Stable Slew Rate: 5V/µs Input Noise Voltage: nv/ Hz C-Load TM Op Amp Drives Capacitive Loads Maximum Input Offset Voltage: µv

More information

LTC6702 Tiny Micropower, Low Voltage Dual Comparators DESCRIPTION FEATURES

LTC6702 Tiny Micropower, Low Voltage Dual Comparators DESCRIPTION FEATURES LTC672 Tiny Micropower, Low Votage Dua Comparators FEATURES n Low Suppy Operation:.7V Minimum n Low Suppy Current: 3μA/Comparator Maximum n Propagation Deay: ns Maximum ( C to 2 C) n 3.2MHz Togge Frequency

More information

LTC6652 Precision Low Drift Low Noise Buffered Reference FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LTC6652 Precision Low Drift Low Noise Buffered Reference FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION FEATURES n Low Drift: A Grade 5ppm/ C Max B Grade ppm/ C Max n High Accuracy: A Grade ±.5%, B Grade ±.% n Low Noise: ppm p-p (.Hz to Hz) n Fuy Specifi ed Over 4 C to 5 C Temperature Range n Sinks and Sources

More information

LT1815/LT1816/LT1817 Single/Dual/Quad 220MHz, 1500V/µs Operational Amplifiers with Programmable Supply Current FEATURES DESCRIPTION

LT1815/LT1816/LT1817 Single/Dual/Quad 220MHz, 1500V/µs Operational Amplifiers with Programmable Supply Current FEATURES DESCRIPTION LT8/LT86/LT87 Singe/Dua/Quad 22, /µs Operationa Ampifiers with Programmabe Suppy Current FEATURES DESCRIPTION n 22 Gain-Bandwidth Product n /μs Sew Rate n 6. Suppy Current per Ampifi er n Programmabe Current

More information

LT3014B 20mA, 3V to 80V Low Dropout Micropower Linear Regulator FEATURES

LT3014B 20mA, 3V to 80V Low Dropout Micropower Linear Regulator FEATURES LT314B 2mA, 3V to 8V Low Dropout Micropower Linear Reguator FEATURES n Wide Input Votage Range: 3V to 8V n Low Quiescent Current: 7µA n Low Dropout Votage: 35 n Output Current: 2mA n LT314BHV Survives

More information

LT1490A/LT1491A Dual/Quad Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LT1490A/LT1491A Dual/Quad Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION FEATURES DESCRIPTION n Low Input Offset otage: 5 Max n Output Swings to m Max from n Rai-to-Rai Input and Output n Micropower: 5/Ampifier Max n Over-The-Top Input Common Mode Range Extends Above, Independent

More information

HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.045Ω

HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.045Ω Utra Low On-Resistance N-Channe MOSFET SOT-23 Footprint Low Profie (

More information

LT1206 TA mA/60MHz Current Feedback Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT1206 TA mA/60MHz Current Feedback Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION LT26 2mA/6MHz Current Feedback Amplifi er FEATURES 2mA Minimum Output Drive Current 6MHz Bandwidth, A V = 2, R L = Ω 9V/µs Slew Rate, A V = 2, R L = Ω.2% Differential Gain, A V = 2, R L = Ω.7 Differential

More information

6 db Differential Line Receiver

6 db Differential Line Receiver a FEATURES High Common-Mode Rejection DC: 9 db typ Hz: 9 db typ khz: 8 db typ Ultralow THD:.% typ @ khz Fast Slew Rate: V/ s typ Wide Bandwidth: 7 MHz typ (G = /) Two Gain Levels Available: G = / or Low

More information

781/ /

781/ / 781/329-47 781/461-3113 SPECIFICATIONS DC SPECIFICATIONS J Parameter Min Typ Max Units SAMPLING CHARACTERISTICS Acquisition Time 5 V Step to.1% 25 375 ns 5 V Step to.1% 2 35 ns Small Signal Bandwidth 15

More information

High Speed BUFFER AMPLIFIER

High Speed BUFFER AMPLIFIER High Speed BUFFER AMPLIFIER FEATURES WIDE BANDWIDTH: MHz HIGH SLEW RATE: V/µs HIGH OUTPUT CURRENT: 1mA LOW OFFSET VOLTAGE: 1.mV REPLACES HA-33 IMPROVED PERFORMANCE/PRICE: LH33, LTC11, HS APPLICATIONS OP

More information

LTC2053/LTC2053-SYNC Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier. Applications. Typical Application

LTC2053/LTC2053-SYNC Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier. Applications. Typical Application Features n CMRR Independent of Gain n Maximum Offset Votage: µv n Maximum Offset Votage Drift: nv/ C n Rai-to-Rai Input n Rai-to-Rai Output n -Resistor Programmabe Gain n Suppy Operation:.V to ±.V n Typica

More information

LTC1863/LTC /16-Bit, 8-Channel 200ksps ADCs FEATURES DESCRIPTION APPLICATIONS BLOCK DIAGRAM

LTC1863/LTC /16-Bit, 8-Channel 200ksps ADCs FEATURES DESCRIPTION APPLICATIONS BLOCK DIAGRAM 12-/16-Bit, 8-Chae 2ksps ADCs FEATURES APPLICATIONS Sampe Rate: 2ksps 16-Bit No Missing Codes and ±2LSB Max INL 8-Chae Mutipexer with: Singe Ended or Differentia Inputs and Unipoar or Bipoar Conversion

More information

LTC /LTC V Microprocessor Supervisory Circuits APPLICATIONS TYPICAL APPLICATION

LTC /LTC V Microprocessor Supervisory Circuits APPLICATIONS TYPICAL APPLICATION Microprocessor Supervisory Circuits FEATURES n Guaranteed Reset Assertion at = 1 n Pin Compatibe with LTC69/LTC695 for Systems n 2μA Typica Suppy Current n Fast (ns Typ) Onboard Gating of RAM Chip Enabe

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S FEATURES 9MHz Gain Bandwidth, f = khz Maximum Input Offset Voltage: 5µV Settling Time: 9ns (A V =, 5µV, V Step) V/µs Slew Rate Low Distortion: 96.5dB for khz, V P-P Maximum Input Offset Voltage Drift:

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

FEATURES n Low Noise Voltage: 0.95nV/ Hz (100kHz) n Gain Bandwidth Product: LT6200/LT MHz A V = 1 LT MHz A V 5 LT GHz A V 10

FEATURES n Low Noise Voltage: 0.95nV/ Hz (100kHz) n Gain Bandwidth Product: LT6200/LT MHz A V = 1 LT MHz A V 5 LT GHz A V 10 FEATURES n Low Noise Votage:.9nV/ Hz (khz) n Gain Bandwidth Product: LT6/LT6 6MHz A V = LT6- MHz A V LT6-.6GHz A V n Low Distortion: at MHz, R L = Ω n Dua LT6 in Tiny DFN Package n Input Common Mode Range

More information

V CC OUT MAX9945 IN+ V EE

V CC OUT MAX9945 IN+ V EE 19-4398; Rev ; 2/9 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs

More information

Dual, Current Feedback Low Power Op Amp AD812

Dual, Current Feedback Low Power Op Amp AD812 a FEATURES Two Video Amplifiers in One -Lead SOIC Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = ): Gain Flatness. db to MHz.% Differential Gain Error. Differential

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

MF6 6th Order Switched Capacitor Butterworth Lowpass Filter

MF6 6th Order Switched Capacitor Butterworth Lowpass Filter MF6 6th Order Switched Capacitor Butterworth Lowpass Filter General Description The MF6 is a versatile easy to use, precision 6th order Butterworth lowpass active filter. Switched capacitor techniques

More information

MIC7300 A17. General Description. Features. Applications. Ordering Information. Pin Configurations. Functional Configuration.

MIC7300 A17. General Description. Features. Applications. Ordering Information. Pin Configurations. Functional Configuration. MIC7300 High-Output Drive Rail-to-Rail Op Amp General Description The MIC7300 is a high-performance CMOS operational amplifier featuring rail-to-rail input and output with strong output drive capability.

More information

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±12 V at VS = ±15 V Gain range.1 to 1 Operating temperature range: 4 C to ±85 C Supply voltage

More information

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

HEXFET Power MOSFET V DSS = 100V. R DS(on) = 23mΩ I D = 57A

HEXFET Power MOSFET V DSS = 100V. R DS(on) = 23mΩ I D = 57A Advanced Process Technoogy Utra Low On-Resistance Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fuy Avaanche Rated Lead-Free Description Advanced HEXFET Power MOSFETs from Internationa

More information

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES FUNCTIONAL BLOCK DIAGRAM High common-mode input voltage range ±20 V at VS = ±5 V Gain range 0. to 00 Operating temperature

More information

FEATURES TYPICAL APPLICATIO. LT µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp with Shutdown DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp with Shutdown DESCRIPTIO APPLICATIO S FEATURES 3µV Maximum Offset Voltage pa Maximum Input Bias Current 3µA Supply Current Rail-to-Rail Output Swing µa Supply Current in Shutdown db Minimum Voltage Gain (V S = ±V).µV/ C Maximum V OS Drift

More information

TEMP. PKG. -IN 1 16 S/H CONTROL PART NUMBER RANGE

TEMP. PKG. -IN 1 16 S/H CONTROL PART NUMBER RANGE DATASHEET 7ns, Low Distortion, Precision Sample and Hold Amplifier FN59 Rev 5. The combines the advantages of two sample/ hold architectures to create a new generation of monolithic sample/hold. High amplitude,

More information

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm µdfn Package

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm µdfn Package 19-3929; Rev 2; 6/7 EVAUATION KIT AVAIABE 128-Tap, Nonvolatile, inear-taper Digital General Description The nonvolatile, single, linear-taper, digital potentiometer performs the function of a mechanical

More information

HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.045Ω

HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.045Ω Utra Low On-Resistance N-Channe MOSFET SOT-23 Footprint Low Profie (

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp MIC915 Dual 135MHz Low-Power Op Amp General Description The MIC915 is a high-speed, unity-gain stable operational amplifier. It provides a gain-bandwidth product of 135MHz with a very low, 2.4mA supply

More information

Distributed by: www.jameco.com -8-83-4242 The content and copyrights of the attached material are the property of its owner. FEATRES Regulates While Sourcing or Sinking Current Provides Termination for

More information

LMF90 4th-Order Elliptic Notch Filter

LMF90 4th-Order Elliptic Notch Filter LMF90 4th-Order Elliptic Notch Filter General Description The LMF90 is a fourth-order elliptic notch (band-reject) filter based on switched-capacitor techniques No external components are needed to define

More information

LTC Dual Matched 14MHz Filter with Low Noise, Low Distortion Differential Amplifi er FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LTC Dual Matched 14MHz Filter with Low Noise, Low Distortion Differential Amplifi er FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION FEATURES n Two Matched MHz nd Order Lowpass Fiters with Differentia Ampifi ers Gain Match: ±. Max, Passband Phase Match: ±. Max, Passband Singe-Ended or Differentia Inputs n < c Distortion in Passband

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±2 V at VS = ± V Gain range. to Operating temperature range: 4 C to ±8 C Supply voltage range

More information

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION FEATRES 3MHz Gain Bandwidth V/µs Slew Rate 5µA Supply Current Available in Tiny MSOP Package C-Load TM Op Amp Drives All Capacitive Loads nity-gain Stable Power Saving Shutdown Feature Maximum Input Offset

More information

HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.045Ω

HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.045Ω Utra Low On-Resistance N-Channe MOSFET SOT-23 Footprint Low Profie (

More information

MIC7122. General Description. Features. Applications. Ordering Information. Pin Configuration. Pin Description. Rail-to-Rail Dual Op Amp

MIC7122. General Description. Features. Applications. Ordering Information. Pin Configuration. Pin Description. Rail-to-Rail Dual Op Amp MIC722 Rail-to-Rail Dual Op Amp General Description The MIC722 is a dual high-performance CMOS operational amplifier featuring rail-to-rail inputs and outputs. The input common-mode range extends beyond

More information

Precision, High-Bandwidth Op Amp

Precision, High-Bandwidth Op Amp EVALUATION KIT AVAILABLE MAX9622 General Description The MAX9622 op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage

More information

LT6658 Precision Dual Output, High Current, Low Noise, Voltage Reference. Applications. Typical Application

LT6658 Precision Dual Output, High Current, Low Noise, Voltage Reference. Applications. Typical Application Features Dua Output Tracking Reference Each Output Configurabe to 6 Output : ma Source/2mA Sink Output 2: ma Source/2mA Sink Low Drift: A-Grade: ppm/ C Max B-Grade: 2ppm/ C Max High Accuracy: A-Grade:

More information

Distributed by: www.jameco.com --3-44 The content and copyrights of the attached material are the property of its owner. MHz, 3nV/ Hz, A V Operational Amplifier FEATRES Gain-Bandwidth: MHz Gain of Stable

More information

High Common-Mode Voltage Difference Amplifier AD629

High Common-Mode Voltage Difference Amplifier AD629 a FEATURES Improved Replacement for: INAP and INAKU V Common-Mode Voltage Range Input Protection to: V Common Mode V Differential Wide Power Supply Range (. V to V) V Output Swing on V Supply ma Max Power

More information

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

DESCRIPTIO TYPICAL APPLICATIO. LT1803/LT1804/LT1805 Single/Dual/Quad 100V/µs, 85MHz, Rail-to-Rail Input and Output Op Amps FEATURES APPLICATIO S

DESCRIPTIO TYPICAL APPLICATIO. LT1803/LT1804/LT1805 Single/Dual/Quad 100V/µs, 85MHz, Rail-to-Rail Input and Output Op Amps FEATURES APPLICATIO S FEATURES Slew Rate: V/µs Gain Bandwidth Product: 8MHz Input Common Mode Range Includes Both Rails Output Swings Rail-to-Rail Low Quiescent Current: 3mA Max per Amplifier Large Output Current: 42mA Voltage

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

DATASHEET HA Features. Applications. Ordering Information. Pinouts. 250MHz Video Buffer. FN2924 Rev 8.00 Page 1 of 12.

DATASHEET HA Features. Applications. Ordering Information. Pinouts. 250MHz Video Buffer. FN2924 Rev 8.00 Page 1 of 12. 25MHz Video Buffer NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at -888-INTERSIL or www.intersil.com/tsc DATASHEET FN2924 Rev 8. The HA-533 is a unity

More information

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT Very Low Noise, Differential Amplifier and 10MHz Lowpass Filter

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT Very Low Noise, Differential Amplifier and 10MHz Lowpass Filter LT- ery Low Noise, Differential Amplifier and MHz Lowpass Filter FEATURES Programmable Differential Gain via Two External Resistors Adjustable Output Common Mode oltage Operates and Specified with,, ±

More information

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276 Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD87 FEATURES Wide input range Rugged input overvoltage protection Low supply current: μa maximum Low power dissipation:. mw at VS

More information

Micropower, SC-70, 100mA CMOS LDO Regulator GND 4 V OUT

Micropower, SC-70, 100mA CMOS LDO Regulator GND 4 V OUT SP62/SP624 Micropower, SC-7, ma CMOS DO Regulator FEATURES Tiny 5-pin SC-7 Package Guaranteed ma Output 2.5% Output Voltage Accuracy ow Dropout Voltage: 25 mv at ma ow Quiescent Current: 65 µa ow Ground

More information

LT mA, 3V to 80V Low Dropout Micropower Linear Regulator DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT mA, 3V to 80V Low Dropout Micropower Linear Regulator DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Wide Input Votage Range: 3V to 8V n Low Quiescent Current: 7µA n Low Dropout Votage: 35mV n Output Current: 2mA n LT31HV Survives 1V Transients (2ms) n No Protection Diodes Needed n Adjustabe

More information

Quad Audio Switch REV. B BLOCK DIAGRAM OF ONE SWITCH CHANNEL

Quad Audio Switch REV. B BLOCK DIAGRAM OF ONE SWITCH CHANNEL a FEATURES CIickless Bilateral Audio Switching Four SPST Switches in a -Pin Package Ultralow THD+N:.8% @ khz ( V rms, R L = k ) Low Charge Injection: 3 pc typ High OFF Isolation: db typ (R L = k @ khz)

More information

Self-Contained Audio Preamplifier SSM2019

Self-Contained Audio Preamplifier SSM2019 a FEATURES Excellent Noise Performance:. nv/ Hz or.5 db Noise Figure Ultra-low THD:

More information

LT1057/LT1058 Dual and Quad, JFET Input Precision High Speed Op Amps DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT1057/LT1058 Dual and Quad, JFET Input Precision High Speed Op Amps DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION LT/ Dua and Quad, JFET Input Precision High Speed Op Amps FEATURES n V/µs Sew Rate: V/µs Min n MHz Gain-Bandwidth Product n Fast Setting Time:.µs to.% n µv Offset Votage (LT): µv Max n µv Offset Votage

More information

Single Supply, Low Power Triple Video Amplifier AD813

Single Supply, Low Power Triple Video Amplifier AD813 a FEATURES Low Cost Three Video Amplifiers in One Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = 15 ) Gain Flatness.1 db to 5 MHz.3% Differential Gain Error.6

More information

V CC OUT MAX9945 IN+ V EE

V CC OUT MAX9945 IN+ V EE 19-4398; Rev 1; 12/ 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs

More information

IRF1010NPbF. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 11mΩ I D = 85A

IRF1010NPbF. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 11mΩ I D = 85A Advanced Process Technoogy Utra Low On-Resistance Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fuy Avaanche Rated Lead-Free Description Advanced HEXFET Power MOSFETs from Internationa

More information

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES Preliminary Technical Data 0 MHz, 20 V/μs, G =, 0, 00, 000 i CMOS Programmable Gain Instrumentation Amplifier FEATURES Small package: 0-lead MSOP Programmable gains:, 0, 00, 000 Digital or pin-programmable

More information

IRF1010EPbF. HEXFET Power MOSFET V DSS = 60V. R DS(on) = 12mΩ I D = 84A

IRF1010EPbF. HEXFET Power MOSFET V DSS = 60V. R DS(on) = 12mΩ I D = 84A Advanced Process Technoogy Utra Low On-Resistance Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fuy Avaanche Rated Lead-Free Description Advanced HEXFET Power MOSFETs from Internationa

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps FEATRES Rail-to-Rail Input and Output 475µV Max V OS from V + to V Gain-Bandwidth Product: MHz Slew Rate: 6V/µs Low Supply Current

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

APPLICATIONS DESCRIPTION TYPICAL APPLICATION. LT1675/LT MHz, Triple and Single RGB Multiplexer with Current Feedback Amplifiers FEATURES

APPLICATIONS DESCRIPTION TYPICAL APPLICATION. LT1675/LT MHz, Triple and Single RGB Multiplexer with Current Feedback Amplifiers FEATURES MHz, Triple and Single RGB Multiplexer with Current Feedback Amplifiers FEATURES MHz Pixel Switching 3dB Bandwidth: MHz Small 6-Pin SSOP Package Channel Switching Time:.ns Expandable to Larger Arrays Drives

More information