High efficiency high step-up DC/DC converters a review
|
|
- Katrina Morton
- 1 years ago
- Views:
Transcription
1 BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 4, 2011 DOI: /v POWER ELECTRONICS High efficiency high step-up DC/DC converters a review A. TOMASZUK and A. KRUPA Faculty of Electrical Engineering, Department of Automatic Control Engineering and Electronics, Bialystok University of Technology, 45d Wiejska St Bialystok, Poland Abstract. The renewable energy sources such as PV modules, fuel cells or energy storage devices such as super capacitors or batteries deliver output voltage at the range of around 12 to 70 VDC. In order to connect them to the grid the voltage level should be adjusted according to the electrical network standards in the countries. First of all the voltage should be stepped up to sufficient level at which the DC/AC conversion can be performed to AC mains voltage requirements. Overall performance of the renewable energy system is then affected by the efficiency of step-up DC/DC converters, which are the key parts in the system power chain. This review is focused on high efficiency step-up DC/DC converters with high voltage gain. The differentiation is based on the presence or lack of galvanic isolation. A comparison and discussion of different DC/DC step-up topologies will be performed across number of parameters and presented in this paper. Key words: high efficiency, high step-up, DC/DC converter, renewable energy. 1. Introduction Global energy consumption tends to grow continuously. To satisfy the demand for electric power against a background of the depletion of conventional, fossil resources the renewable energy sources are becoming more popular [1, 2]. According to the researches [3, 4] despite its fluctuating nature and weather dependency the capacity of renewable resources can satisfy overall global demand for energy. The international investments and R&D efforts are focused on reduction of renewable energy production cost. Thanks to these activities the contribution of renewable energy continuously increases in overall energy consumption budgets (Fig. 1), [2]. Fig. 1. Cumulative PV installed capacity 2005 to 2010 (source: EPIA: High gain DC/DC converters are the key part of renewable energy systems (Figs. 2, 3). The designing of high gain DC/DC converters is imposed by severe demands. Designers face contradictory constraints such as low cost and high reliability. First of all the inverters must be safe in terms of further maintenance as well as in relation to the environment. Since the renewable sources can be utilized for many years the converter designers cope with long time reliability issues [3 5]. The main problem for the operator is to maximize the energy yield and to minimize the maintenance. For these reasons the converters must be distinguished by high efficiency over wide input power and voltage range. High voltage gain (usually tenfold) is required to produce sufficient DC bus voltage level. Additionally they should operate at wide temperature range expressing low EMC emission and be immune to environmental conditions. Such demands create severe constraints for DC/DC boost converter designing which are key parts in terms of efficiency of overall renewable energy systems [6 32]. Although the European standard EN discusses mainly the power quality issues, it influences designing of all power supply equipment [1]. Since single phase converter can be connected to low-voltage AC public mains distribution system (grid) it should be complied with that standard. The EN gives the constraints as to the maximum power which can be drawn from (or delivered to) the gird. According to that standard the electric and electronic equipment can draw up to 16 A of current from the mains thus its maximum rated power is at the level of 3.7 kw (i.e. 230 V of AC line voltage times 16 A). That is why this investigation will be focused on the area of DC/DC boost converters with the maximum power of 3.7 kw. To complete the standard discussion it has to be mentioned that IEEE 1547 [3], IEC and NEC 690 summarize all interconnection related issues, such as power quality, operation, safety considerations, testing, and maintenance of the grid to renewable energy system connection. The majority of commonly used renewable energy sources deliver electric power at the output voltage range of 12 VDC to 70 VDC. To adjust it to the electric grid standards that voltage should be boosted to the system DC Bus voltage of 475
2 A. Tomaszuk and A. Krupa around 200 VDC or 400 VDC depending on the grid requirements (Fig. 3). Power conditioning can be accomplished by high efficiency high voltage gain step-up DC/DC converters. In this article two major topology types of step-up converters will be reviewed. However topologies presented in this paper can work with all low voltage renewable energy sources the review will cover the converters working with PV (photovoltaic) systems. In the past one centralized inverter was responsible for connecting several modules or other renewable energy sources into the grid. The PV modules were divided into series connections, so called strings. Each module was generating high voltage sufficient to avoid further amplification Fig. 2a. At the moment, string technology is dominating. Centralized technology has been replaced and two standards are currently used. The first technology comprises separate strings attached to one DC/AC inverter connected directly to the grid Fig. 2b. The sub-type of string technology is called multistring technology Fig. 2c with separate DC/DC converter that supports a panel or panel structure. Then DC/DC converter is attached to the DC/AC inverter which is coupled to the grid (1-or 3-phase). The string inverter is nothing but the reduced version of the technology seen on (Fig. 2a) one string corresponds to a single inverter. While technologies (2b), (2c) and (2d) are currently used, a better choice seems to be a multi-string (2c). Since every string can be controlled individually thus the solar panels can be utilized more efficiently. This provides greater flexibility and facilitates the control and occasional replacement of individual panels. On Fig. 2d we can see the synthesis of the inverter and PV module into one electrical device. This technology has only one PV module so individual Maximum Power Point Tracking (MPPT) system for each inverter is needed [14]. Expandability of the system and opportunity to become a plug-and-play device is undoubtedly part of the benefits. There are no bypass or string diodes necessary. Each panel in this structure has its own MPPT controller which maximizes the power production. Module structure Fig. 2d. has one major disadvantage which is low efficiency due to high voltage amplification, so the price per watt is the largest of the four topologies discussed. This review therefore highlights the highest efficiency step-up converter topologies. Fig. 3. The example of PV inverter with integrated DC/DC step-up converter Evolution of PV inverters is described in detail in the literature [28]. 2. Comparison of DC-DC boost converters Fig. 2. Historical overview of PV inverters after Ref Transformerless solutions. In order to satisfy the stringent requirements with performance in renewable energy gridconnected power applications, many researchers concentrate on how to realize high voltage gain step-up, low cost and high efficiency single-stage converters [12]. The brief comparison of available single-stage transformerless converters will be presented below. They provide the voltage gain up to 20 using coupled inductors or switched capacitor technique. Usually the efficiencies of high voltage gain step-up converters are at the levels over 90% at sub kilowatt or single kilowatt powers. To increase the overall efficiency of converter soft switching technique [8] as well as active clamped circuit [12] introduction may be considered. Boost converter. The single phase single switch boost converter is a basic step-up topology [32] (Fig. 4). The voltage gain theoretically is infinite when duty cycle reaches 1. But switch turn on period becomes long as the duty cycle (D) increases causing conduction losses to increase. The power rating of single switch boost converter is limited to switch rating. In order to obtain higher gain several boost converters can be cascaded at the expense of efficiency decrease. Interleaved parallel topology is the solution to increase the power and reduce input current ripple allowing lower power rated switches to be used. 476 Bull. Pol. Ac.: Tech. 59(4) 2011
3 High efficiency high step-up DC/DC converters a review Fig. 4. Single cell boost converter Interleaved boost converters. The simplicity is major advantage of that topology (Fig. 5) [6]. Since interleaved boost converter cells share the input current the input current ripples are small which increases the life of PV modules. Moreover single cell feeds only the fraction of total input current and the duty cycle of a single switch does not exceed Smaller inductors can be used along with the power rating of switches and diodes decrease. When driving sequentially switches are switched on and off one by one enabling low output voltage ripples. The diode reverse recovery current flow when the diodes are switched off causes electromagnetic noise (EMI). To overcome that problem discontinuous inductor current driving mode should be used. In the other hand continuous inductor current mode demonstrates lower input current ripples as well as lower switching losses. The main disadvantage of that topology is relatively low voltage gain, usually not higher than 2. To improve voltage gain interleaved structures can be mixed with transformers [27] or the inductors can be coupled [10, 11, 16]. Coupled inductor structures. Coupled inductor can serve as a transformer to enlarge the voltage gain in nonisolated DC/DC converters in proportion to winding turnsratio (Fig. 7). These converters can easily achieve high voltage gain using low R DS on switches working at relatively low level of voltage. The switch driving scheme is simple as the converter usually utilizes single switch. Common mode conducted EMI is reduced due to balanced switching. To reduce passive component size coupled inductors can be integrated into single magnetic core [12]. Fig. 7. Coupled inductor step-up converter Boost, flyback or charge-pump topologies or the combinations of any of them (Fig. 8) can be utilized achieving the efficiency better than 95% [9, 10, 15]. However, the voltage gain can be easily achieved by turns-ratio of coupled inductors the leakage energy induces high voltage stress and switching losses. Thanks to the active clamp circuit used the leakage energy can be recycled. The other benefits of presented circuit are wide input voltage range, high voltage gain and low cost simultaneously. Fig. 5. Four cell interleaved boost converter Soft switching boost converters. This high performance converter (Fig. 6), [7] has slightly improved voltage gain in comparison to single switch boost converter. It operates in ZVS (Zero Voltage Switching) mode dramatically reducing switching losses thus achieving better efficiency. The driving sequence is bit more complex, but both switches operate at the same ground potential thus additional separation at driver side is needless. The disadvantage of that topology is the complexity of the circuit, because of 5 more components addition including a switch and an extra inductor. Fig. 6. Soft switching boost converter Fig. 8. Coupled Inductor Step-up Converter with Charge Pump At kilowatt power level the power dissipation within the components becomes an important issue especially in case of inductive components. Interleaved solutions can tackle that problem as the input current is shared between the cells. Interleaved Step-up Converter with Voltage Multiplier Cell. In presented topology (Fig. 9) high voltage gain can be achieved without extreme duty cycles adjusting the turnsratio of two same coupled inductors [11]. That straightforward topology utilizes current sharing technique at the input allowing the use of smaller inductors and lower power rated switches. The voltage multiplier cell composed of two diodes, capacitor and secondary windings of coupled inductors is inserted in conventional interleaved boost converter structure. Low R DS on switches can be used to improve the converter performance. Presented circuit works in turn-on ZCS (Zero Current Switching) mode which reduces switch losses as well as EMI noise. Bull. Pol. Ac.: Tech. 59(4)
4 A. Tomaszuk and A. Krupa Fig. 9. Interleaved step-up converter with voltage multiplier cell Isolated boost converter with coupled inductors. Proposed topology satisfies high efficiency and high voltage gain in combination with isolation requirements (Fig. 10). In order to share large input current and conduction losses parallel circuit is adopted. Output inductors are connected in series to double an output voltage gain. reduction of overall complexity of the converter. The other advantage is the possibility to work at higher temperatures than inductor based counterparts. Recently there has been a new converter developed [13] which meets the requirements of high efficiency and ability to work in high temperatures (Fig. 11). The voltage gain is accomplished by voltage multiplier cells that operate basing on switching capacitor principle. The penalty is relatively big number of switches, which is in this case 12. Moreover, due to capacitive load the switches are exposed to high current stress. Fig. 10. Coupled inductors isolated boost converter The switching losses are reduced and efficiency improved by applying active clamp technique. ZVS soft switching mode is implemented leveraging the efficiency [16]. Because of the inductor used in the other hand there is the limitation as to the maximum operating temperature above which the magnetic core looses its magnetic features. Noninductive solutions. Avoiding the transformers brings obvious benefits of size, cost and weight reduction thus the Fig. 11. Multilevel switched capacitor DC/DC Converter The possibility to use low voltage rated switches and the lack of inductors make it possible to achieve the compact and cost effective solution. Transformerless converter comparison. Table 1 presents the brief comparison of chosen transformerless solutions with performance proven in hardware prototype. Highlighted are the best efficiencies and voltage gains reported there. Topology Figure 0 [%] P MAX [kw] Gain [V/V] Table 1 Comparison of transformerless converter hardware prototypes f S [khz] V I [VDC] V BUS [VDC] Voltage Gain Formula No of Switches 1 [6] (5) n D 1 [7] (6) to (D + D 2 ) 1 [8] α(f r, I I, V O ) 1 + (n + 1) D [9] (8) to n D [10] (6) to n + 1 [11] (9) to [13] (11) [15] (7) to [16] (10) to n Ô ( 2 ) + 32 n 2 α(f S, I O ) + () 4 2 No of Diodes 478 Bull. Pol. Ac.: Tech. 59(4) 2011
5 High efficiency high step-up DC/DC converters a review 2.2. DC/DC boost converters with transformer isolation. Transformers have significant influence on efficiency of whole energy conditioning system and hence on the quality of energy supplied to the network. The absence of transformer in the system may result in injecting DC currents into AC current, which may disturb the operation of electric grid distribution transformers due to saturation of magnetic cores [17]. Moreover the absence of active elimination of unwanted DC currents injected to the grid can lead to distribution transformers damage and whole electric grid failure. According to the electrical regulations and standards which are in place in some countries the galvanic isolation of the PV system may be necessary or not. It is performed by the transformers of high or low frequency. Galvanic isolation can be accomplished by either line frequency transformer or a high frequency one. Both are shown in Fig. 12. The grid frequency transformer (50/60 Hz) is not often used because of high price, and low power efficiency. Fig. 12. Types of transformer isolation The comparison of transformer isolated step-up converters is presented below. For the reasons listed above it is focused on the topologies with high frequency transformers. Basic isolated step-up converter topologies. Among power electronics converters with galvanic isolation there are several topologies, which are the starting point for further investigations and designing more advanced systems. Topologies such as flyback, forward or push-pull, and their variants have been described in detail in the literature [18]. The voltage step-up obtained in these systems is high, unfortunately, does not go hand in hand with efficiency. Only by applying ZVS, ZCS soft switching techniques, these systems can achieve a satisfactory efficiency. The active clamp step-up DC/DC converter [19], (Fig. 13) has the advantages of both flyback and forward converters. It regulates the DC link voltage providing high voltage conversion ratio. The active clamp high step-up DC/DC converter unlike the conventional flyback and forward DC/DC converters uses the active-clamp circuit both in ON-state and OFFstate so the input power is delivered to the output in both these states. Fig. 13. Active clamp step-up converter Both positive and negative input voltages are injected to the resonant tank and thanks to the voltage doubler the transformer s winding ratio can be decreased. This feature allows providing only half of the distribution line voltage on the transformer s secondary winding. Thanks to the resonance of leakage inductance of the transformer and capacitors paralleled with the rectifier diodes the reverse-recovery loss of these diodes can be eliminated which, combined with an active-clamp circuit for soft switching of the MOSFET transistors ensures high system efficiency. The high step-up resonant push-pull converter [32] depicted in Fig. 14 has advantages of a conventional current-fed push-pull converter such as low input current stress, highvoltage conversion ratio and low conduction loss of switches. The voltage doubler rectifier doubles conversion ratio and the voltage stress on rectifying diodes is reduced to half of voltage on transformer secondary winding. Thanks to LC resonance output diodes can commutate softly without the reverse recovery problem. Mentioned features together with high efficiency and low current ripples of the inductor make that converter appropriate to use in photovoltaic systems. Fig. 14. Resonant push-pull converter Although the efficiency of the system seems to be the most important parameter distinguishing the converter in many cases, the designers also strive to simplify the control system. Example of this is high step-up ZVS current-fed DC/DC converter [20] shown in Fig. 15. Apart from ZVS condition of the main and auxiliary active switches (snubber) only one PWM control signal is connected to the pair of transistor gates. The pairs consisting of a main transistor in bridge leg and the auxiliary one from other leg are alternated in conduction during one switching period. Bull. Pol. Ac.: Tech. 59(4)
6 A. Tomaszuk and A. Krupa Fig. 17. Resonant half-bridge dual converter Fig. 15. High step-up zero-voltage switching current-fed converter Bridge and half-bridge resonant converters. Another part of the review focuses on half-bridge and full- bridge isolated converter topologies. These systems are characterized with high efficiency associated with the resonant softswitching techniques. ZCS condition in half-bridge resonant converter [21] seen in Fig. 16 is achieved by connecting capacitor C r, in series with transformer leakage inductance forming a resonant tank which can be tuned to the switching frequency by choosing appropriate capacitance. Apart from that high efficiency is achieved by the use of capacitive snubbers connected in parallel with the MOSFET switches, so they can be switched in zero voltage and nearly zero current. The diodes of the rectifier are switched at zero current. As the switching losses are negligible only the conduction losses dominate. Current fed multi-resonant converter (CFMRC) [24] consists of a current fed two inductor half-bridge structure followed by transformer with multi resonant tank and an output full bridge rectifier. However the secondary winding losses of the transformer which go together with high turns-ratio may limit the efficiency. Even though that converter demonstrates the number of advantages such as high voltage gain, low input ripple current and ZCS of bridge diodes the improved CFMRC topology was further developed [23]. In CFMRC seen in Fig. 18 voltage doubler was implemented to reduce the turns-ratio of transformer. Therefore the cost of the transformer can be reduced. Fig. 18. Current fed multi-resonant converter Fig. 16. Resonant half-bridge converter Figure 17 shows ZVS two-inductor boost converter [22] for low voltage, high current DC to DC conversion. During turn off of the transistor the parallel capacitor C 1, C 2 resonates with inductor L r thus ZV turn off is achieved. Consequently turning on of the transistor occurs when voltage of the capacitor equals zero. Interesting is the fact that the resonant inductance L r and capacitors C 1, C 2 may be physical or they can be replaced by the transformer leakage inductance and the MOSFET switch parasitic capacitances. The resonant half bridge dual converter can work in continuous and discontinuous mode depending on whether the current of boost circuit is continuous or not. Despite the high voltage gain, system efficiency is still high. Consequence of this topology is its multi-resonance variant with voltage doubler. During switching period the overlapping of the signals driving two main switches is present resulting in resonance between leakage inductor L r and resonant capacitor C p. The ZCS condition of the half bridge transistors is achieved and voltage spikes within converter are reduced. The power losses in semiconductor components are reduced also by ZCS of voltage doubler diodes. They are turned off at zero current in full load condition and during lighter load the primary current is limited. The common ground gate driving is also undoubted advantage of half-bridge current-fed converters. The LLCC Series-Parallel Resonant Converter (SPRC) [26] is depicted in Fig. 19. In this topology square wave generator (full bridge inverter) is linked with half bridge rectifier by high step-up high-frequency transformer. Due to resonance bridge MOSFET transistors are zerovoltage-switched and voltage doubler diodes are turned off at zero current. Mentioned features as well as half-bridge diode snubbers contribute to high efficiency of the system. There is a possibility to use series-parallel resonance feature both in single as well as in the three-phase converters through variable number of inverter and rectifier legs. 480 Bull. Pol. Ac.: Tech. 59(4) 2011
7 High efficiency high step-up DC/DC converters a review Fig. 19. Series-Parallel Resonant Converter Reaching high efficiency half-bridge and full-bridge converter topologies seem to merge two desirable characteristics: high voltage gain and high efficiency at a relatively small number of semiconductor components. Two transformer converter. In topologies presented so far the isolation was provided by one transformer, which simultaneously ensures the voltage gain. In high step-up bridge converter seen in Fig. 20 two transformers are utilized to double the voltage conversion ratio [26]. Distributed magnetic components not only lower the power losses and thermal stresses of the converter but also reduce transformer turnsratio. Resonance of the leakage inductances of the transformers and series connected capacitors in the voltage doubler makes the output diodes to be turned off at zero-current. This two series-resonant circuits and active clamping of the switching transistor ensure high efficiency. Fig. 20. High step-up two transformer converter Non-isolated high step-up converter with built in transformer. A non-isolated high step-up converter with built-in transformer topology is derived from the isolated interleaved boost converter with full-bridge rectifier [27]. Despite the presence of the transformer this converter has no galvanic isolation (Fig. 21). As it was outlined earlier most of the transformerless topologies should work with a very high duty cycle to achieve high voltage conversion ratio. The isolation-to-nonisolation transformation method proposed here results in wide voltage regulation and thus the high voltage output ratings can be achieved without extreme duty cycle. The leakage of the transformer reduces reverse recovery current of the bridge diodes which together with energy recycling of an active clamp and MOSFET soft switching performance effect in high efficiency and high voltage gain. Fig. 21. Non-isolated high step-up converter Comparison of transformer converters. Table 2 presents the comparison of chosen transformer based step-up converters. 3. Summary Different step-up DC/DC topologies have been presented in Table 1 and Table 2. However the solution chosen by the designer depends on particular design constraints there is a need to determine the most robust and best performance topology. High efficiency of step-up DC/DC converters can be achieved by decreasing duty cycle (lower conduction losses) and reducing voltage stress on switches (cheaper and lower R DS on switches) applying soft switching technique (minimizing switching losses) and utilizing active clamp circuits (recycling the energy stored in parasitic inductances). Below there are a few distinguishing solutions presented. Table 2 Comparison of DC/DC converters with transformer isolation hardware prototypes 0 P Topology Figure MAX Gain f S V I V BUS No of No of Voltage Gain Formula [%] [kw] [V/V] [khz] [VDC] [VDC] Switches Diodes n [19] (13) to n [32] (14) to n [20] (15) D() [21] (16) [22] (17) [23] (18) [25] (19) to n [26] (20) n + 1 [27] (21) to Bull. Pol. Ac.: Tech. 59(4)
8 A. Tomaszuk and A. Krupa Half-bridge and full-bridge step-up topologies based on low R DS on MOSFET transistors with soft switching technique implemented demonstrate the highest efficiency. LLCC converter [25] is a good example of converters that merges the requirements of high efficiency and voltage gain. CFMRC is another distinguishing high performance topology [23] and (Fig. 18) where a multi-resonant circuit eliminates parasitic parameters of transformer assuring high voltage gain. The presence of voltage doubler allows using lower turns-ratio transformers thus reduces overall cost of the system. Other advantage of that topology is that both switches work on low-side. In [26] even though two transformers are in use the voltage gain and efficiency are still excellent. Topology [27] however is not isolated presents interesting utilization of transformer which ensures high voltage gain but the interleaved driving scheme gives the possibility for the switches to work with low duty cycle. Basic topology such as push-pull converter with additional snubbers and voltage doubler [32] can be competitive solution among the other more advanced topologies. It s worth mentioning of topology presented in [20] which is distinguished by simple driving scheme as it utilizes only one switch. From presented in Table 1 topologies two types of them [4, 10, 11] are competitive candidates for high voltage gain and high efficiency applications. Coupled inductor topology [9] and [10] provides compact design with the features rarely to be found in other topologies. First of all the energy stored in parasitic leakage inductance of coupled inductors is recycled there. Avoiding the use of electrolytic capacitors improves the reliability of that solution. Active clamp circuit decreases voltage stress on the switch. And finally only one switch at a low-side is needed so driving scheme is simple. Topology [11] is compact and robust solution. The leakage energy is recycled utilizing passive clamp. Due to the voltage multiplier cell switch voltage stress is reduced and voltage gain extended. Input current ripples are low and input current sharing is obtained due to interleaved input structure allowing lower duty cycle to be used. 1 kw experimental example [11] proves the performance of that topology. Acknowledgements. This work was supported by the Ministry of Science and Higher Education in Poland as a research project No N Appendix A. Symbols n transformer or coupled inductor turns-ratio, D duty cycle, α function followed by its parameters in brackets, f r resonant frequency, f s switching frequency, V o output voltage DC, I o output current, V I input voltage DC, I I input current, η efficiency, P MAX DC/DC converted rated power, V BUS stepped-up DC bus system voltage. REFERENCES [1] F. Blaabjerg, F. Iov, T. Kerekes, and R. Teodorescu, Trends in power electronics and control of renewable energy systems, 14th Int. Power Electronics and Motion Control Conf. (EPE/PEMC) 1, K-1 K-19 (2010). [2] EPIA, Global market outlook for photovoltaics until 2013, Eur. Photovoltaic Industry Association 1, CD-ROM (2010). [3] IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std 1547, CD-ROM (2003). [4] J.H.R. Enslin, The role of power electronics and storage to increase penetration levels of renewable power, Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century, IEEE 1 2, CD-ROM (2008). [5] M. Calais and V.G. Agelidis, Multilevel converters for singlephase grid connected photovoltaic systems-an overview, Int. Sympos. on Indust. Electronics (ISIE) IEEE 1, (1996). [6] C. Chunliu, W. Chenghua, and H. Feng, Research of an interleaved boost converter with four interleaved boost convert cells, Asia Pacific Conf. on Postgraduate Research in Microelectronics & Electronics (PrimeAsia) IEEE 1, (2009). [7] S.-H. Park, S.-R. Park, J.-S. Yu, Y.-C. Jung, and C.-Y. Won, Analysis and design of a soft-switching boost converter with an hi-bridge auxiliary resonant circuit, Trans. on Power Electronics IEEE 1, (2010). [8] E.S. da Silva, L. dos Reis Barbosa, J.B. Vieira Jr., L.C. de Freitas, and V.J. Farias, An improved boost PWM soft-singleswitched converter with low voltage and current stresses, Trans. on Indust. Electronics IEEE 1, (2001). [9] R.J. Wai and R.Y. Duan, High-efficiency DC/DC converter with high voltage gain, IEEE Proc. Electric Power Applications IEEE 1, (2005). [10] W. Yu, C. Hutchens, J.-S. Lai, J. Zhang, G. Lisi, A. Djabbari, G. Smith, and T. Hegarty, High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications, Energy Conversion Congress and Exposition (ECCE) IEEE 1, (2009). [11] W. Li, Y. Zhao, Y. Deng, and X. He, Interleaved converter with voltage multiplier cell for high step-up and high-efficiency conversion, Trans. on Power Electronics IEEE 1, (2010). [12] W. Li, X. Li, Y. Deng, J. Liu, and X. He, A review of nonisolated high step-up dc/dc converters in renewable energy applications, 24th Annual Applied Power Electronics Conf. and Exposition (APEC) IEEE 1, (2009). [13] W. Qian, J.G. Cintroěn-Rivera, F.Z. Peng, and D. Cao, A multilevel DC/DC converter with high voltage gain and reduced component rating and count, 26 Th Annual Applied Power Electronics Conf. and Exposition (Apec), IEEE 1, (2011). [14] T. Esram and P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, Trans. on Energy Conversion IEEE 1, (2007). 482 Bull. Pol. Ac.: Tech. 59(4) 2011
9 High efficiency high step-up DC/DC converters a review [15] Q. Zhao and F.C. Lee, High-efficiency, high step-up DC- DC converters, Trans. on Power Electronics IEEE 1, (2003). [16] Y. Zhao, W. Li, Y. Deng, and X. He, Analysis, design, and experimentation of an isolated ZVT boost converter with coupled inductors, Trans. on Power Electronics IEEE 1, (2011). [17] L. Gertmar P. Karlsson, and O. Semuelsson, On DC Injection to AC grids from distributed generation, Eur. Conf. on Power Electronics and Applications (EPE) IEEE 1, CD-ROM (2005). [18] Q. Li and P. Wolfs, A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations, Trans. on Power Electronics IEEE 1, (2008). [19] J.-M. Kwon B.-H. Kwon, and K.-H. Nam, High-efficiency module-integrated photovoltaic power conditioning system, IET J. IEEE 1, (2009). [20] M. Delshad and H. Farzanehfard, High step-up zero-voltage switching current-fed isolated pulse width modulation DC DC converter, IET J. IEEE 1, (2008). [21] A. Itoher, T. Meyer, and A. Nagel, A new panel-integratable inverter concept for grid-connected photovoltaic systems, Int. Symp. on Indust. Electronics (ISIE) IEEE 1, (1996). [22] Q. Li and P. Wolfs, An analysis of a resonant half bridge dual converter operating in continuous and discontinuous modes, 33rd Annual Power Electronics Specialists Conf. (PESC) IEEE 1, (2002). [23] D. Li, B. Liu, B. Yuan, X. Yang, J. Duan, and J. Zhai, A high step-up current fed multi-resonant converter with output voltage doubler, 26th Applied Power Electronics Conf. and Exposition (APEC) IEEE 1, CD-ROM (2011). [24] B. Yuan, X. Yang, and D. Li, A high efficiency current fed multi-resonant converter for high step-up power conversion in renewable energy harvesting, Energy Conversion Congress and Exposition (ECCE) IEEE 1, (2010). [25] C. P. Dick, F. K. Titiz, and R.W.De Doncker, A high-efficient llcc series-parallel resonant converter, 25th Annual Applied Power Electronics Conf. and Exposition (APEC) IEEE 1, (2010). [26] W. Choi, S. Kim, S. Park, K. Kim, and Y. Lim, High stepup dc/dc converter with high efficiency for photovoltaic module integrated converter systems, 31st Int. Telecomm. Energy Conf. (INTELEC) IEEE 1, CD-ROM (2009). [27] W. Li, W. Li, M. Ma, Y. Deng, and X. He, A non-isolated high step-up converter with built-in transformer derived from its isolated counterpart, 36th Annual Conf. on IEEE Indust. Electronics Society (IECON) IEEE 1, (2010). [28] F. Blaabjerg, S.B. Kjaer, and J.K. Pedersen, A review of single-phase grid-connected inverters for photovoltaic modules, Trans. on Indus. Applications IEEE 1, (2005). [29] R. Smolenski, Selected conducted electromagnetic interference issues in distributed power systems, Bull. Pol. Ac.: Tech. 57 (4), (2009). [30] S. Pirog, R. Stala, and L. Stawiarski, Power electronic converter for photovoltaic systems with the use of FPGA-based real-time modeling of single phase grid-connected systems Bull. Pol. Ac.: Tech. 57 (4), (2009). [31] K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters, John Wiley & Sons, London, [32] E.-H. Kim and B.-H. Kwon, High step-up resonant push pull converter with high efficiency, IET J, IEEE 1, (2009). Bull. Pol. Ac.: Tech. 59(4)
A PV Based High Boost Step-Up DC DC Converter
A PV Based High Boost Step-Up DC DC Converter K.Umadevi 1, S.Sankarananth 2, R.Arun Kumar 3 Assistant Professor, Department of Electrical and Electronics Engineering, Excel college of Engineering and Technology,
High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit
RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,
A Single Switch High Gain Coupled Inductor Boost Converter
International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Volume: 04 Issue: 02 Feb -2017 www.irjet.net p-issn: 2395-0072 A Single Switch High Gain Coupled Inductor Boost Converter
Push-pull resonant DC-DC isolated converter
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 61, No. 4, 2013 DOI: 10.2478/bpasts-2013-0082 Dedicated to Professor M.P. Kaźmierkowski on the occasion of his 70th birthday Push-pull
A High Efficient DC-DC Converter with Soft Switching for Stress Reduction
A High Efficient DC-DC Converter with Soft Switching for Stress Reduction S.K.Anuja, R.Satheesh Kumar M.E. Student, M.E. Lecturer Sona College of Technology Salem, TamilNadu, India ABSTRACT Soft switching
A DC DC Boost Converter for Photovoltaic Application
International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, Volume 8, Issue 8 (September 2013), PP. 47-52 A DC DC Boost Converter for Photovoltaic Application G.kranthi
Modeling and Simulation of a Novel Three-phase Multilevel Inverter with Induction Motor Drive
Modeling and Simulation of a Novel Three-phase Multilevel Inverter with Induction Motor Drive Srinivas Chikkam 1, Bhukya Ranganaik 2 1 M.Tech Student, Dept. of EEE, BVC Engineering College, Andhra Pradesh,
CHAPTER 3 DC-DC CONVERTER TOPOLOGIES
47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro
A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR
A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR Josna Ann Joseph 1, S.Bella Rose 2 PG Scholar, Karpaga Vinayaga College of Engineering and Technology, Chennai 1 Professor, Karpaga Vinayaga
TYPICALLY, a two-stage microinverter includes (a) the
3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu
High Step-Up DC-DC Converter for Distributed Generation System
Research Journal of Applied Sciences, Engineering and Technology 6(13): 2352-2358, 213 ISSN: 24-7459; e-issn: 24-7467 Maxwell Scientific Organization, 213 Submitted: December 3, 212 Accepted: February
A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation
638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.
A Three-Port Photovoltaic (PV) Micro- Inverter with Power Decoupling Capability
A Three-Port Photovoltaic (PV) Micro- Inverter with Power Decoupling Capability Souhib Harb, Haibing Hu, Nasser Kutkut, Issa Batarseh, Z. John Shen Department of Electrical Engineering and Computer Science
IMPROVED TRANSFORMERLESS INVERTER WITH COMMON-MODE LEAKAGE CURRENT ELIMINATION FOR A PHOTOVOLTAIC GRID-CONNECTED POWER SYSTEM
IMPROVED TRANSFORMERLESS INVERTER WITH COMMON-MODE LEAKAGE CURRENT ELIMINATION FOR A PHOTOVOLTAIC GRID-CONNECTED POWER SYSTEM M. JYOTHSNA M.Tech EPS KSRM COLLEGE OF ENGINEERING, Affiliated to JNTUA, Kadapa,
An Interleaved Flyback Inverter for Residential Photovoltaic Applications
An Interleaved Flyback Inverter for Residential Photovoltaic Applications Bunyamin Tamyurek and Bilgehan Kirimer ESKISEHIR OSMANGAZI UNIVERSITY Electrical and Electronics Engineering Department Eskisehir,
Photovoltaic Based Single Phase Grid Connected Transformer Less Inverter
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 2 (January 2014), PP.90-99 Photovoltaic Based Single Phase Grid Connected Transformer
Chapter 6 Soft-Switching dc-dc Converters Outlines
Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch
Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application
Vol.3, Issue.1, Jan-Feb. 2013 pp-530-537 ISSN: 2249-6645 Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application B.D.S Prasad, 1 Dr. M Siva Kumar 2 1 EEE, Gudlavalleru Engineering
Comparison Of DC-DC Boost Converters Using SIMULINK
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 34-42 www.iosrjournals.org Comparison Of DC-DC Boost Converters Using SIMULINK Anupa Ann Alex
HIGH RELIABILITY AND EFFICIENCY OF GRID-CONNECTED PHOTOVOLTAIC SYSTEMS USING SINGLE-PHASETRANSFORMERLESS INVERTER. Abstract
HIGH RELIABILITY AND EFFICIENCY OF GRID-CONNECTED PHOTOVOLTAIC SYSTEMS USING SINGLE-PHASETRANSFORMERLESS INVERTER E.RAVI TEJA 1, B.PRUDVI KUMAR REDDY 2 1 Assistant Professor, Dept of EEE, Dr.K.V Subba
Grid Connected Photovoltaic Micro Inverter System using Repetitive Current Control and MPPT for Full and Half Bridge Converters
Ch.Chandrasekhar et. al. / International Journal of New Technologies in Science and Engineering Vol. 2, Issue 6,Dec 2015, ISSN 2349-0780 Grid Connected Photovoltaic Micro Inverter System using Repetitive
PhD Dissertation Defense Presentation
PhD Dissertation Defense Presentation Wednesday, September 11th, 2013 9:30am 11:00am C103 Engineering Research Complex THEORETICAL ANALYSIS AND REDUCTION TECHNIQUES OF DC CAPACITOR RIPPLES AND REQUIREMENTS
Survey on non-isolated high-voltage step-up dc dc topologies based on the boost converter
IET Power Electronics Review Article Survey on non-isolated high-voltage step-up dc dc topologies based on the boost converter ISSN 1755-4535 Received on 29th July 2014 Revised on 27th March 2015 Accepted
AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR
AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR Naci GENC 1, Ires ISKENDER 1 1 Gazi University, Faculty of Engineering and Architecture, Department of Electrical
Webpage: Volume 3, Issue IV, April 2015 ISSN
CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER FED DC DRIVE Manju Dabas Kadyan 1, Jyoti Dabass 2 1 Rattan Institute of Technology & Management, Department of Electrical Engg., Palwal-121102, Haryana,
A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation
IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 745 A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation René Torrico-Bascopé, Member, IEEE, and
Closed Loop Controlled ZV ZCS Interleaved Boost Converter System
Closed Loop Controlled ZV ZCS Interleaved Boost Converter System M.L.Bharathi, and Dr.D.Kirubakaran Abstract This paper deals with modeling and simulation of closed loop controlled interleaved boost converter.
An Asymmetrical Dc-Dc Converter with a High Voltage Gain
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) An Asymmetrical Dc-Dc Converter with a High Voltage Gain Sarah Ben Abraham 1, Ms. Riya Scaria, 1, Assistant Professor Abstract:
Non-Isolated Three Stage Interleaved Boost Converter For High Voltage Gain
Non-Isolated Three Stage Interleaved Boost Converter For High Voltage Gain Arundathi Ravi, A.Ramesh Babu Abstract: In this paper, three stage high step-up interleaved boost converter with voltage multiplier
CLOSED LOOP CONTROL OF HIGH STEP-UP DC/DC CONVERTER BASED ON COUPLED INDUCTOR AND SWITCHED-CAPACITOR
International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 9 Dec-215 www.irjet.net p-issn: 2395-72 CLOSED LOOP CONTROL OF HIGH STEP-UP DC/DC CONVERTER BASED ON
Resonant Inverter. Fig. 1. Different architecture of pv inverters.
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 50-58 www.iosrjournals.org Resonant Inverter Ms.Kavitha Paul 1, Mrs.Gomathy S 2 1 (EEE Department
Three-phase soft-switching inverter with coupled inductors, experimental results
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 4, 2011 DOI: 10.2478/v10175-011-0065-3 POWER ELECTRONICS Three-phase soft-switching inverter with coupled inductors, experimental
K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.
A Closed Loop for Soft Switched PWM ZVS Full Bridge DC - DC Converter S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP-517583, India. Abstract: - This paper propose soft switched PWM ZVS full bridge DC to
Power Electronic Converters for Grid-connected Photovoltaic Systems. Aravinda Perera Ezekiel Muyembe Jacobus Brink Muhammad Shahbaz
Power Electronic Converters for Grid-connected Photovoltaic Systems Aravinda Perera Ezekiel Muyembe Jacobus Brink Muhammad Shahbaz October 29, 2010 Contents 1 Introduction 1 1.1 Motivation.................................
Step-Up Dc/Dc Converter for Distributed Power Generation Systems
Step-Up Dc/Dc Converter for Distributed Power Generation Systems T. Karthikeyan, B.Gowdhami and. Sathishkumar M.E. 1 PG Student, 2 PG Student and 3 Assitant professor EEE Mailam Engineering College, Villupuram,
Chapter 2 LITERATURE REVIEW
28 Chapter 2 LITERATURE REVIEW S. No. Name of the Sub-Title Page No. 2.1 Introduction 29 2.2 Literature 29 2.3 Conclusion 33 29 2.1 Introduction This chapter deals with the literature reviewed for different
A high Step-up DC-DC Converter employs Cascading Cockcroft- Walton Voltage Multiplier by omitting Step-up Transformer 1 A.Subrahmanyam, 2 A.
A high Step-up DC-DC Converter employs Cascading Cockcroft- Walton Voltage Multiplier by omitting Step-up Transformer 1 A.Subrahmanyam, 2 A.Tejasri M.Tech(Research scholar),assistant Professor,Dept. of
Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems
Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems T.
High Gain DC-DC ConverterUsing Coupled Inductor and Voltage Doubler
Volume 1, Issue 1, July-September, 2013, pp. 99-103, IASTER 2013 www.iaster.com, Online: 2347-5439, Print: 2348-0025 ABSTRACT High Gain DC-DC ConverterUsing Coupled Inductor and Voltage Doubler 1 Girish
SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START
SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT S WITH SOFT START Abstract: In this paper a new solution to implement and control a single-stage electronic ballast based
ZCS-PWM Converter for Reducing Switching Losses
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses
A New Soft Switching ZCS and ZVS High Frequency Boost Converter with an HI-Bridge Auxiliary Resonant Circuit to Drive a BLDC Motor
International Journal of Scientific and Research Publications, Volume 4, Issue 7, July 2014 1 A New Soft Switching ZCS and ZVS High Frequency Boost Converter with an HI-Bridge Auxiliary Resonant Circuit
Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller
Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller 1 SapnaPatil, 2 T.B.Dayananda 1,2 Department of EEE, Dr. AIT, Bengaluru. Abstract High efficiency
Analysis Design and Implementation of Snubber Less Current- Fed Bidirectional Full Bridge Dc-Dc Converter
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. V (May Jun. 2014), PP 44-52 Analysis Design and Implementation of Snubber
MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS
MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS Shivaraja L M.Tech (Energy Systems Engineering) NMAM Institute of Technology Nitte, Udupi-574110 Shivaraj.mvjce@gmail.com ABSTRACT
ANALYSIS OF PWM STRATEGIES FOR Z-SOURCE CASCADED MULTILEVEL INVERTER FOR PHOTOVOLTAIC APPLICATIONS
U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 2, 215 ISSN 2286-354 ANALYSIS OF PWM STRATEGIES FOR Z-SOURCE CASCADED MULTILEVEL INVERTER FOR PHOTOVOLTAIC APPLICATIONS Ramalingam SEYEZHAI* 1 MultiLevel Inverters
Multilevel inverter with cuk converter for grid connected solar PV system
I J C T A, 9(5), 2016, pp. 215-221 International Science Press Multilevel inverter with cuk converter for grid connected solar PV system S. Dellibabu 1 and R. Rajathy 2 ABSTRACT A Multilevel Inverter with
A Color LED Driver Implemented by the Active Clamp Forward Converter
A Color LED Driver Implemented by the Active Clamp Forward Converter C. H. Chang, H. L. Cheng, C. A. Cheng, E. C. Chang * Power Electronics Laboratory, Department of Electrical Engineering I-Shou University,
Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell
IEEE TRANSACTIONS ON POWER ELECTRONICS 1 Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell Zhe Zhang, Member, IEEE, Ole C. Thomsen, Member,
Performance Evaluation of Isolated Bi-directional DC/DC Converters with Buck, Boost operations
Performance Evaluation of Isolated Bi-directional DC/DC Converters with Buck, Boost operations MD.Munawaruddin Quadri *1, Dr.A.Srujana *2 #1 PG student, Power Electronics Department, SVEC, Suryapet, Nalgonda,
Bidirectional DC-DC Converter Using Resonant PWM Technique
Bidirectional DC-DC Converter Using Resonant PWM Technique Neethu P Uday, Smitha Paulose, Sini Paul PG Scholar, EEE Department, Mar Athanasius College of Engineering, Kothamangalam, neethuudayanan@gmail.com,
Grid connected Boost-Full-Bridge photovoltaic microinverter system using Phase Opposition Disposition technique and Maximum Power Point Tracking
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. II (Jan. 2014), PP 47-55 Grid connected Boost-Full-Bridge photovoltaic microinverter
Analysis, Design and Implementation of Snubberless Bidirectional Current Fed Full Bridge Voltage Doubler
Analysis, Design and Implementation of Snubberless Bidirectional Current Fed Full Bridge Voltage Doubler Vinay.K.V 1, Raju Yanamshetti 2, Ravindra.Y.N 3 PG Student [Power Electronics], Dept. of EEE, PDA
Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology
264 Journal of Power Electronics, Vol. 11, No. 3, May 2011 JPE 11-3-3 Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology Tao Meng, Hongqi Ben,
A New Soft Switching PWM DC-DC Converter with Auxiliary Circuit and Centre-Tapped Transformer Rectifier
Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 241 247 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 1- Electronic and Electrical
CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES
Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection
Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage
Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,
ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER
ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER Kanimozhi G. and Sreedevi V. T. School of Electrical Engineering, VIT University, Chennai, India E-Mail: kanimozhi.g@vit.ac.in ABSTRACT This paper presents
DC-to-DC Converter for Low Voltage Solar Applications
Proceedings of the th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 3-, 7 4 DC-to-DC Converter for Low Voltage Solar Applications K. H. EDELMOSER, H. ERTL Institute
COOPERATIVE PATENT CLASSIFICATION
CPC H H02 COOPERATIVE PATENT CLASSIFICATION ELECTRICITY (NOTE omitted) GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER H02M APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN
Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network
Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network T. Hari Hara Kumar 1, P. Aravind 2 Final Year B.Tech, Dept. of EEE, K L University, Guntur, AP, India 1 Final Year B.Tech, Dept.
Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter
Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.
Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2
IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications
THE flyback converter represents a widespread topology,
632 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 3, JUNE 2004 Active Voltage Clamp in Flyback Converters Operating in CCM Mode Under Wide Load Variation Nikolaos P. Papanikolaou and Emmanuel
A New 98% Soft-Switching Full-Bridge DC-DC Converter based on Secondary-Side LC Resonant Principle for PV Generation Systems
IEEE PEDS 211, Singapore, 5-8 December 211 A New 98% Soft-Switching Full-Bridge DC-DC Converter based on Secondary-Side LC Resonant Principle for PV Generation Systems Daisuke Tsukiyama*, Yasuhiko Fukuda*,
Implementation of high-power Bidirectional dc-dc Converter for Aerospace Applications
Implementation of high-power Bidirectional dc-dc Converter for Aerospace Applications Sabarinadh.P 1,Barnabas 2 and Paul glady.j 3 1,2,3 Electrical and Electronics Engineering, Sathyabama University, Jeppiaar
A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs
A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs Y. Nishida* 1, J. Miniboeck* 2, S. D. Round* 2 and J. W. Kolar* 2 * 1 Nihon University Energy Electronics
A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances
IEEE PEDS 2011, Singapore, 5-8 December 2011 A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances N. Sanajit* and A. Jangwanitlert ** * Department of Electrical Power Engineering, Faculty
Harmonic Filtering in Variable Speed Drives
Harmonic Filtering in Variable Speed Drives Luca Dalessandro, Xiaoya Tan, Andrzej Pietkiewicz, Martin Wüthrich, Norbert Häberle Schaffner EMV AG, Nordstrasse 11, 4542 Luterbach, Switzerland luca.dalessandro@schaffner.com
High Step-Up DC-DC Converter
International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 349-163 Volume 1 Issue 7 (August 14) High Step-Up DC-DC Converter Praful Vijay Nandankar. Department of Electrical Engineering.
Solar Inverter with Multi Stage Filter and Battery Buffering
Solar Inverter with Multi Stage Filter and Battery Buffering K. H. Edelmoser, Institute of Electrical Drives and Machines Technical University Vienna Gusshausstr. 27-29, A-1040 Wien AUSTRIA kedel@pop.tuwien.ac.at
A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme
A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao, Liang Guo, Shaojun Xie College of Automation Engineering,Nanjing University of Aeronautics and Astronautics
POWER FACTOR CORRECTION USING AN IMPROVED SINGLE-STAGE SINGLE- SWITCH (S 4 ) TECHNIQUE
International Journal of Power Systems and Microelectronics (IJMPS) Vol. 1, Issue 1, Jun 2016, 45-52 TJPRC Pvt. Ltd POWER FACTOR CORRECTION USING AN IMPROVED SINGLE-STAGE SINGLE- SWITCH (S 4 ) TECHNIQUE
Assessment and Evaluation of Single Phase Grid Linked Transformer less Inverter with PV Input
Assessment and Evaluation of Single Phase Grid Linked Transformer less Inverter with PV Input Y.Vishnu Vardhan M.Tech (Power Electronics) Department of EEE, Prasad Engineering College. Abstract: Single-phase
Improvements of LLC Resonant Converter
Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING St. JOHNS COLLEGE OF ENGINEERING & TECHNOLOGY YERRAKOTA, YEMMIGANUR, KURNOOL, (A.P.
GRID CONNECTED PHOTOVOLTAIC APPLICATION BY USING MODELING OF MODULAR MULTILEVEL INVERTER WITH MAXIMUM POWER POINT TRACKING #1S.SIVA RANJINI, PG STUDENT #2A.MALLI KARJUNA PRASAD, ASSOCIATE PROFFESOR DEPARTMENT
Lossless DC DC Boost Converter With High Voltage Gain For PV Technology
Lossless DC DC Boost Converter With High Voltage Gain For PV Technology Falah Al Hassan*, Vladimir L. Lanin *Electrical and Electronics Engineering Department, Eastern Mediterranean University, Famagusta,
WITH THE development of high brightness light emitting
1410 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 Quasi-Active Power Factor Correction Circuit for HB LED Driver Kening Zhou, Jian Guo Zhang, Subbaraya Yuvarajan, Senior Member, IEEE,
A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor
A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor Mehdi Narimani, Member, IEEE, Gerry Moschopoulos, Senior Member, IEEE mnariman@uwo.ca, gmoschop@uwo.ca Abstract A new
DESIGN AND ANALYSIS OF FLYBACK MICRO INVERTER FOR INTEGRATION OF FUEL CELLS WITH SINGLE PHASE GRID
International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 2017, pp. 220 228, Article ID: IJMET_08_11_025 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11
DESIGN OF MODIFIED SINGLE INPUT MULTIPLE OUTPUT DC-DC CONVERTER
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,
CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR
105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line
Transformer less Grid Connected Inverter with Leakage Current Elimination
Transformer less Grid Connected Inverter with Leakage Current Elimination 1 SOWMIYA.N, 2 JANAKI.N 1,2 Power Electronics and Drives, Vels School of Engineering, Department of Electrical & Electronics, Tamil
A Solar Powered Water Pumping System with Efficient Storage and Energy Management
A Solar Powered Water Pumping System with Efficient Storage and Energy Management Neena Thampi, Nisha R Abstract This paper presents a standalone solar powered water pumping system with efficient storage
466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter
466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998 A Single-Switch Flyback-Current-Fed DC DC Converter Peter Mantovanelli Barbosa, Member, IEEE, and Ivo Barbi, Senior Member, IEEE Abstract
Grid-Connected Boost-Half-Bridge Photovoltaic Micro inverter System Using Repetitive Current Control and Maximum Power Point Tracking
Grid-Connected Boost-Half-Bridge Photovoltaic Micro inverter System Using Repetitive Current Control and Maximum Power Point Tracking G.Krithiga#1 J.Sanjeevikumar#2 P.Senthilkumar#3 G.Manivannan#4 Assistant
Soft Switched Transformer Less Single Phase Inverter for Photovoltaic Systems
IJCTA, 9(36), 2016, pp. 261-268 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 261 Soft Switched Transformer Less Single Phase Inverter
An Advanced Power Conditioning Unit for Power Management in Grid Connected PV Systems
An Advanced Power Conditioning Unit for Power Management in Grid Connected PV Systems P. Sudheer, A. Immanuel and Ch. Chengaiah 1 Department of EEE, S. V. U. College of Engineering, S. V. University, Tirupati,
Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System
Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System Patil S.N. School of Electrical and Electronics. Engg. Singhania University, Rajashthan, India Dr. R. C. Prasad 2 Prof.
Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System
Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.
A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter
A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center
In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion
Massachusetts Institute of Technology Laboratory for Electromagnetic and Electronic Systems In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion David J. Perreault Princeton
SINGLE PHASE INVERTER WITH HF TRANSFORMER FOR PV APPLICATION
SINGLE PHASE INVERTER WITH HF TRANSFORMER FOR PV APPLICATION S.S.Revathi, Mr.S.Kamalakkannan PG Scholar, Asso.Prof Karpaga Vinayaga College of Engineering & Technology, Chennai, India ssr68.elam@gmail.com
SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR
SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR Praveen Sharma (1), Irfan Khan (2), Neha Verma (3),Bhoopendra Singh (4) (1), (2), (4) Electrical
Modelling of Five-Level Inverter for Renewable Power Source
RESEARCH ARTICLE OPEN ACCESS Modelling of Five-Level Inverter for Renewable Power Source G Vivekananda*, Saraswathi Nagla**, Dr. A Srinivasula Reddy *Assistant Professor, Electrical and Computer Department,
SOFT-SWITCHING INTERLEAVED BOOST CONVERTER WITH HIGHT VOLTAGE GAIN
SOFT-SWITCHING INTERLEAVED BOOST CONVERTER WITH HIGHT VOLTAGE GAIN Ranoyca N. A. L. Silva 1, Gustavo A. L. Henn 2, Paulo P. Praça 3, Raphael A. da Câmara 4, Demercil S. Oliveira Jr 5, Luiz H. S. C. Barreto
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM technique
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM technique K. Raghava Reddy 1, M. Mahesh 2, M. Vijaya Kumar 3 1Student, Dept. of Electrical & Electronics Engineering, JNTUA,
A Novel Three-Phase Interleaved Isolated Boot Converter With Active Clamp For Fuel Cells
A Novel Three-Phase Interleaved Isolated Boot Converter With Active Clamp For Fuel Cells Md.Karima* 1 ; Shareef Shaik 2 & Dr. Abdul Ahad 3 1 M.tech (P&ID) Student Department Of EEE, Nimra College Of Engineering
Elements of Power Electronics PART II: Topologies and applications
Elements of Power Electronics PART II: Topologies and applications Fabrice Frébel (fabrice.frebel@ulg.ac.be) September 2 st, 207 PART II: Topologies and applications Chapter 6: Converter Circuits Applications
DC-DC booster with cascaded connected multilevel voltage multiplier applied to transformer less converter for high power applications
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 5 Ver. III (Sep Oct. 2014), PP 73-78 DC-DC booster with cascaded connected multilevel