Continuous Wave Magneto Optic Kerr

Size: px
Start display at page:

Download "Continuous Wave Magneto Optic Kerr"

Transcription

1 Indian Institute of Science Education and Research, Kolkata Advanced Experimental Physics (PH4201) Semester 8 Laboratory Report Continuous Wave Magneto Optic Kerr Effect Submitted by: Roopam K. Gupta 11MS072 B.S - M.S Department of Physical Sciences Under the Guidance of: Dr. Chiranjib Mitra IISER Kolkata

2 Abstract In this report, three experimental setups, designed to study the magnetization characteristics of Magnetic samples by utilizing the Magneto-Optical Kerr Effect(MOKE) are constructed. Linear methods are investigated as a means of studying static magnetization properties of the sample. Data are taken for single layer thin films.

3 0.1 Introduction MOKE can be categorized by the direction of the magnetization vector with respect to the reflecting surface and the plane of incidence. Polar MOKE When the magnetization vector is perpendicular to the reflection surface and parallel to the plane of incidence, the effect is called the polar Kerr effect. To simplify the analysis, near normal incidence is usually employed when doing experiments in the polar geometry. Longitudinal MOKE In the longitudinal effect, the magnetization vector is parallel to both the reflection surface and the plane of incidence. The longitudinal setup involves light reflected at an angle from the reflection surface and not normal to it, as above in the polar MOKE case. In the same manner, linearly polarized light incident on the surface becomes elliptically polarized, with the change in polarization directly proportional to the component of magnetization that is parallel to the reflection surface and parallel to the plane of incidence. This elliptically polarized light to first-order has two perpendicular E vectors, namely the standard Fresnel amplitude coefficient of reflection r and the Kerr coefficient k. The Kerr coefficient is typically much smaller than the coefficient of reflection. Transversal MOKE When the magnetization is perpendicular to the plane of incidence and parallel to the surface it is said to be in the transverse configuration. In this case, the incident light is also not normal to the reflection surface but instead of measuring the polarity of the light after reflection, the reflectivity r is measured. This change in reflectivity is proportional to the component of magnetization that is perpendicular to the plane of incidence and parallel to the surface, as above. If the magnetization component points to the right of the incident plane, as viewed from the source, then the Kerr vector adds to the Fresnel amplitude vector and the intensity of the reflected light is r + k 2. On the other hand, if the component of magnetization component points to the left of the incident plane as viewed from the source, the Kerr vector subtracts from the Fresnel amplitude and the reflected intensity is given by r k 2. Quadratic MOKE In addition to the polar, longitudinal and transverse Kerr effect which depend linearly on the respective magnetization components, there are also higher order quadratic effects, for which the Kerr angle depends on product terms involving the polar, longitudinal and transverse magnetization components. Those effects are referred to as quadratic Kerr effect. Quadratic magneto-optic Kerr effect (QMOKE) is found strong in Heusler alloys such as Co 2 F esi and Co 2 MnGe. 1

4 In this semester I have studied the longitudinal MOKE for which the calculation are shown in the next section. In the calculations first I have shown the effect on Electric field and then I have also tried to include the signal detection of the photodiode. 0.2 Theoretical (Optical) Understanding of Longitudinal MOKE Figure 1: Schematic MOKE setup for showing the calculations Starting with Jones formalism, We can write any electric field vector as: [ ] E0p e E = iφp E 0s e iφs Here: φ p : phase in horizontal component. φ s : phase in vertical component. For a left circularly polarized light we can write, with E 0p = E 0s and φ s = φ p + π/2 [ ] E0 e E iφp L = E 0 e iφp+π/2 Normalizing the above we get: And similarly: E L = 1 [ ] 1 2 i E R = 1 [ ] 1 2 i 2

5 Now we can write the normalized Jones vectors as: [ ] [ ] 1 E h = and E 0 0 v = 1 Where E h : Horizontal component and E v : Vertical Component of the polarized state. There are some points to be kept in mind before doing the calculations: 1. Boundary Boundary conditions (according to solutions of Maxwell s equations) dictate that there has to be a continuity of electromagnetic field vectors across any interface. 2. For reflection boundary conditions dictate the time independent relation connecting incident and reflected waves. Basically, ω i = ω r. [ω i : frequency of incident wave, ω r : frequency of reflected wave.] Effect of optical element on polarized state can be represented by 2 2 matrix Jones Matrix. Lets say that the polarizer is set at θ p relative to ˆp direction. [ ] cos θp 0 JonesM atrix[p olarizer] = 0 sin θ p When incident E i wave passes through polarizer it becomes: E i = E 0 cos θ p ˆp + E 0 sin θ p ŝ When polarized light is incident upon a magnetic sample its horizontal and vertical components are modified differentially by ˆp and ŝ components of sample s magnetization. Magnetization can be written as linear superposition of ˆp and ŝ components. E r = S E i S = m 2 t S t + m 2 l Sl m t = M t ; m l = M l M s M [ s S t r t = pp rps t ] [ S l r l = pp rps l ] r t sp r t ss All the r s are called Fresnel coefficients. In the symbol r l sp, l: longitudinal effect, sp: relating reflected s-wave to incident p-wave. For ss and pp: Represent that how much of the polarized light is reflected. For sp and ps: Give rise to net rotation and elliptical polarization. r l sp r l ss 3

6 Since Magnetization is restricted on the plane. Considering the Longitudinal Kerr Effect: m 2 t + m 2 l = 1 ( ) ( ) nβ β rpp l β nβ = nβ + β rss l = β + nβ ( ) rps l = rsp l sin θβκ 2 = n 2 β (nβ + β )(β + nβ ) ( ) ( ) nβ β rpp t κ 2 sin 2θ = nβ + β 1 + n 2 (n 2 cos 2 θ 1) + sin θ ( ) β nβ rss t = β + nβ rps t = rsp t = 0 [ here β = cos θ, β = 1 sin2 θ ], n: refractive index of medium, θ: angle of incidence n 2 measured from sample normal, κ 2 = in 2 Q, Q: contains all quantum mechanical information about spin-orbit coupling. If Q goes to zero, we see no coupling effect which implies no MOKE. [ Er,p E r,s E r = (m 2 t S t + m 2 l Sl ) E i ] [ = m 2 r t pp r t ] [ ] [ ps E0 cos θ p t + m 2 r l pp r l ] [ ] ps E0 cos θ p E 0 sin θ l p E 0 sin θ p r t sp r t ss r l sp r l ss E r,p = (m 2 t r t pp + m 2 l rl pp)e 0 cos θ p + m 2 l rl pse 0 sin θ p & E r,s = m 2 l rl spe 0 cos θ p + (m 2 t r t ss + m 2 l rl ss)e 0 sin θ p Taking simplest case θ p = 90 From the above we infer the following: E r,p = m 2 l rl pse 0 E r,s = r l sse 0 1. Vertical component modified by r l ss independently of the sample s magnetization. 2. Longitudinal KE produced a horizontal polarized component proportional to square of sample s magnetization 4

7 Now analyzing at angle θ a E t = E rp cos θ a ˆp + E rs sin θ a ŝ Here we can take angle θ a such that we specifically get MOKE information, Hence taking θ a = 0 which gives E t E rp Now as we have understood how the light shall appear after the whole process, we can also write the equation for signal detection by photodiode normalized to incident intensity. I I 0 = M 4 l M 4 s 0.3 Lock In Amplifier I E t 2 I 0 E 0 2 = E rp 2 E 0 2 = m lrps l 2 sin 2 θ cos 2 θ n 4 Q 2 n 4 β 2 (nβ + β ) 2 (β + nβ ) 2 A lock-in amplifier is a type of amplifier that can extract a signal with a known carrier wave from an extremely noisy environment. Depending on the dynamic reserve of the instrument, signals up to 1 million times smaller than noise components, potentially fairly close by in frequency, can still be reliably detected. It is essentially a homodyne detector followed by low pass filter that is often adjustable in cut off frequency and filter order. Whereas traditional lock-in amplifiers use analog frequency mixers and RC filters for the demodulation, state of the art instruments have both steps implemented by fast digital signal processing for example on an FPGA. Usually sine and cosine demodulation is performed simultaneously, which is sometimes also referred to as dual phase demodulation. This allows the extraction of the in-phase and the quadrature component that can then be transferred into polar coordinates, i.e. amplitude and phase, or further processed as real and imaginary part of a complex number (e.g. for complex FFT analysis). Recovering signals at low signal-to-noise ratios requires a strong, clean reference signal the same frequency as the received signal. This is not the case in many experiments, so the instrument can recover signals buried in the noise only in a limited set of circumstances. Basic Principles Operation of a lock-in amplifier relies on the orthogonality of sinusoidal functions. Specifically, when a sinusoidal function of frequency f1 is multiplied by another sinusoidal function of frequency f2 not equal to f1 and integrated over a time much longer than the period of the two functions, the result is zero. Instead, when f1 is equal to f2 and the two functions are in phase, the average value is equal to half of the product of the amplitudes. 5

8 In essence, a lock-in amplifier takes the input signal, multiplies it by the reference signal (either provided from the internal oscillator or an external source), and integrates it over a specified time, usually on the order of milliseconds to a few seconds. The resulting signal is a DC signal, where the contribution from any signal that is not at the same frequency as the reference signal is attenuated close to zero. The out-of-phase component of the signal that has the same frequency as the reference signal is also attenuated (because sine functions are orthogonal to the cosine functions of the same frequency), making a lock-in a phase-sensitive detector. For a sine reference signal and an input waveform U in (t), the DC output signal U out (t) can be calculated for an analog lock-in amplifier by: U out (t) = 1 T t t T sin [2πf ref s + ϕ] U in (s) ds where is a phase that can be set on the lock-in (set to zero by default). If the averaging time T is large enough (e.g. much larger than the signal period) to suppress all unwanted parts like noise and the variations at twice the reference frequency, the output is U out = V sig cos θ where V sig is the signal amplitude at the reference frequency and θ is the phase difference between the signal and reference. Many applications of the lock-in only require recovering the signal amplitude rather than relative phase to the reference signal. For a simple so called single phase lockin-amplifier the phase difference is adjusted (usually manually) to zero to get the full signal. More advanced, so called two phase lock-in-amplifiers have a second detector, doing the same calculation as before, but with an additional 90 degree phase shift. Thus one has two outputs: X = V sig cos θ is called the in-phase component and Y = V sig sin θ the quadrature component. These two quantities represent the signal as a vector relative to the lock-in reference oscillator. By computing the magnitude (R) of the signal vector, the phase dependency is removed: The phase can be calculated from R = X 2 + Y 2 = V sig. tan θ = Y/X. Signal measurement in noisy environments The essential idea in signal recovery is that noise tends to be spread over a wider spectrum, often much wider than the signal. In the simplest case of white noise, even if 6

9 the root mean square of noise is 103 times as large as the signal to be recovered, if the bandwidth of the measurement instrument can be reduced by a factor much greater than 106 around the signal frequency, then the equipment can be relatively insensitive to the noise. In a typical 100 MHz bandwidth (e.g. an oscilloscope), a bandpass filter with width much narrower than 100 Hz would accomplish this. The averaging time of the lock-in-amplifier determines the bandwidth, and allows very narrow filters, less than 1 Hz if needed. However this comes at the price of a slow response to changes in the signal. In summary, even when noise and signal are indistinguishable in the time domain, if the signal has a definite frequency band and there is no large noise peak within that band, noise and signal can be separated sufficiently in the frequency domain. If the signal is either slowly varying or otherwise constant (essentially a DC signal), then 1/f noise typically overwhelms the signal. It may then be necessary to use external means to modulate the signal. For example, when detecting a small light signal against a bright background, the signal can be modulated either by a chopper wheel, acoustooptical modulator, photoelastic modulator at a large enough frequency so that 1/f noise drops off significantly, and the lock-in amplifier is referenced to the operating frequency of the modulator. In the case of an atomic force microscope, to achieve nanometer and piconewton resolution, the cantilever position is modulated at a high frequency, to which the lock-in amplifier is again referenced. When the lock-in technique is applied, care must be taken to calibrate the signal, because lock-in amplifiers generally detect only the root-mean-square signal of the operating frequency. For a sinusoidal modulation, this would introduce a factor of 2 between the lock-in amplifier output and the peak amplitude of the signal, and a different factor for non-sinusoidal modulation. In the case of nonlinear systems, higher harmonics of the modulation-frequency appear. A simple example is the light of a conventional light bulb being modulated at twice the line frequency. Some lock-in-amplifiers also allow separate measurements of these higher harmonics. Furthermore, the response width (effective bandwidth) of detected signal depends on the amplitude of the modulation. Generally, linewidth/modulation function has a monotonically increasing, non-linear behavior. 0.4 Photo Elastic Modulator The PEM is a resonant device whose precise oscillating frequency is determined by the physical properties of the optical element/transducer assembly. The electronic head, optical head and the cables that connect them make up a circuit that operates like a 7

10 crystal-controlled oscillator circuit. The PEM controller controls the amplitude of the PEM oscillations and generates a reference signal. A feedback signal from the head assembly is used by the controller to monitor the PEM oscillation amplitude and to provide timing for the generation of the reference. Principle of Operation The phenomenon of photoelasticity is the basis of operation for the PEM. If a sample of transparent solid material is stressed by compression or stretching, the material becomes birefringent, that is, different linear polarizations of light have slightly different speeds of light when passing through the material. PEM uses a rectangular shape for the modulator optical element. A fused silica bar is made to vibrate with a natural resonant frequency of about 50 khz. This vibration is sustained by a quartz piezoelectric transducer attached to the end of the bar. At the center of the optical element an oscillating birefringence occurs at a frequency of about 50 khz. The magnitude of the birefringence is controlled electronically by the PEM Controller. Retardation effects of compression and extension The effect of the modulator on a linear polarized monochromatic light wave is shown in slide 3 of the Polarization Primer. The plane of polarization is at 45 to the modulator axis before passing through the modulator. If the optical element is relaxed the light passes through with the polarization unchanged. If the optical element is compressed, the polarization component parallel to the modulator axis travels slightly faster than the vertical component. The horizontal component then leads the vertical component after light passes through the modulator. If the optical element is stretched, the horizontal component lags behind the vertical component. The phase difference between the components at any instant of time is called the retardation or retardance. The peak retardation is the amplitude of the sinusoidal retardation as a function of time. The retardation (in length units) is given by A(t) = z[nx(t) ny(t)] where z is the thickness of the optical element and nx(t) and ny(t) are the instantaneous values of refractive index along the x and y directions. Common units for retardation include distance (nanometers, microns), waves (quarter-wave, half-wave), and phase angle (radians, degrees) The PEM-100 Controller can display retardation in waves or phase angle. 8

11 Quarter wave retardation An important condition occurs when the peak retardation reaches exactly one-fourth of the wavelength of light. When this happens, the PEM acts as a quarter-wave plate. Figure 1 shows this condition at the instant retardation is at its maximum. Figure 2: Quarter Wave Retardation using PEM The polarization vector traces a right-handed spiral about the optic axis. Such light is called right circularly polarized. For an entire modulator cycle, Figure 1 shows the retardation vs. time and the polarization states at several points in time. The polarization oscillates between right circular and left circular, with linear (and elliptical) polarization states in between. Half Wave Retardation Another important condition occurs when the peak retardation reaches one-half of the wavelength of the light. When this happens, the PEM acts as a half-wave plate at the instant of maximum retardation and rotates the plane of polarization by 90. Figure 3: Half Wave Retardation using PEM At maximum retardation, the polarization states are linear, rotated by 90. The half-wave retardation condition is particularly important for calibration of the PEM. 9

12 0.5 Optical Chopper An optical chopper is a device which periodically interrupts a light beam. Three types are available: variable frequency rotating disc choppers, fixed frequency tuning fork choppers, and optical shutters. A rotating disc chopper was famously used in 1849 by Hippolyte Fizeau in the first non-astronomical measurement of the speed of light. Optical choppers, usually rotating disc mechanical shutters, are widely used in science labs in combination with lock-in amplifiers. The chopper is used to modulate the intensity of a light beam, and a lock-in amplifier is used to improve the signal-to-noise ratio. To be effective, an optical chopper should have a stable rotating speed. In cases where the 1/f noise is the main problem, one would like to select the maximum chopping frequency possible. This is limited by the motor speed and the number of slots in the rotating disc, which is in turn limited by the disc radius and the beam diameter. 0.6 Nirvana Auto Balanced Photodetector The auto-balancing technology allows elimination of background noise from dynamically changing systems, including thermal drifting and wavelength dependence, enabling you to achieve the perfect power balance between reference and signal beams. Circuit uses a low frequency feedback loop to maintain automatic DC balance b/w signal and reference arms. 1. Circuit behaves as a variable gain beam splitter. This cancels the common mode laser noise with greater than 50dB rejection. 2. Loop bandwidth can be adjusted depending on the application Working The photoreceiver operates in three distinct modes: 1. Signal mode. 2. Balanced mode. 3. Auto-balanced mode. The output of the photodetector (A) can be expressed as A = ((I S g) I R ) Rf. Here, I S is the signal photodiode current, I R is the reference photodiode current, R f is the value of the feedback resistor, and g is the current-splitting ratio, which describes how much of the reference current comes from the subtraction node (I s ub) and how much comes from ground. In signal mode, g = 0 and no reference photocurrent comes from the 10

13 subtraction node. Here, the output A is simply an amplied version of the signal current. In balanced mode, g = 1, and all the reference photo current comes from the subtraction node. In this mode, A = (I S I R ) R f, the photo detector behaves as an ordinary balanced photoreceiver, where laser noise is canceled if the DC photo currents are equal. In auto-balanced mode, g is electronically controlled by a low-frequency feedback loop to maintain equal DC photocurrents cancelling laser noise regardless of the photocurrent. How to Use For auto balanced mode, Ideally reference photodiode should receive more that is twice as much compared to signal photo diode, P ref /P sig = 2. Loop Bandwidth knob controls the gain-compensation cutoff frequency which determines the speed of the auto-balancing effect. Cutoff frequency should be set as high as possible, but below the modulation frequency of interest to obtain best voice cancellation. ( f c = P ) sig 1 P sig R P ref 101 LB Here, P sig and P ref in mw. R: Photo diode responsivity in A/W. LB: Loop bandwidth knob setting. I sig = P sig R Modulation frequency must be above gain compensation cutoff otherwise noise cancellation will be degraded, because the gain compensation cutoff frequency has a single pole, the modulation frequency should be significantly above the cutoff frequency so it does not affect noise cancellation performance. Common reasons for lack of noise suppression: 1. Laser Polarization: Unexpected differential signal due to differential polarization sensitive optics. 2. Frequency Modulation. 3. Spatial modulation: Due to optics setup. 4. Polarization wiggle: Acousto-optic modulation create small rotation in the polarization of modulated light. We shall define a new Quantity CMRR : Common mode rejection ratio. ( ) VcommonMode CMRR = 20 log 10 V autobal 11

14 V commonmode : Detector output voltage proportional to P commonmode (The laser power present on the reference and signal photodiode at the given frequency). V autobal : Output voltage at the same frequency in auto-balanced mode. 0.7 Experimental Setup In this section I shall describe all the experimental setups that were made during the semester. There were total of three setups: Setup 1 Figure 4: MOKE setup with PEM The working of PEM is described in the above section. The settings were: 1. 50KHz frequency was set(pem). 2. λ/4 retardation was set(pem). 3. The polarizer was set at 45 with respect to the laser polarization. 4. The analyzer was set at 45 with respect to the laser polarization. 5. The magnetic field was varied from tesla to 0.02 tesla. Result 12

15 Figure 5: Graph between Magnetization and Magnetic Field Setup 2 Figure 6: MOKE setup with Chopper The working of Optical Chopper is described in the above section. The settings were: 1. 50KHz frequency was set. 2. The polarizer was set at zero degree and the analyzer was rotated from 0 to The magnetic field was kept constant. Result 13

16 Figure 7: Graph between Captured Intensity and Analyzer Angle Setup 3 Figure 8: CW Pump Probe setup with PEM and Chopper The working of the PEM, Optical Chopper and Auto Balanced PhotoDetector have been explained before. The above setup is a CW Pump probe with PEM and Optical chopper placed. The settings would be: 1. P1 is at 45 with respect to the laser beam. 14

17 2. P2 is at 45 with respect to the laser beam. 3. P3 is at zero degree with respect to the laser beam. 0.8 Summary In short following studies were done: 1. Understanding of MOKE using Jones Matrix formalism. 2. Working of Lock In Amplifier. 3. Working of Photo Elastic Modulator. 4. Working of Optical Chopper. 5. Three optical setups were made throughout the semester and the respective studies have been shown before. 15

18 Bibliography [1] Wikipedia [2] Phase sensitive detection: the lock-in amplifier by Dr. G. Bradley Armen, The University of Tennessee [3] LASER PHYSICS by PETER W. MILONNI, JOSEPH H. EBERLY 16

Polarization Experiments Using Jones Calculus

Polarization Experiments Using Jones Calculus Polarization Experiments Using Jones Calculus Reference http://chaos.swarthmore.edu/courses/physics50_2008/p50_optics/04_polariz_matrices.pdf Theory In Jones calculus, the polarization state of light is

More information

Model 2007 & 2017 User s Manual Nirvana Auto-Balanced Photoreceivers

Model 2007 & 2017 User s Manual Nirvana Auto-Balanced Photoreceivers Model 2007 & 2017 User s Manual Nirvana Auto-Balanced Photoreceivers Patent No. 5,134,276 Contents I Quick Start 3 II Detector Operation 5 III Principles Of Operation 17 IV Operating With Optical Fiber

More information

DETECTING THE RATIO OF I AC

DETECTING THE RATIO OF I AC T E C H N O L O G Y F O R P O L A R I Z A T I O N M E A S U R E M E N T DETECTING THE RATIO OF I AC MEASUREMENT OF THE RAGE INTENSITY OF A MODULATED LIGHT BEAM In any experiment using photoelastic modulators

More information

Detecting the Ratio of I ac. /I ave. photoelastic modulators

Detecting the Ratio of I ac. /I ave. photoelastic modulators Measurement of the Average Intensity of a Modulated Light Beam In any experiment using (PEMs it is necessary to compare the time average intensity of the light at the detector with the amplitude of a single

More information

Optical Pumping Control Unit

Optical Pumping Control Unit (Advanced) Experimental Physics V85.0112/G85.2075 Optical Pumping Control Unit Fall, 2012 10/16/2012 Introduction This document is gives an overview of the optical pumping control unit. Magnetic Fields

More information

Application Note (A12)

Application Note (A12) Application Note (A2) The Benefits of DSP Lock-in Amplifiers Revision: A September 996 Gooch & Housego 4632 36 th Street, Orlando, FL 328 Tel: 47 422 37 Fax: 47 648 542 Email: sales@goochandhousego.com

More information

Measurements 2: Network Analysis

Measurements 2: Network Analysis Measurements 2: Network Analysis Fritz Caspers CAS, Aarhus, June 2010 Contents Scalar network analysis Vector network analysis Early concepts Modern instrumentation Calibration methods Time domain (synthetic

More information

The 34th International Physics Olympiad

The 34th International Physics Olympiad The 34th International Physics Olympiad Taipei, Taiwan Experimental Competition Wednesday, August 6, 2003 Time Available : 5 hours Please Read This First: 1. Use only the pen provided. 2. Use only the

More information

EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS

EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS Experimental Goals A good technician needs to make accurate measurements, keep good records and know the proper usage and limitations of the instruments

More information

Physics 319 Laboratory: Optics

Physics 319 Laboratory: Optics 1 Physics 319 Laboratory: Optics Birefringence II Objective: Previously, we have been concerned with the effect of linear polarizers on unpolarized and linearly polarized light. In this lab, we will explore

More information

THE BENEFITS OF DSP LOCK-IN AMPLIFIERS

THE BENEFITS OF DSP LOCK-IN AMPLIFIERS THE BENEFITS OF DSP LOCK-IN AMPLIFIERS If you never heard of or don t understand the term lock-in amplifier, you re in good company. With the exception of the optics industry where virtually every major

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Periodic Error Correction in Heterodyne Interferometry

Periodic Error Correction in Heterodyne Interferometry Periodic Error Correction in Heterodyne Interferometry Tony L. Schmitz, Vasishta Ganguly, Janet Yun, and Russell Loughridge Abstract This paper describes periodic error in differentialpath interferometry

More information

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project Stephen W. Jordan Seth Merritt Optics Project PH 464

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Faraday Rotators and Isolators

Faraday Rotators and Isolators Faraday Rotators and I. Introduction The negative effects of optical feedback on laser oscillators and laser diodes have long been known. Problems include frequency instability, relaxation oscillations,

More information

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT I. Objective: To study the Pockels electro-optic (E-O) effect, and the property of light propagation in anisotropic medium, especially polarization-rotation effects.

More information

(Refer Slide Time: 00:03:22)

(Refer Slide Time: 00:03:22) Analog ICs Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 27 Phase Locked Loop (Continued) Digital to Analog Converters So we were discussing

More information

A Prototype Wire Position Monitoring System

A Prototype Wire Position Monitoring System LCLS-TN-05-27 A Prototype Wire Position Monitoring System Wei Wang and Zachary Wolf Metrology Department, SLAC 1. INTRODUCTION ¹ The Wire Position Monitoring System (WPM) will track changes in the transverse

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

225 Lock-in Amplifier

225 Lock-in Amplifier 225 Lock-in Amplifier 225.02 Bentham Instruments Ltd 1 2 Bentham Instruments Ltd 225.02 1. WHAT IS A LOCK-IN? There are a number of ways of visualising the operation and significance of a lock-in amplifier.

More information

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter...

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter... 1 Table of Contents Table of Contents...2 About the Tutorial...6 Audience...6 Prerequisites...6 Copyright & Disclaimer...6 1. EMI INTRODUCTION... 7 Voltmeter...7 Ammeter...8 Ohmmeter...8 Multimeter...9

More information

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor Development of a Low Cost 3x3 Coupler Mach-Zehnder Interferometric Optical Fibre Vibration Sensor Kai Tai Wan Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, UB8 3PH,

More information

EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT212 Analog Electronic II. Chapter 4. Oscillator EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

More information

Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation

Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation The Pre-Labs are informational and although they follow the procedures in the experiment, they are to be completed outside of the laboratory.

More information

8.5 Modulation of Signals

8.5 Modulation of Signals 8.5 Modulation of Signals basic idea and goals measuring atomic absorption without modulation measuring atomic absorption with modulation the tuned amplifier, diode rectifier and low pass the lock-in amplifier

More information

Initial Results from the C-Mod Prototype Polarimeter/Interferometer

Initial Results from the C-Mod Prototype Polarimeter/Interferometer Initial Results from the C-Mod Prototype Polarimeter/Interferometer K. R. Smith, J. Irby, R. Leccacorvi, E. Marmar, R. Murray, R. Vieira October 24-28, 2005 APS-DPP Conference 1 Abstract An FIR interferometer-polarimeter

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

9. Microwaves. 9.1 Introduction. Safety consideration

9. Microwaves. 9.1 Introduction. Safety consideration MW 9. Microwaves 9.1 Introduction Electromagnetic waves with wavelengths of the order of 1 mm to 1 m, or equivalently, with frequencies from 0.3 GHz to 0.3 THz, are commonly known as microwaves, sometimes

More information

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor)

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P34-1 Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

Laser Locking with Doppler-free Saturated Absorption Spectroscopy

Laser Locking with Doppler-free Saturated Absorption Spectroscopy Laser Locking with Doppler-free Saturated Absorption Spectroscopy Paul L. Stubbs, Advisor: Irina Novikova W&M Quantum Optics Group May 12, 2010 Abstract The goal of this project was to lock the frequency

More information

Notes on Noise Reduction

Notes on Noise Reduction Notes on Noise Reduction When setting out to make a measurement one often finds that the signal, the quantity we want to see, is masked by noise, which is anything that interferes with seeing the signal.

More information

I = I 0 cos 2 θ (1.1)

I = I 0 cos 2 θ (1.1) Chapter 1 Faraday Rotation Experiment objectives: Observe the Faraday Effect, the rotation of a light wave s polarization vector in a material with a magnetic field directed along the wave s direction.

More information

Department of Electrical Engineering and Computer Science

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE of TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161/6637 Practice Quiz 2 Issued X:XXpm 4/XX/2004 Spring Term, 2004 Due X:XX+1:30pm 4/XX/2004 Please utilize

More information

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014 Microwave Optics Department of Physics & Astronomy Texas Christian University, Fort Worth, TX January 16, 2014 1 Introduction Optical phenomena may be studied at microwave frequencies. Visible light has

More information

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier Costas Loop Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier 0 Pre-Laboratory Reading Phase-shift keying that employs two discrete

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics slide 1 Part 1: First order systems: RC low pass filter and Thermopile Goals: Understand the behavior and how to characterize first order measurement systems Learn how to operate: function generator, oscilloscope,

More information

Lecture 5: Polarisation of light 2

Lecture 5: Polarisation of light 2 Lecture 5: Polarisation of light 2 Lecture aims to explain: 1. Circularly and elliptically polarised light 2. Optical retarders - Birefringence - Quarter-wave plate, half-wave plate Circularly and elliptically

More information

Figure 4.1 Vector representation of magnetic field.

Figure 4.1 Vector representation of magnetic field. Chapter 4 Design of Vector Magnetic Field Sensor System 4.1 3-Dimensional Vector Field Representation The vector magnetic field is represented as a combination of three components along the Cartesian coordinate

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

Experiment 7: Frequency Modulation and Phase Locked Loops

Experiment 7: Frequency Modulation and Phase Locked Loops Experiment 7: Frequency Modulation and Phase Locked Loops Frequency Modulation Background Normally, we consider a voltage wave form with a fixed frequency of the form v(t) = V sin( ct + ), (1) where c

More information

Development of C-Mod FIR Polarimeter*

Development of C-Mod FIR Polarimeter* Development of C-Mod FIR Polarimeter* P.XU, J.H.IRBY, J.BOSCO, A.KANOJIA, R.LECCACORVI, E.MARMAR, P.MICHAEL, R.MURRAY, R.VIEIRA, S.WOLFE (MIT) D.L.BROWER, W.X.DING (UCLA) D.K.MANSFIELD (PPPL) *Supported

More information

About Lock-In Amplifiers Application Note #3

About Lock-In Amplifiers Application Note #3 Application Note #3 Lock-in amplifiers are used to detect and measure very small AC signals all the way down to a few nanovolts. Accurate measurements may be made even when the small signal is obscured

More information

10. Phase Cycling and Pulsed Field Gradients Introduction to Phase Cycling - Quadrature images

10. Phase Cycling and Pulsed Field Gradients Introduction to Phase Cycling - Quadrature images 10. Phase Cycling and Pulsed Field Gradients 10.1 Introduction to Phase Cycling - Quadrature images The selection of coherence transfer pathways (CTP) by phase cycling or PFGs is the tool that allows the

More information

AS Physics Unit 5 - Waves 1

AS Physics Unit 5 - Waves 1 AS Physics Unit 5 - Waves 1 WHAT IS WAVE MOTION? The wave motion is a means of transferring energy from one point to another without the transfer of any matter between the points. Waves may be classified

More information

Measure the roll-off frequency of an acousto-optic modulator

Measure the roll-off frequency of an acousto-optic modulator Slide 1 Goals of the Lab: Get to know some of the properties of pin photodiodes Measure the roll-off frequency of an acousto-optic modulator Measure the cut-off frequency of a pin photodiode as a function

More information

Lock-Ins for electrical measurements

Lock-Ins for electrical measurements Lock-Ins for electrical measurements At low temperatures small electrical signals, small signal changes interesting physics Problems: Noise Groundloops SNR FAM-Talk October 17 th 2014 1 Types of noise

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2016 Electro-optic

More information

BLACKBODY RADIATION PHYSICS 359E

BLACKBODY RADIATION PHYSICS 359E BLACKBODY RADIATION PHYSICS 359E INTRODUCTION In this laboratory, you will make measurements intended to illustrate the Stefan-Boltzmann Law for the total radiated power per unit area I tot (in W m 2 )

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

Physics 262. Lab #1: Lock-In Amplifier. John Yamrick

Physics 262. Lab #1: Lock-In Amplifier. John Yamrick Physics 262 Lab #1: Lock-In Amplifier John Yamrick Abstract This lab studied the workings of a photodiode and lock-in amplifier. The linearity and frequency response of the photodiode were examined. Introduction

More information

Experiment 19. Microwave Optics 1

Experiment 19. Microwave Optics 1 Experiment 19 Microwave Optics 1 1. Introduction Optical phenomena may be studied at microwave frequencies. Using a three centimeter microwave wavelength transforms the scale of the experiment. Microns

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18 Circuit Analysis-II Angular Measurement Angular Measurement of a Sine Wave ü As we already know that a sinusoidal voltage can be produced by an ac generator. ü As the windings on the rotor of the ac generator

More information

Charan Langton, Editor

Charan Langton, Editor Charan Langton, Editor SIGNAL PROCESSING & SIMULATION NEWSLETTER Baseband, Passband Signals and Amplitude Modulation The most salient feature of information signals is that they are generally low frequency.

More information

Absolute distance interferometer in LaserTracer geometry

Absolute distance interferometer in LaserTracer geometry Absolute distance interferometer in LaserTracer geometry Corresponding author: Karl Meiners-Hagen Abstract 1. Introduction 1 In this paper, a combination of variable synthetic and two-wavelength interferometry

More information

Introduction. sig. ref. sig

Introduction. sig. ref. sig Introduction A lock-in amplifier, in common with most AC indicating instruments, provides a DC output proportional to the AC signal under investigation. The special rectifier, called a phase-sensitive

More information

An Investigation into the Effects of Sampling on the Loop Response and Phase Noise in Phase Locked Loops

An Investigation into the Effects of Sampling on the Loop Response and Phase Noise in Phase Locked Loops An Investigation into the Effects of Sampling on the Loop Response and Phase oise in Phase Locked Loops Peter Beeson LA Techniques, Unit 5 Chancerygate Business Centre, Surbiton, Surrey Abstract. The majority

More information

POLARISATION OF LIGHT. Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only.

POLARISATION OF LIGHT. Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only. POLARISATION OF LIGHT Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only. Polarisation is a phenomenon exhibited only by transverse

More information

multiplier input Env. Det. LPF Y (Vertical) VCO X (Horizontal)

multiplier input Env. Det. LPF Y (Vertical) VCO X (Horizontal) Spectrum Analyzer Objective: The aim of this project is to realize a spectrum analyzer using analog circuits and a CRT oscilloscope. This interface circuit will enable to use oscilloscopes as spectrum

More information

Multiply Resonant EOM for the LIGO 40-meter Interferometer

Multiply Resonant EOM for the LIGO 40-meter Interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIGO-XXXXXXX-XX-X Date: 2009/09/25 Multiply Resonant EOM for the LIGO

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 11 Wave Phenomena Name: Lab Partner: Section: 11.1 Purpose Wave phenomena using sound waves will be explored in this experiment. Standing waves and beats will be examined. The speed of sound will

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

Spurious-Mode Suppression in Optoelectronic Oscillators

Spurious-Mode Suppression in Optoelectronic Oscillators Spurious-Mode Suppression in Optoelectronic Oscillators Olukayode Okusaga and Eric Adles and Weimin Zhou U.S. Army Research Laboratory Adelphi, Maryland 20783 1197 Email: olukayode.okusaga@us.army.mil

More information

Exercise 2: FM Detection With a PLL

Exercise 2: FM Detection With a PLL Phase-Locked Loop Analog Communications Exercise 2: FM Detection With a PLL EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain how the phase detector s input frequencies

More information

Lab 4: Transmission Line

Lab 4: Transmission Line 1 Introduction Lab 4: Transmission Line In this experiment we will study the properties of a wave propagating in a periodic medium. Usually this takes the form of an array of masses and springs of the

More information

CH85CH2202-0/85/ $1.00

CH85CH2202-0/85/ $1.00 SYNCHRONIZATION AND TRACKING WITH SYNCHRONOUS OSCILLATORS Vasil Uzunoglu and Marvin H. White Fairchild Industries Germantown, Maryland Lehigh University Bethlehem, Pennsylvania ABSTRACT A Synchronous Oscillator

More information

Oscillator Principles

Oscillator Principles Oscillators Introduction Oscillators are circuits that generates a repetitive waveform of fixed amplitude and frequency without any external input signal. The function of an oscillator is to generate alternating

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Installation and Characterization of the Advanced LIGO 200 Watt PSL Installation and Characterization of the Advanced LIGO 200 Watt PSL Nicholas Langellier Mentor: Benno Willke Background and Motivation Albert Einstein's published his General Theory of Relativity in 1916,

More information

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 Objectives: OPERATIONAL AMPLIFIERS 1.To demonstrate an inverting operational amplifier circuit.

More information

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Timing Noise Measurement of High-Repetition-Rate Optical Pulses 564 Timing Noise Measurement of High-Repetition-Rate Optical Pulses Hidemi Tsuchida National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, 305-8568 JAPAN Tel: 81-29-861-5342;

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Preliminary study of the vibration displacement measurement by using strain gauge

Preliminary study of the vibration displacement measurement by using strain gauge Songklanakarin J. Sci. Technol. 32 (5), 453-459, Sep. - Oct. 2010 Original Article Preliminary study of the vibration displacement measurement by using strain gauge Siripong Eamchaimongkol* Department

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) 레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) Contents Frequency references Frequency locking methods Basic principle of loop filter Example of lock box circuits Quantifying frequency stability Applications

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

D.C. Emmony, M.W. Godfrey and R.G. White

D.C. Emmony, M.W. Godfrey and R.G. White A MINIATURE OPTICAL ACOUSTIC EMISSION TRANSDUCER ABSTRACT D.C. Emmony, M.W. Godfrey and R.G. White Department of Physics Loughborough University of Technology Loughborough, Leicestershire LEll 3TU United

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

Model Series 400X User s Manual. DC-100 MHz Electro-Optic Phase Modulators

Model Series 400X User s Manual. DC-100 MHz Electro-Optic Phase Modulators Model Series 400X User s Manual DC-100 MHz Electro-Optic Phase Modulators 400412 Rev. D 2 Is a registered trademark of New Focus, Inc. Warranty New Focus, Inc. guarantees its products to be free of defects

More information

The electric field for the wave sketched in Fig. 3-1 can be written as

The electric field for the wave sketched in Fig. 3-1 can be written as ELECTROMAGNETIC WAVES Light consists of an electric field and a magnetic field that oscillate at very high rates, of the order of 10 14 Hz. These fields travel in wavelike fashion at very high speeds.

More information

Optical Power Meter Basics

Optical Power Meter Basics Optical Power Meter Basics Introduction An optical power meter measures the photon energy in the form of current or voltage from an optical detector such as a semiconductor, a thermopile, or a pyroelectric

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

Lab 5 - Electro-Optic Modulation

Lab 5 - Electro-Optic Modulation Lab 5 - Electro-Optic Modulation Goal To measure the characteristics of waveplates and electro-optic modulators Prelab Background Saleh and Tiech Section 1st edition 18.1-18.3 or 20.1-20.3 in second edition.

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

Definitions. Spectrum Analyzer

Definitions. Spectrum Analyzer SIGNAL ANALYZERS Spectrum Analyzer Definitions A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs The gun RF control at FLASH (and PITZ) Elmar Vogel in collaboration with Waldemar Koprek and Piotr Pucyk th FLASH Seminar at December 19 2006 FLASH rf gun beam generated within the (1.3 GHz) RF gun by

More information

An active filter offers the following advantages over a passive filter:

An active filter offers the following advantages over a passive filter: ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

PLL Synchronizer User s Manual / Version 1.0.6

PLL Synchronizer User s Manual / Version 1.0.6 PLL Synchronizer User s Manual / Version 1.0.6 AccTec B.V. Den Dolech 2 5612 AZ Eindhoven The Netherlands phone +31 (0) 40-2474321 / 4048 e-mail AccTecBV@tue.nl Contents 1 Introduction... 3 2 Technical

More information

Investigation of Squeezed Light with an Injection Locked Laser

Investigation of Squeezed Light with an Injection Locked Laser Investigation of Squeezed Light with an Injection Locked Laser Thomas W. Noel REU program, College of William and Mary July 31, 2008 Abstract Quantum physics implies a certain unavoidable amount of noise

More information

Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes

Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes Detectors/Modulated Field ETS-Lindgren EMC probes (HI-6022/6122, HI-6005/6105, and HI-6053/6153) use diode detectors

More information

SIGNAL RECOVERY. Model 7265 DSP Lock-in Amplifier

SIGNAL RECOVERY. Model 7265 DSP Lock-in Amplifier Model 7265 DSP Lock-in Amplifier FEATURES 0.001 Hz to 250 khz operation Voltage and current mode inputs Direct digital demodulation without down-conversion 10 µs to 100 ks output time constants Quartz

More information