Poles and Zeros of H(s), Analog Computers and Active Filters

Size: px
Start display at page:

Download "Poles and Zeros of H(s), Analog Computers and Active Filters"

Transcription

1 Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett

2 LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and zero at s=0: bandpass filter HL has two poles and double zero at s=0: high-pass filter HC has two poles and no zeros: low-pass filter

3 LRC Filter Pole Locations and Natural Frequencies Poles at s1 and s2. If poles are distinct, the natural response is Natural response in the cas V out (t) = A 1 e s 1t + A 2 e s 2t Proof on next slide (Assumes there is no cancellation of a common pole and zero)

4 LRC Natural Response Natural response: solutions to homogeneous equation (Vin = 0) Vin = 0 i Vin(t)=0: this is the response (output) for zero input driving voltage

5 Comments on Natural Frequency vs. Resonant Frequency The resonant frequency is not the natural frequency Natural frequency si = σi+jωi : H denominator = 0 Resonant frequency ωr : reactance of H denominator = 0 However, for bandpass filter with Q>>1, ωr ωi Overdamped and critically damped cases (Q 0.5) don t have oscillatory natural response For high pass, low pass filters, the corner frequencies (halfpower points) are the key parameters; design to avoid strong resonance peaks in the frequency response A network of only passive components (no voltage or current sources) can have poles only in the left half of the complex frequency plane (including the imaginary axis in the ideal case of no resistance - actually not that easy: see oscillators)

6 s1 Pole and Resonance Peak for Q=5! 0 =5, Q=5 H(s)=1/(1+(s/5) 2 +s/25). s 1 = -1/2+j(3/2)(11) 1/2, s 2 = -1/2-j(3/2)(11) 1/2 ω σ

7 From H(s) to V(t) via Laplace Transform Laplace transform allows use of H(s) with suitable nonsinusoidal inputs (see 116B) The linearity of the Laplace transform and its transformation of ordinary differential equations with constant coefficients to algebraic equations allows a direct connection between H(s) and f(t). Essentially, f(t), the inverse Laplace transform of H(s), represents the output voltage of the circuit for a unit impulse function (delta function) input. This also assumes the voltages and currents are zero at t=0 (zero initial conditions). The Laplace transform method is studied in 116B. For this circuit, the inverse Laplace transform for H(s) is a damped sinusoid (see Table 5.1 in Bobrow or use Mathematica): V(t)=(50/(3*11 1/2 ))exp(-t/2)sin((3*11 1/2 )t/2)u(t) where u(t) is the unit step function. As seen earlier, pole location determines angular frequency and rate of decay Note that the expression is a linear combination of exp(s 1 t) and exp(s 2 t)

8 The transfer function H(s) = V out /V in for the above LRC low-pass filter circuit is:* H(s)=1/(1+(s/! 0 ) 2 +s/(q! 0 )) where! 0 =1/(LC) 1/2, Q=(1/R)*(L/C) 1/2. * You can work with s directly as in Sec. 5.3 of Bobrow, or you can find H(j!)=V out /V in using network analysis with complex impedance, then substitute s for j!.

9 Critically Damped Case (Q=0.5) H(s)=1/(1+(s/5) /2 ω0 = 5: +s/2.5) The denominator has a double root at s = -5 leading to a double pole ω σ Low pass filter behavior along the jω axis

10 From Frequency Domain to Time Domain Now, the inverse Laplace transform for H(s) is: V(t)=25 t exp(-5t) u(t) as expected for the pole of order 2 (i.e., double root of denominator) on the negative real axis. The pole location determines the time constant of the exponential. Again, this represents the output voltage of the circuit for a unit impulse function (delta function) input and zero initial conditions. Pole location determines angular frequency (0) and rate of decay Again, we don t need the Laplace transform to get the natural response - just use f(s) and initial conditions

11 General Case of Poles and Zeros (Following Bobrow, Sec. 5.4) Circuit described by linear differential equation with constant, real coefficients (see, for example, the series LRC circuit) d a n y d n dt n + a n 1 y n 1 dt n a 1 dy dt + a 0 = b d m x m dt m + b d m 1 x m 1 dt m b 1 dx dt + b 0 with output (forced response) y(t) = Ye st and input (forcing term) x(t) = Xe st. Substituting the exponentials for x and y gives (a n s n + a n 1 s n a 1 s + a 0 )Ye st = (b m s m + b m 1 s m b 1 s + b 0 )Xe st so the transfer function is a ratio of polynomials with real coefficients H(s) y x = b ms m + b m 1 s m b 1 s + b 0 a n s n + a n 1 s n a 1 s + a 0.

12 Pole and Zero Locations It follows from the fundamental theorem of algebra that the polynomials can be factored into products of polynomials with real coefficients of order 1 or 2. Thus, we can write H(s) = K(s z 1)(s z 2 )... (s z m ) (s p 1 )(s p 2 )... (s p n ) where z i and p i are real or complex conjugate pairs. The z i are the points where H(s) = 0 (zeros of the function) The p i are the points where the denominator equals 0 (poles of H(s)). There can be repeated roots so the poles need not be simple poles, as we saw before. Natural response in the case of distinct poles is of form y nat (t) = A 1 e p 1t + A 2 e p 2t A n e p nt

13 Synthesis of Network Using Op-Amps Can implement network with transfer function H(s) using integrators, amplifiers and summing amplifiers Example: H(s) Y/X = (1 + s/25 + s 2 /25) 1 Rewrite as Y = (25/s 2 )X (25/s 2 )Y (1/s)Y Recall for op-amp integrator, H(s) = 1/(RCs) Use 4 integrators, two amplifiers to multiply by constants and a summing amplifier to implement function (perhaps not very efficient since we started with a second order differential equation... ) (See another approach in a few minutes...) This is an analog computer, showing operational amplifiers in use for their original function: mathematical operations

14 Integrator and Network Block Diagram

15 Why Use Integrators? Could in principle use differentiators Switch R and C in op-amp circuit, get H(s) = -RC s H(ω) increases with ω so performance is sensitive to high frequency noise and amplifier instabilities (for reasons to be discussed later) Amplifier more likely to be overloaded by rapidly changing waveforms Initial conditions easier to set for integrator by switching a constant voltage across each integrating capacitor at t=0 Thus, integrators are preferred

16 More Efficient: State Variable Active Filter V VC in driven series LRC Reference: Millman and Grabel, Microelectronics, Sec Analysis: start by defining the second derivative of V at point A. Then just follow through the circuit tracing the paths and the rest follows. Output at D is proportional to V and is a low pass filter. Output at B is a band pass filter and at A a high pass. Do you see why? Can get poles in right half of s plane by connecting R from B to -Sum2 (NG)

17 State Variable Filter Outputs

18 Improved High Order Active Filters

19 Simple-Minded Approach: Buffered RC

20 Butterworth Filter Gives Sharper Cutoff

21 Amplitude Response; Implementation

22 Analysis: Part I

23 Analysis: Part II

24 Other Filter Types and Comparisons The circuit can be modified to give high pass or bandpass filters (for example, the bandpass filter you made in lab) Can replicate any denominator function using proper choices of R, C and enough terms Another popular choice is Chebyshev filter - uses Chebyshev polynomials (specify corner freq., allowable passband variation) Gives even sharper cutoff but has more ripple in the passband response Bessel filter is not as sharp as Butterworth near the cutoff frequency but has smoother phase response and less overshoot in time response with step function input Reference: Horowitz and Hill, The Art of Electronics, Ch. 5. See this book for comparisons and construction information.

25 Filter Configurations, Response Comparisons See reference in Ch. 5 of Horowitz and Hill (copyrighted material) See notes posted for Wednesday of this week (Bode plots for various filter designs) Butterworth Chebychev Cascaded RC low pass filters

26 With active networks, one can arrange for the complex conjugate poles to be on the imaginary axis: sinusoidal output (σ = 0). Covered later (see last lab). Get oscillator with feedback amplifier when Loop gain AB = -1 Oscillators Historically important. Triode vacuum tube (voltage controlled current source) made electronic oscillators possible for radio transmitters, regenerative receiver ( blooper ), superheterodyne receiver of Edwin Armstrong.

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Chapter 8. Natural and Step Responses of RLC Circuits

Chapter 8. Natural and Step Responses of RLC Circuits Chapter 8. Natural and Step Responses of RLC Circuits By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits1.htm

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation SECTION 7: FREQUENCY DOMAIN ANALYSIS MAE 3401 Modeling and Simulation 2 Response to Sinusoidal Inputs Frequency Domain Analysis Introduction 3 We ve looked at system impulse and step responses Also interested

More information

, answer the next six questions.

, answer the next six questions. Frequency Response Problems Conceptual Questions 1) T/F Given f(t) = A cos (ωt + θ): The amplitude of the output in sinusoidal steady-state increases as K increases and decreases as ω increases. 2) T/F

More information

10. Introduction and Chapter Objectives

10. Introduction and Chapter Objectives Real Analog - Circuits Chapter 0: Steady-state Sinusoidal Analysis 0. Introduction and Chapter Objectives We will now study dynamic systems which are subjected to sinusoidal forcing functions. Previously,

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

3 Analog filters. 3.1 Analog filter characteristics

3 Analog filters. 3.1 Analog filter characteristics Chapter 3, page 1 of 11 3 Analog filters This chapter deals with analog filters and the filter approximations of an ideal filter. The filter approximations that are considered are the classical analog

More information

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series.

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series. Active Filters An active filters means using amplifiers to improve the filter. An acive second-order low-pass filter still has two components in series. Hjω ( ) -------------------------- 2 = = ----------------------------------------------------------

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

Pole, zero and Bode plot

Pole, zero and Bode plot Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as

More information

Introduction to Signals and Systems Lecture #9 - Frequency Response. Guillaume Drion Academic year

Introduction to Signals and Systems Lecture #9 - Frequency Response. Guillaume Drion Academic year Introduction to Signals and Systems Lecture #9 - Frequency Response Guillaume Drion Academic year 2017-2018 1 Transmission of complex exponentials through LTI systems Continuous case: LTI system where

More information

Numerical Oscillations in EMTP-Like Programs

Numerical Oscillations in EMTP-Like Programs Session 19; Page 1/13 Spring 18 Numerical Oscillations in EMTP-Like Programs 1 Causes of Numerical Oscillations The Electromagnetic transients program and its variants all use the the trapezoidal rule

More information

Today s topic: frequency response. Chapter 4

Today s topic: frequency response. Chapter 4 Today s topic: frequency response Chapter 4 1 Small-signal analysis applies when transistors can be adequately characterized by their operating points and small linear changes about the points. The use

More information

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 26 Mathematical operations Hello everybody! In our series of lectures on basic

More information

Active Filter Design Techniques

Active Filter Design Techniques Active Filter Design Techniques 16.1 Introduction What is a filter? A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Systems Prof. Mark Fowler Note Set #19 C-T Systems: Frequency-Domain Analysis of Systems Reading Assignment: Section 5.2 of Kamen and Heck 1/17 Course Flow Diagram The arrows here show

More information

Active Filters - Revisited

Active Filters - Revisited Active Filters - Revisited Sources: Electronic Devices by Thomas L. Floyd. & Electronic Devices and Circuit Theory by Robert L. Boylestad, Louis Nashelsky Ideal and Practical Filters Ideal and Practical

More information

Experiment 4 Op-Amp Resonant Bandpass Filter

Experiment 4 Op-Amp Resonant Bandpass Filter Experiment 4 Op-Amp Resonant Bandpass Filter Physics 116A, D. Pellett v. 1.01, Oct. 20, 2002 1 Introduction In this experiment you will become familiar with a bandpass filter made with an op-amp (active

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications EE4900/EE6420: Digital Communications 1 Lecture 2 Review of Signals and Systems: Part 1 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

ECE503: Digital Filter Design Lecture 9

ECE503: Digital Filter Design Lecture 9 ECE503: Digital Filter Design Lecture 9 D. Richard Brown III WPI 26-March-2012 WPI D. Richard Brown III 26-March-2012 1 / 33 Lecture 9 Topics Within the broad topic of digital filter design, we are going

More information

Low Pass Filter Introduction

Low Pass Filter Introduction Low Pass Filter Introduction Basically, an electrical filter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those

More information

Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed

Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed By David Karpaty Introduction Simulation models for amplifiers are typically implemented with resistors, capacitors, transistors,

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objectives Boise State University Department of Electrical and Computer Engineering ECE L Circuit Analysis and Design Lab Experiment #0: Frequency esponse Measurements The objectives of this laboratory

More information

Infinite Impulse Response Filters

Infinite Impulse Response Filters 6 Infinite Impulse Response Filters Ren Zhou In this chapter we introduce the analysis and design of infinite impulse response (IIR) digital filters that have the potential of sharp rolloffs (Tompkins

More information

BSNL TTA Question Paper Control Systems Specialization 2007

BSNL TTA Question Paper Control Systems Specialization 2007 BSNL TTA Question Paper Control Systems Specialization 2007 1. An open loop control system has its (a) control action independent of the output or desired quantity (b) controlling action, depending upon

More information

Section 4: Operational Amplifiers

Section 4: Operational Amplifiers Section 4: Operational Amplifiers Op Amps Integrated circuits Simpler to understand than transistors Get back to linear systems, but now with gain Come in various forms Comparators Full Op Amps Differential

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

Review of Filter Types

Review of Filter Types ECE 440 FILTERS Review of Filters Filters are systems with amplitude and phase response that depends on frequency. Filters named by amplitude attenuation with relation to a transition or cutoff frequency.

More information

ECE 205 Dynamical Systems Spring

ECE 205 Dynamical Systems Spring ECE 205 Dynamical Systems Spring 2010-11 C. A. Berry ECE 205 Dynamical Systems Spring 2011-2012 Instructor: Carlotta Berry (berry123) Moench Hall, D-211 (812) 877-8657 Course Information Description: 3R-3L-4C

More information

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis 4.1 Transient Response and Steady-State Response The time response of a control system consists of two parts: the transient

More information

Lecture 18 Stability of Feedback Control Systems

Lecture 18 Stability of Feedback Control Systems 16.002 Lecture 18 Stability of Feedback Control Systems May 9, 2008 Today s Topics Stabilizing an unstable system Stability evaluation using frequency responses Take Away Feedback systems stability can

More information

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf Analog Electronics Lecture Op-amp Circuits and Active Filters Muhammad Amir Yousaf Instrumentation Amplifiers An instrumentation amplifier (IA) amplifies the voltage difference between its terminals. It

More information

ω d = driving frequency, F m = amplitude of driving force, b = damping constant and ω = natural frequency of undamped, undriven oscillator.

ω d = driving frequency, F m = amplitude of driving force, b = damping constant and ω = natural frequency of undamped, undriven oscillator. Physics 121H Fall 2015 Homework #14 16-November-2015 Due Date : 23-November-2015 Reading : Chapter 15 Note: Problems 7 & 8 are tutorials dealing with damped and driven oscillations, respectively. It may

More information

Modeling and Analysis of Systems Lecture #9 - Frequency Response. Guillaume Drion Academic year

Modeling and Analysis of Systems Lecture #9 - Frequency Response. Guillaume Drion Academic year Modeling and Analysis of Systems Lecture #9 - Frequency Response Guillaume Drion Academic year 2015-2016 1 Outline Frequency response of LTI systems Bode plots Bandwidth and time-constant 1st order and

More information

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for x(t), which is not a very good sinusoidal oscillator. A

More information

Introduction (cont )

Introduction (cont ) Active Filter 1 Introduction Filters are circuits that are capable of passing signals within a band of frequencies while rejecting or blocking signals of frequencies outside this band. This property of

More information

PHYS225 Lecture 15. Electronic Circuits

PHYS225 Lecture 15. Electronic Circuits PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;

More information

Chapter 15: Active Filters

Chapter 15: Active Filters Chapter 15: Active Filters 15.1: Basic filter Responses A filter is a circuit that passes certain frequencies and rejects or attenuates all others. The passband is the range of frequencies allowed to pass

More information

EE 42/100: Lecture 8. 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients. EE 42/100 Summer 2012, UC Berkeley T.

EE 42/100: Lecture 8. 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients. EE 42/100 Summer 2012, UC Berkeley T. EE 42/100: Lecture 8 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients Circuits with non-dc Sources Recall that the solution to our ODEs is Particular solution is constant for DC

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI ELECTRIC CIRCUITS Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI Includes 364 solved problems --fully explained Complete coverage of the fundamental, core concepts of electric circuits All-new chapters

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2002 Closed Book and Notes 1. Be sure to fill in your

More information

CHAPTER 8 ANALOG FILTERS

CHAPTER 8 ANALOG FILTERS ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm, and

More information

UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends.

UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends. UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends. 2 What is tree of a network? It is an interconnected open

More information

Friday, 1/27/17 Constraints on A(jω)

Friday, 1/27/17 Constraints on A(jω) Friday, 1/27/17 Constraints on A(jω) The simplest electronic oscillators are op amp based, and A(jω) is typically a simple op amp fixed gain amplifier, such as the negative gain and positive gain amplifiers

More information

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd EE233 HW7 Solution Nov. 16 th Due Date: Nov. 23 rd 1. Use a 500nF capacitor to design a low pass passive filter with a cutoff frequency of 50 krad/s. (a) Specify the cutoff frequency in hertz. fc c 50000

More information

Lab 11. Speed Control of a D.C. motor. Motor Characterization

Lab 11. Speed Control of a D.C. motor. Motor Characterization Lab 11. Speed Control of a D.C. motor Motor Characterization Motor Speed Control Project 1. Generate PWM waveform 2. Amplify the waveform to drive the motor 3. Measure motor speed 4. Estimate motor parameters

More information

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters EE247 Lecture 2 Material covered today: Nomenclature Filter specifications Quality factor Frequency characteristics Group delay Filter types Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay

More information

#8A RLC Circuits: Free Oscillations

#8A RLC Circuits: Free Oscillations #8A RL ircuits: Free Oscillations Goals In this lab we investigate the properties of a series RL circuit. Such circuits are interesting, not only for there widespread application in electrical devices,

More information

[ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system

[ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system Chapter Four Time Domain Analysis of control system The time response of a control system consists of two parts: the transient response and the steady-state response. By transient response, we mean that

More information

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics E1 - Filters type and design» Filter taxonomy and parameters» Design flow and tools» FilterCAD example» Basic II order cells

More information

Continuous-Time Analog Filters

Continuous-Time Analog Filters ENGR 4333/5333: Digital Signal Processing Continuous-Time Analog Filters Chapter 2 Dr. Mohamed Bingabr University of Central Oklahoma Outline Frequency Response of an LTIC System Signal Transmission through

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics E1 - Filters type and design» Filter taxonomy and parameters» Design flow and tools» FilterCAD example» Basic II order cells

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Design and comparison of butterworth and chebyshev type-1 low pass filter using Matlab

Design and comparison of butterworth and chebyshev type-1 low pass filter using Matlab Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Sept 2011, Vol. 4 423 Design and comparison of butterworth and chebyshev type-1 low pass filter using Matlab Tushar

More information

Advanced Electronic Systems

Advanced Electronic Systems Advanced Electronic Systems Damien Prêle To cite this version: Damien Prêle. Advanced Electronic Systems. Master. Advanced Electronic Systems, Hanoi, Vietnam. 2016, pp.140. HAL Id: cel-00843641

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

INF4420 Switched capacitor circuits Outline

INF4420 Switched capacitor circuits Outline INF4420 Switched capacitor circuits Spring 2012 1 / 54 Outline Switched capacitor introduction MOSFET as an analog switch z-transform Switched capacitor integrators 2 / 54 Introduction Discrete time analog

More information

Exam Signal Detection and Noise

Exam Signal Detection and Noise Exam Signal Detection and Noise Tuesday 27 January 2015 from 14:00 until 17:00 Lecturer: Sense Jan van der Molen Important: It is not allowed to use a calculator. Complete each question on a separate piece

More information

Experiment 1 LRC Transients

Experiment 1 LRC Transients Physics 263 Experiment 1 LRC Transients 1 Introduction In this experiment we will study the damped oscillations and other transient waveforms produced in a circuit containing an inductor, a capacitor,

More information

LECTURER NOTE SMJE3163 DSP

LECTURER NOTE SMJE3163 DSP LECTURER NOTE SMJE363 DSP (04/05-) ------------------------------------------------------------------------- Week3 IIR Filter Design -------------------------------------------------------------------------

More information

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified

More information

Brief Introduction to Signals & Systems. Phani Chavali

Brief Introduction to Signals & Systems. Phani Chavali Brief Introduction to Signals & Systems Phani Chavali Outline Signals & Systems Continuous and discrete time signals Properties of Systems Input- Output relation : Convolution Frequency domain representation

More information

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No Final Exam EE313 Signals and Systems Fall 1999, Prof. Brian L. Evans, Unique No. 14510 December 11, 1999 The exam is scheduled to last 50 minutes. Open books and open notes. You may refer to your homework

More information

Filter Notes. You may have memorized a formula for the voltage divider - if not, it is easily derived using Ohm's law, Vo Vi

Filter Notes. You may have memorized a formula for the voltage divider - if not, it is easily derived using Ohm's law, Vo Vi Filter Notes You may have memorized a formula for the voltage divider - if not, it is easily derived using Ohm's law, Vo Vi R2 R+ R2 If you recall the formula for capacitive reactance, the divider formula

More information

AC BEHAVIOR OF COMPONENTS

AC BEHAVIOR OF COMPONENTS AC BEHAVIOR OF COMPONENTS AC Behavior of Capacitor Consider a capacitor driven by a sine wave voltage: I(t) 2 1 U(t) ~ C 0-1 -2 0 2 4 6 The current: is shifted by 90 o (sin cos)! 1.0 0.5 0.0-0.5-1.0 0

More information

Experiment 7: Frequency Modulation and Phase Locked Loops

Experiment 7: Frequency Modulation and Phase Locked Loops Experiment 7: Frequency Modulation and Phase Locked Loops Frequency Modulation Background Normally, we consider a voltage wave form with a fixed frequency of the form v(t) = V sin( ct + ), (1) where c

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

Filter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017

Filter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017 Filter Design, Active Filters & Review EGR 220, Chapter 14.7, 14.11 December 14, 2017 Overview ² Passive filters (no op amps) ² Design examples ² Active filters (use op amps) ² Course review 2 Example:

More information

Signals and Filtering

Signals and Filtering FILTERING OBJECTIVES The objectives of this lecture are to: Introduce signal filtering concepts Introduce filter performance criteria Introduce Finite Impulse Response (FIR) filters Introduce Infinite

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen INF4420 Switched capacitor circuits Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Switched capacitor introduction MOSFET as an analog switch z-transform Switched capacitor integrators

More information

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Tuned Amplifiers John Battiscombe Gunn Born in 1928 in Egypt (father was a famous Egyptologist), and was Educated in England Worked at IBM s Thomas J. Watson Research Center

More information

Lab 6 rev 2.1-kdp Lab 6 Time and frequency domain analysis of LTI systems

Lab 6 rev 2.1-kdp Lab 6 Time and frequency domain analysis of LTI systems Lab 6 Time and frequency domain analysis of LTI systems 1 I. GENERAL DISCUSSION In this lab and the next we will further investigate the connection between time and frequency domain responses. In this

More information

EE247 - Lecture 2 Filters. EECS 247 Lecture 2: Filters 2005 H.K. Page 1. Administrative. Office hours for H.K. changed to:

EE247 - Lecture 2 Filters. EECS 247 Lecture 2: Filters 2005 H.K. Page 1. Administrative. Office hours for H.K. changed to: EE247 - Lecture 2 Filters Material covered today: Nomenclature Filter specifications Quality factor Frequency characteristics Group delay Filter types Butterworth Chebyshev I Chebyshev II Elliptic Bessel

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune

More information

Simple Oscillators. OBJECTIVES To observe some general properties of oscillatory systems. To demonstrate the use of an RLC circuit as a filter.

Simple Oscillators. OBJECTIVES To observe some general properties of oscillatory systems. To demonstrate the use of an RLC circuit as a filter. Simple Oscillators Some day the program director will attain the intelligent skill of the engineers who erected his towers and built the marvel he now so ineptly uses. Lee De Forest (1873-1961) OBJETIVES

More information

Low Pass Filter Rise Time vs Bandwidth

Low Pass Filter Rise Time vs Bandwidth AN119 Dataforth Corporation Page 1 of 7 DID YOU KNOW? The number googol is ten raised to the hundredth power or 1 followed by 100 zeros. Edward Kasner (1878-1955) a noted mathematician is best remembered

More information

LC Resonant Circuits Dr. Roger King June Introduction

LC Resonant Circuits Dr. Roger King June Introduction LC Resonant Circuits Dr. Roger King June 01 Introduction Second-order systems are important in a wide range of applications including transformerless impedance-matching networks, frequency-selective networks,

More information

Lab 5 Second Order Transient Response of Circuits

Lab 5 Second Order Transient Response of Circuits Lab 5 Second Order Transient Response of Circuits Lab Performed on November 5, 2008 by Nicole Kato, Ryan Carmichael, and Ti Wu Report by Ryan Carmichael and Nicole Kato E11 Laboratory Report Submitted

More information

Department of Electronics &Electrical Engineering

Department of Electronics &Electrical Engineering Department of Electronics &Electrical Engineering Question Bank- 3rd Semester, (Network Analysis & Synthesis) EE-201 Electronics & Communication Engineering TWO MARKS OUSTIONS: 1. Differentiate between

More information

Physics 364, Fall 2014, reading due your answers to by 11pm on Sunday

Physics 364, Fall 2014, reading due your answers to by 11pm on Sunday Physics 364, Fall 204, reading due 202-09-07. Email your answers to ashmansk@hep.upenn.edu by pm on Sunday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: (a) First

More information

ActiveLowPassFilter -- Overview

ActiveLowPassFilter -- Overview ActiveLowPassFilter -- Overview OBJECTIVES: At the end of performing this experiment, learners would be able to: Describe the concept of active Low Pass Butterworth Filter Obtain the roll-off factor and

More information

LABORATORY 3: Transient circuits, RC, RL step responses, 2 nd Order Circuits

LABORATORY 3: Transient circuits, RC, RL step responses, 2 nd Order Circuits LABORATORY 3: Transient circuits, RC, RL step responses, nd Order Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: RC circuits Integrators Differentiators

More information

EE42: Running Checklist of Electronics Terms Dick White

EE42: Running Checklist of Electronics Terms Dick White EE42: Running Checklist of Electronics Terms 14.02.05 Dick White Terms are listed roughly in order of their introduction. Most definitions can be found in your text. Terms2 TERM Charge, current, voltage,

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Lecture Week 7 Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Quiz 5 KCL/KVL Please clear desks and turn off phones and put them in back packs You need a pencil, straight

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information