Comparison and Verification of Propagation Models Accuracy for Specific Urban Area

Size: px
Start display at page:

Download "Comparison and Verification of Propagation Models Accuracy for Specific Urban Area"

Transcription

1 POSTER 2015, PRAGUE MAY 14 1 Comparison and Verification of Propagation Models Accuracy for Specific Urban Area Tomáš KOŠŤÁL 1, Martin KOŠŤÁL 2 1 Dept. of Electric Drives and Traction, Czech Technical University, Technická 2, Praha, Czech Republic 2 Faculty of Electrical Engineering, Czech Technical University, Technická 2, Praha, Czech Republic kostatom@fel.cvut.cz, kostama7@fel.cvut.cz Abstract. This article concerns verification of some of the models used for signal propagation in urban areas. After introduction, which briefly covers the historical evolution of mobile communication, it shortly describes Okumura - Hata, Ikegami and COST231 Walfish prediction models in urban areas and their usage. Furthermore it deals with problematics of practical measurements with a hand-held device and suitable applications for this purpose. Finally it presents a comparison of measurement at 900 MHz and model prediction for Dejvice district of Prague. Keywords Propagation models, Okumura - Hata, Ikegami, COST231 - Walfish, radio wave propagation, cellular network, mobile networks. 1. Introduction Communications and information are nowadays key pillars of modern human society. The new methods of communicating have been always important factors, that influenced the accelerating development of humankind. During past centuries, one can see a continuous search for faster, more robust and more reliable means of communication over long distances. The real breakthrough in means of communication was the usage of electric signal over previous optical or acoustic. The electrical telegraph was made available in the end of the first half of the nineteenth century. It was later followed by invention of telephone in seventieth, but all these progressive means of communications were still limited only to fixed places. There was still a demand to have a kind of communication that would be available literally everywhere without any fixed wiring. These visions became a reality thanks to many researchers and inventors like Hertz, Tesla, Popov, Marconi and others. From this time on, more and more usage of electromagnetic waves for transmitting information could be seen. The first mobile phones used in cars were available in forties. But this was still not a system for wider public. Other significant milestones came in eighties, when first hand-held mobile telephony devices were presented and first mobile networks like Nordic Mobile Telephony went operable. Since then, mobile telecommunications became a standard constituent of everyday life in most parts of the world. This created huge demand for robust and reliable mobile networks. Construction of a modern cellular network is a very complex task. One of the biggest problems is propagation of the signal. In the research history of electromagnetic wave have been discovered, that the radio signal fading can be divided into three basic types which are path loss, shadowing and fast fading [4]. Path loss is given by the physical properties of electromagnetic waves and can be described with a simple equation. Another type, shadowing, is caused by reflection, diffraction and scattering in the propagation environment which consists of hills, trees, buildings, vehicles, people, etc. The last type, fast fading is caused by movement, interference and noise and thus is mostly described by statistical methods. More exact description is not available by the time, because of a great complexity of needed calculations and lack of sufficient computer power. Cells of a modern cellular mobile network are comparatively small hence there is a large amount of them [1]. Antennas are thus mounted to the rooftops of the buildings in most of the cases, so they are not very high over the terrain compared to other means of transmitters such as radio or television. This fact causes, that there are only small possibilities to a have a visual contact between antennas of a transmitter and a receiver. For such micro and macrocells different models have been developed, that will be described in following chapters. 2. Propagation models In this section we will discuss the possible propagation models for Dejvice district, where we have conducted our measurements. It is located in Prague, Czech Republic in wider city centre. The majority of buildings is five to six floors and comprises of compact blocks. It is

2 2 T. KOŠŤÁL, M. KOŠŤÁL, COMPARISON AND VERIFICATION OF PROPAGATION MODELS ACCURACY FOR SPECIFIC URBAN AREA traditional inter-war period bricks housebuilding. There are not much trees except for main boulevards and other streets are comparatively wide (approximately 20 m). Base Transceiver Stations (BTS) are located on the rooftops in average level of 25 m above ground. 2000MHz for COST231 extension. The complexity of this model and several verifications made it so popular, that in lots of cases it is taken as a reference for comparison with other prediction methods. This model differs for three basic urban types open, suburban and urban. In our case we use the formula for urban areas. The model is accurate from the distance of one kilometre, however we will use it for shorter distance as a reference. The following formula describes the situation in urban area: where L=A B log R E (2) A=69,55 26,16log f c 13,82log h b B=44,9 6,55 log h b E= 1,1 log f c 0,7 h m 1,56 log f c 0,8 where L is attenuation in db over distance R in kilometres and f c is carrier frequency in MHz. Furthermore h b states for base station height and h m for mobile station height in meters. Fig. 1. Netmonitor application Dejvice measured area map with BTS locations. If the space, where the signal propagates, would be without any barriers and obstacles, the total propagation loss would be described by following free space loss formula[4]: L FS =20log 4 π R f c (1) In the real application, the signal has to overcome various landscape objects, vegetation or buildings for which the free space loss could not be used. In addition to the free space path loss we use advanced empirical and physical models. Empirical models are based on measurements of real signal propagation in typical areas [6]. The accuracy of such models is better than the free space path loss, they do not increase calculation difficulty, but market demands more accurate methods. For this reason, physical models were introduced. Their calculation difficulty is still acceptable. These models also need more information about the environment than the empirical ones. In following paragraphs, we will shortly describe the most suitable models for signal propagation in harsh conditions that urban area represents. 2.1 Okumura-Hata Model The most famous propagation model for macrocells [3]. It represents a fully empirical method, based on large scale measurements in Tokyo and its surrounding. It covers frequencies from 150MHz up to 1500MHz or up to 2.2 Ikegami Model The intention of this model is to create an entirely deterministic physical prediction of field strengths at particular street level points [2]. It uses details about heights of buildings and their distance from each other and trace ray paths between transmitter and receiver. The tracing accounts only single reflection from walls. Calculation of a diffraction uses single edge approximation at the building closest to the receiver and a constant value of wall reflection is assumed. The other specific feature of this model is, that it neglects the difference between roof and transmitting antenna heights. Fig. 2. Interpretation of Ikegami model. The reflected and diffracted rays are power summed and we get a following formula: L E =10 log f c 10 log sin Φ + 20 log h 0 h m 10 log w 10 log 1 3 L r 2 5,8 (3) where Φ is angle between a street and direct path to BTS, w is street width and h 0 is a building height. Because this formula describes only the loss behind the last diffraction and reflection from the neighbouring building, we need to add a free space loss, described in equation (1), to get the full total loss. We can then rewrite the equation to get the total loss in Ikegami model as: L=L E L FS (4)

3 POSTER 2015, PRAGUE MAY Cost231 Walfish-Ikegami Model Enhanced Walfish-Bertoni model includes physical characteristics and empirical corrections for more accurate prediction. The model considers different formulas for line of sight between BTS and mobile, and for non line of sight, when the direct path is obstructed [4]. For our purpose we use only non line of sight version, which is given by L=L FS + L msd + L sd (5) The model uses free space path loss as a basic attenuation level, in equation (1). L msd states for multiple screen diffraction over rooftops. Diffraction to street level is based on Ikegami model and represented by L sd : L sd = 16,9 10 log f c 10 log h 0 h m 2 L Φ w m (6) purposes we have used a free app called Netmonitor. From it's log file we could extract the GPS coordinates and cell ID with signal strength by our script. L(Φ)=4 0,114(Φ 35 ) (7) we use Φ - 90, so we get where L Φ =4 0,069=3,931 (8) L msd =L bsh k a k d log R k f log f c 9 log w (9) L bsh = 18log[1 h b h 0 ] k a =54 k d =18 for h b > h 0, which is our case. (10) We consider our area as medium-sized city, for which we can write k f = 4 0,7 f c (11) 3. Measurements We have measured the received signal power with a generic mobile phone receiver. From the measured data we have obtained the propagation loss. Measurements were conducted in Dejvice district, in the neighbourhood of CTU campus. The mobile phone used is Doogee DG550 running Android 4.4.2, advantage of this phone is, that it can provide signal information about neighbouring cells. Surprisingly well known manufactures such as Samsung or LG restrict this feature so monitoring cell cross sections with their devices is impossible. Android API provides complex information about BTS, but only for first SIM card in case of multiple SIM device. In our search for a logging app, we have discovered, that free app with full feature set is almost impossible to find. There are few paid such as G-NetTrack Pro and TEMS MobileInsight, but for our Fig. 3. Netmonitor application interface. UPLINK Mobile station RF power TX antenna gain Peak EIRP Base station RX antenna gain Diversity reception Depolarization loss Low noise amplifier BTS sensitivity Minimum reception level Isotropic path loss DOWNLINK Base station RF power dbm 45,0 A Combiner loss db 2,5 B db 3,0 C TX antenna gain dbi 16,0 D Peak EIRP dbm 55,5 E=A B C+D Mobile station RX antenna gain dbi 0,00 F db 0,00 G MS sensitivity dbm -105,00 H Minimum reception level dbm -105,00 I= F+G+H Isotropic path loss db 160,50 J=E I Tab. 1. Transmitter and receiver parameters [2]. The terrain measurement took us many days, we have covered the Dejvice district substantially densely. We used some tedious trigonometry to count buildings and BTS antennas height. Widths of streets were calculated from air imaging. 3.1 Attenuation calculation dbm 33 A db 0 B dbi 0 C dbm 33 D=A B+C dbi 16 E db 4 F db 0 G db 5 H db 3 I dbm -106 J dbm -128 K = E F+G H+I+J db 161 L=D K For calculation of the attenuation we take a local mean received power and subtract it from the transmitted

4 4 T. KOŠŤÁL, M. KOŠŤÁL, COMPARISON AND VERIFICATION OF PROPAGATION MODELS ACCURACY FOR SPECIFIC URBAN AREA Fig. 4. Graph of measured data and model predictions. Fig. 5. Graph of prediction models adjusted with offset. power in dbm thus we get attenuation over distance from the base station. Local mean received power is calculated from 20 to 50 samples in approximately 12m 2 area. The mean power is than subtracted from peak equivalent isotropically radiated power (Downlink EIRP) from the BTS, see Tab. 1. Losses and gain at the receiver can be omitted, because it is typically 0 db and 0 dbi respectively. Distance is taken from GPS coordinates. Other parameters for propagation models are in Tab. 2. Street width Building height BTS height 20 m 20 m 25 m 4. Results Minimal measured loss is 110dB and maximal 150dB. All samples are within this range. Loss larger than 150dB could not be measured due to sensitivity limitation and noise. We have done logarithmic fitting on measured data which gave us good logarithmic prediction curve [5]. See comparison of prediction models in Fig. 4. The measurements show pathloss of 110dB and worse. The Okumura-Hata or COST231 Walfish-Ikegami models can be used as a prediction border. The Ikegami model shows a correlation with the fitted logarithmic curve less than 10dB at distances larger than 200m. Fig. 5 shows prediction models with offset, so that they approximate the measured Tab. 2. Average values used for propagation models.

5 POSTER 2015, PRAGUE MAY 14 5 data more accurately. Correlation after this modification is still not acceptable. 5. Conclusion We have done measurement of GSM 900 MHz band signal coverage in Dejvice district and compared it with commonly used signal propagation models (see Fig. 4). The least accurate one proved to be Okumura-Hata model, but it is not designed for distances shorter than one kilometre. Cost231-Walfish - Ikegami model had similar results. The attenuation is underestimated by factor of 25 db (Fig. 5). Surprisingly well accurate is the Ikegami model where deviation is negligible. For further model prediction in Dejvice district, we suggest to use more physical models based on raytracing like the Ikegami model. About Authors... Tomáš KOŠŤÁL is a graduate student at the Dept. of Electric Drives and Traction since In his bachelor studies, he studied the Heavy Current Engineering program and continued in his master studies with program Electrical Engineering, Power Engineering and Management. He graduated in 2014 and continues with his doctoral studies at the same department. Currently he is focusing on digital control of semiconductor converters. Martin KOŠŤÁL is an undergraduate student at Faculty of Electrical Engineering, CTU in Prague. In 2014 he studied at Aalto University in Finland. Currently he is focusing on digital communication, multimedia and electronics. References [1] HEINE, G. GSM Networks: Protocols, Terminology, and Implementation. Norwood: Artech House inc., [2] LEMPIAINEN, J., MANNINEN, M. Radio interface system planning for GSM/GPRS/UMTS. Boston: Kluwer Academic Publishers, c2001, xiv, 278 p. ISBN [3] HATA, M. Empirical formula for propagation loss in land mobile radio services, IEEE Transactions on Vehicular Technology, 29, , [4] SAUNDERS, S. R., ARAGON-ZAVALA, A. Antennas and propagation for wireless communication systems. 2nd ed. Hoboken, NJ: J. Wiley & Sons, c2007, xxii, 524 p. ISBN [5] DIAWUO, K., CEMBERBATCH T. Data Fitting to Propagation Model Using Least Square Algorithm: A Case Study in Ghana. International Journal of Engineering Science, Vol. 2, No. 6, June [6] KLOZAR, L., PROKOPEC, J. Propagation path loss models for mobile communication. In: Proceedings of 21st International Conference Radioelektronika DOI: /radioelek [7] RAHNEMA, M. UMTS network planning, optimization, and interoperation with GSM. Hoboken, NJ: IEEE Press, c2008, xviii, 327 p. ISBN [8] [9] ABHAYAWARDHANA, V.S., WASSELL,I.J., CROSBY, D., SELLARS, M.P., BROWN, M.G. Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems. In: 2005 IEEE 61st Vehicular Technology Conference. DOI: /vetecs

Investigation of radio waves propagation models in Nigerian rural and sub-urban areas

Investigation of radio waves propagation models in Nigerian rural and sub-urban areas AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2010, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X doi:10.5251/ajsir.2010.1.2.227.232 Investigation of radio waves propagation models

More information

Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 900, 1800, and 2100 MHz Bands *

Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 900, 1800, and 2100 MHz Bands * Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 9, 1, and 2 MHz Bands * Dr. Tammam A. Benmus Eng. Rabie Abboud Eng. Mustafa Kh. Shater EEE Dept. Faculty of Eng. Radio

More information

Mobile Radio Wave propagation channel- Path loss Models

Mobile Radio Wave propagation channel- Path loss Models Mobile Radio Wave propagation channel- Path loss Models 3.1 Introduction The wireless Communication is one of the integral parts of society which has been a focal point for sharing information with different

More information

Simulation of Outdoor Radio Channel

Simulation of Outdoor Radio Channel Simulation of Outdoor Radio Channel Peter Brída, Ján Dúha Department of Telecommunication, University of Žilina Univerzitná 815/1, 010 6 Žilina Email: brida@fel.utc.sk, duha@fel.utc.sk Abstract Wireless

More information

Radio propagation modeling on 433 MHz

Radio propagation modeling on 433 MHz Ákos Milánkovich 1, Károly Lendvai 1, Sándor Imre 1, Sándor Szabó 1 1 Budapest University of Technology and Economics, Műegyetem rkp. 3-9. 1111 Budapest, Hungary {milankovich, lendvai, szabos, imre}@hit.bme.hu

More information

Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System

Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System Dr. S. A. Mawjoud samialmawjoud_2005@yahoo.com Abstract The paper deals with study of affecting parameters on the communication

More information

Optimization of Hata Pathloss Model Using Terrain Roughness Parameter

Optimization of Hata Pathloss Model Using Terrain Roughness Parameter Software Engineering 2017; 5(3): 51-56 http://www.sciencepublishinggroup.com/j/se doi: 10.11648/j.se.20170503.12 ISSN: 2376-8029 (Print); ISSN: 2376-8037 (Online) Optimization of Hata Pathloss Model Using

More information

CORRELATION FOR MULTI-FREQUENCY PROPAGA- TION IN URBAN ENVIRONMENTS. 3 Place du Levant, Louvain-la-Neuve 1348, Belgium

CORRELATION FOR MULTI-FREQUENCY PROPAGA- TION IN URBAN ENVIRONMENTS. 3 Place du Levant, Louvain-la-Neuve 1348, Belgium Progress In Electromagnetics Research Letters, Vol. 29, 151 156, 2012 CORRELATION FOR MULTI-FREQUENCY PROPAGA- TION IN URBAN ENVIRONMENTS B. Van Laethem 1, F. Quitin 1, 2, F. Bellens 1, 3, C. Oestges 2,

More information

Radio Path Prediction Software

Radio Path Prediction Software Radio Path Prediction Software for Command and Control Scenario Developers Reference# C-168, Michael Shattuck Command and Control Research and Technology Symposium June 2006 Topics Link Planning for Wireless

More information

PROPAGATION MODELING 4C4

PROPAGATION MODELING 4C4 PROPAGATION MODELING ledoyle@tcd.ie 4C4 http://ledoyle.wordpress.com/temp/ Classification Band Initials Frequency Range Characteristics Extremely low ELF < 300 Hz Infra low ILF 300 Hz - 3 khz Ground wave

More information

Propagation Loss Determination in Cluster Based Gsm Base Stations in Lagos Environs

Propagation Loss Determination in Cluster Based Gsm Base Stations in Lagos Environs International Transaction of Electrical and Computer Engineers System, 2014, Vol. 2, No. 1, 28-33 Available online at http://pubs.sciepub.com/iteces/2/1/5 Science and Education Publishing DOI:10.12691/iteces-2-1-5

More information

Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria

Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria Ifeagwu E.N. 1 Department of Electronic and Computer Engineering, Nnamdi

More information

Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 900, 1800, and 2100 MHz Bands

Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 900, 1800, and 2100 MHz Bands International Journal of Sciences and Techniques of Automatic control & computer engineering IJ-STA, Volume 1, N 2, Special Issue ESA, July 16, pp 2121 2126. Neural Network Approach to Model the Propagation

More information

Multiple Cell Partitions for Increasing the CDMA-Based Cell Capacity

Multiple Cell Partitions for Increasing the CDMA-Based Cell Capacity Multiple Partitions for Increasing the CDMA-Based Capacity Ardian Ulvan 1, Diogo Ribeiro 2 and Robert Bestak 1 1 Czech Technical University in Prague, Technicka 2 166 27, Praha 6, Czech Republic ulvana1,

More information

Analysing Radio Wave Propagation Model for Indoor Wireless Communication

Analysing Radio Wave Propagation Model for Indoor Wireless Communication Analysing Radio Wave Propagation Model for Indoor Wireless Communication Phyo Thu Zar Tun, Aye Su Hlaing Abstract for several wireless communication technologies, many propagation models have been presented

More information

Aalto University School of Electrical Engineering. ELEC-E4750 Radiowave Propagation and Scattering Session 8: Cellular links (1)

Aalto University School of Electrical Engineering. ELEC-E4750 Radiowave Propagation and Scattering Session 8: Cellular links (1) ELEC-E4750 Radiowave Propagation and Scattering Session 8: Cellular links (1) ELEC-E4750 10.11.2016 1 Schedule Wk Date Location New topics, lectures and deadlines 43 44 45 46 47 Tue. 25 Oct. R037/TU3 1194-1195

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Wireless Communication Channels Lecture 6: Channel Models EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Content Modelling methods Okumura-Hata path loss model COST 231 model Indoor models

More information

Mobile Hata Model and Walkfisch Ikegami

Mobile Hata Model and Walkfisch Ikegami Calculate Path Loss in Transmitter in Global System Mobile By Using Hata Model and Ikegami Essam Ayiad Ashebany 1, Silaiman Khalifa Yakhlef 2 and A. R. Zerek 3 1 Post grade Student, Libyan Academy of Graduate

More information

REVISITING RADIO PROPAGATION PREDICTIONS FOR A PROPOSED CELLULAR SYSTEM IN BERHAMPUR CITY

REVISITING RADIO PROPAGATION PREDICTIONS FOR A PROPOSED CELLULAR SYSTEM IN BERHAMPUR CITY REVISITING RADIO PROPAGATION PREDICTIONS FOR A PROPOSED CELLULAR SYSTEM IN BERHAMPUR CITY Rowdra Ghatak, T.S.Ravi Kanth* and Subrat K.Dash* National Institute of Science and Technology Palur Hills, Berhampur,

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Computation and Verification of Propagation Loss Models based on Electric Field Data in Mobile Cellular

More information

ECC Report 276. Thresholds for the coordination of CDMA and LTE broadband systems in the 400 MHz band

ECC Report 276. Thresholds for the coordination of CDMA and LTE broadband systems in the 400 MHz band ECC Report 276 Thresholds for the coordination of CDMA and LTE broadband systems in the 400 MHz band 27 April 2018 ECC REPORT 276 - Page 2 0 EXECUTIVE SUMMARY This Report provides technical background

More information

UHF Radio Frequency Propagation Model for Akure Metropolis

UHF Radio Frequency Propagation Model for Akure Metropolis Abstract Research Journal of Engineering Sciences ISSN 2278 9472 UHF Radio Frequency Propagation Model for Akure Metropolis Famoriji J.O. and Olasoji Y.O. Federal University of Technology, Akure, Nigeria

More information

RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM

RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 2, 2016 ISSN 2286-3540 RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM Florin ALMĂJANU 1, Cosmina-Valentina NĂSTASE 2, Alexandru MARŢIAN

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Wireless Channel Losses and Emperical Channel Models

Wireless Channel Losses and Emperical Channel Models IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 2, Ver. II (Mar.-Apr. 2017), PP 01-11 www.iosrjournals.org Wireless Channel Losses

More information

Channel Modelling ETIM10. Channel models

Channel Modelling ETIM10. Channel models Channel Modelling ETIM10 Lecture no: 6 Channel models Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-03 Fredrik Tufvesson

More information

Lecture - 06 Large Scale Propagation Models Path Loss

Lecture - 06 Large Scale Propagation Models Path Loss Fundamentals of MIMO Wireless Communication Prof. Suvra Sekhar Das Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 06 Large Scale Propagation

More information

Empirical Path Loss Models

Empirical Path Loss Models Empirical Path Loss Models 1 Free space and direct plus reflected path loss 2 Hata model 3 Lee model 4 Other models 5 Examples Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1

More information

Atoll. SPM Calibration Guide. RF Planning and Optimisation Software. Version AT271_MCG_E2

Atoll. SPM Calibration Guide. RF Planning and Optimisation Software. Version AT271_MCG_E2 Atoll RF Planning and Optimisation Software Version 2.7.1 SPM Calibration Guide AT271_MCG_E2 Contact Information Forsk (Head Office) 7 rue des Briquetiers 31700 Blagnac France www.forsk.com sales@forsk.com

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

Mobile Communications

Mobile Communications Mobile Communications Part IV- Propagation Characteristics Professor Z Ghassemlooy School of Computing, Engineering and Information Sciences University of Northumbria U.K. http://soe.unn.ac.uk/ocr Contents

More information

Channel models and antennas

Channel models and antennas RADIO SYSTEMS ETIN15 Lecture no: 4 Channel models and antennas Anders J Johansson, Department of Electrical and Information Technology anders.j.johansson@eit.lth.se 29 March 2017 1 Contents Why do we need

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3)

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3) Rec. ITU-R P.833-2 1 RECOMMENDATION ITU-R P.833-2 ATTENUATION IN VEGETATION (Question ITU-R 2/3) Rec. ITU-R P.833-2 (1992-1994-1999) The ITU Radiocommunication Assembly considering a) that attenuation

More information

Link Budget Calculation

Link Budget Calculation Link Budget Calculation Training materials for wireless trainers This 60 minute talk is about estimating wireless link performance by using link budget calculations. It also introduces the Radio Mobile

More information

A Consideration of Propagation Loss Models for GSM during Harmattan in N djamena (Chad)

A Consideration of Propagation Loss Models for GSM during Harmattan in N djamena (Chad) 43 A Consideration of Propagation Loss Models for GSM during Harmattan in N djamena (Chad) D.D. DAJAB AND NALDONGAR PARFAIT * Department of Electrical and Computer Engineering, AHMADU BELLO University,

More information

Review of Path Loss models in different environments

Review of Path Loss models in different environments Review of Path Loss models in different environments Mandeep Kaur 1, Deepak Sharma 2 1 Computer Scinece, Kurukshetra Institute of Technology and Management, Kurukshetra 2 H.O.D. of CSE Deptt. Abstract

More information

Correspondence. The Performance of Polarization Diversity Schemes at a Base Station in Small/Micro Cells at 1800 MHz

Correspondence. The Performance of Polarization Diversity Schemes at a Base Station in Small/Micro Cells at 1800 MHz IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 3, AUGUST 1998 1087 Correspondence The Performance of Polarization Diversity Schemes at a Base Station in Small/Micro Cells at 1800 MHz Jukka J.

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS

ECE6604 PERSONAL & MOBILE COMMUNICATIONS ECE6604 PERSONAL & MOBILE COMMUNICATIONS GORDON L. STÜBER School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia, 30332-0250 Ph: (404) 894-2923 Fax: (404) 894-7883

More information

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India Indian Journal of Radio & Space Physics Vol. 36, October 2007, pp. 423-429 Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of

More information

Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas

Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas Syed Fahad Yunas #, Jussi Turkka #2, Panu Lähdekorpi #3, Tero Isotalo #4, Jukka Lempiäinen #5 Department of Communications

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration 5.9 GHz V2X Modem Performance Challenges with Vehicle Integration October 15th, 2014 Background V2V DSRC Why do the research? Based on 802.11p MAC PHY ad-hoc network topology at 5.9 GHz. Effective Isotropic

More information

Indoor Coverage Prediction and Optimization for UMTS Macro Cells

Indoor Coverage Prediction and Optimization for UMTS Macro Cells Indoor Coverage Prediction and Optimization for UMTS Macro Cells Wolfgang Karner, Alexander Paier, Markus Rupp Institute of Communications and Radio-Frequency Engineering Vienna University of Technology,

More information

Per Cell Propagation Model Calibration Approach for Mobile Positioning

Per Cell Propagation Model Calibration Approach for Mobile Positioning Per Cell Propagation Model Calibration Approach for Mobile Positioning Dominic O. Samoita, Francois Rocaries, Yskandar Hamam, Senior Member, IEEE Department of the French-South Africa Technical Institute

More information

A Simple Field Strength Model for Broadcast Application in VHF Band in Minna City, Niger State, Nigeria

A Simple Field Strength Model for Broadcast Application in VHF Band in Minna City, Niger State, Nigeria A Simple Field Strength Model for Broadcast Application in VHF Band in Minna City, Niger State, Nigeria Abiodun Stephen Moses * Onyedi David Oyedum Moses Oludare Ajewole Julia Ofure Eichie Department of

More information

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Multipath 2 3 4 5 Friis Formula TX Antenna RX Antenna = 4 EIRP= Power spatial density 1 4 6 Antenna Aperture = 4 Antenna Aperture=Effective

More information

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas A. Dimitriou, T. Vasiliadis, G. Sergiadis Aristotle University of Thessaloniki, School of Engineering, Dept.

More information

Radio Propagation Characteristics in the Large City and LTE protection from STL interference

Radio Propagation Characteristics in the Large City and LTE protection from STL interference ICACT Transactions on Advanced Communications Technology (TACT) Vol. 3, Issue 6, November 2014 542 Radio Propagation Characteristics in the Large City and LTE protection from STL interference YoungKeun

More information

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Issue 1 May 2013 Spectrum Management and Telecommunications Technical Bulletin Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Aussi disponible en

More information

The need for Tower Mounted Amplifiers

The need for Tower Mounted Amplifiers The need for Tower Mounted Amplifiers João Moreira Rebelo and Nuno Borges Carvalho a15853@alunos.det.ua.pt and nborges@ieee.org Instituto de Telecomunicações, Universidade de Aveiro, Portugal Introduction

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

TESTING OF FIXED BROADBAND WIRELESS SYSTEMS AT 5.8 GHZ

TESTING OF FIXED BROADBAND WIRELESS SYSTEMS AT 5.8 GHZ To be presented at IEEE Denver / Region 5 Conference, April 7-8, CU Boulder, CO. TESTING OF FIXED BROADBAND WIRELESS SYSTEMS AT 5.8 GHZ Thomas Schwengler Qwest Communications Denver, CO (thomas.schwengler@qwest.com)

More information

Suitable Propagation Loss Models for Mobile Communications in Jordan

Suitable Propagation Loss Models for Mobile Communications in Jordan Suitable Propagation Loss Models for Mobile Communications in Jordan Mohammed S. H. Al Salameh and Muneer M. Al-Zu'bi Department of Electrical Engineering Jordan University of Science and Technology Irbid

More information

URUGUAY has adopted in 2011 the ISDB-Tb digital television. Studying Digital Terrestrial TV coverage

URUGUAY has adopted in 2011 the ISDB-Tb digital television. Studying Digital Terrestrial TV coverage IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING 2014 1 Studying Digital Terrestrial TV coverage Pablo Flores Guridi, Member, IEEE, Andrés Gómez Caram, Agustín Labandera, Gonzalo

More information

Research Article Penetration Loss Measurement and Modeling for HAP Mobile Systems in Urban Environment

Research Article Penetration Loss Measurement and Modeling for HAP Mobile Systems in Urban Environment Hindawi Publishing Corporation EURASIP Journal on Wireless Communications and Networking Volume 8, Article ID 54329, 7 pages doi:.1155/8/54329 Research Article Penetration Loss Measurement and Modeling

More information

Performance Evaluation of Adaptive MIMO Switching in Long Term Evolution

Performance Evaluation of Adaptive MIMO Switching in Long Term Evolution Performance Evaluation of Adaptive MIMO Switching in Long Term Evolution Muhammad Usman Sheikh, Rafał Jagusz,2, Jukka Lempiäinen Department of Communication Engineering, Tampere University of Technology,

More information

Atoll SPM (Standard Propagation Model) calibration guide

Atoll SPM (Standard Propagation Model) calibration guide Atoll SPM (Standard Propagation Model) calibration guide January 2004 FORSK 7 rue des Briquetiers 31700 BLAGNAC France www.forsk.com SARL au capital de 150 000 - RCS Toulouse 87 B 1302 - SIRET 342 662

More information

Path loss Prediction Models for Wireless Communication Channels and its Comparative Analysis

Path loss Prediction Models for Wireless Communication Channels and its Comparative Analysis International Journal of Engineering, Management & Sciences (IJEMS) ISSN-2348 3733, Volume-2, Issue-3, March 2015 Path loss Prediction Models for Wireless Communication Channels and its Comparative Analysis

More information

Calculation of Minimum Frequency Separation for Mobile Communication Systems

Calculation of Minimum Frequency Separation for Mobile Communication Systems THE FIELD OF SCIENTIFIC AND TECHNICAL RESEARCH COST 259 TD(98) EURO-COST Source: Germany Calculation of Minimum Frequency Separation for Mobile Communication Systems Abstract This paper presents a new

More information

Applying ITU-R P.1411 Estimation for Urban N Network Planning

Applying ITU-R P.1411 Estimation for Urban N Network Planning Progress In Electromagnetics Research Letters, Vol. 54, 55 59, 2015 Applying ITU-R P.1411 Estimation for Urban 802.11N Network Planning Thiagarajah Siva Priya, Shamini Pillay Narayanasamy Pillay *, Vasudhevan

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS

ECE6604 PERSONAL & MOBILE COMMUNICATIONS ECE6604 PERSONAL & MOBILE COMMUNICATIONS GORDON L. STÜBER School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia, 30332-0250 Ph: (404) 894-2923 Fax: (404) 894-7883

More information

Propagation Modelling White Paper

Propagation Modelling White Paper Propagation Modelling White Paper Propagation Modelling White Paper Abstract: One of the key determinants of a radio link s received signal strength, whether wanted or interfering, is how the radio waves

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

World Journal of Engineering Research and Technology WJERT

World Journal of Engineering Research and Technology WJERT wjert, 2017, Vol. 3, Issue 3, 12-26. Original Article ISSN 2454-695X Jaja et al. WJERT www.wjert.org SJIF Impact Factor: 4.326 APPLICATION OF HYBRID DIVERSITY TECHNIQUES FOR IMPROVEMENT OF MICROWAVE RADIO

More information

ADJACENT BAND COMPATIBILITY BETWEEN GSM AND TETRA MOBILE SERVICES AT 915 MHz

ADJACENT BAND COMPATIBILITY BETWEEN GSM AND TETRA MOBILE SERVICES AT 915 MHz Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY BETWEEN GSM AND TETRA MOBILE SERVICES AT 915

More information

Bit per Joule and Area Energy-efficiency of Heterogeneous Macro Base Station Sites

Bit per Joule and Area Energy-efficiency of Heterogeneous Macro Base Station Sites Bit per Joule and Area Energy-efficiency of Heterogeneous Macro Base Station Sites Josip Lorincz, Nikola Dimitrov, Toncica Matijevic FESB, University of Split, R. Boskovica 32, 2000 Split, Croatia E-mail:

More information

Channel models and antennas

Channel models and antennas RADIO SYSTEMS ETIN15 Lecture no: 4 Channel models and antennas Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2012-03-21 Ove Edfors - ETIN15 1 Contents Why do we

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Channel Models Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Narrowband Channel Models Statistical Approach: Impulse response modeling: A narrowband channel can be represented by an impulse

More information

Coexistence of Terrestrial and HAP 3G Networks during Disaster Scenarios

Coexistence of Terrestrial and HAP 3G Networks during Disaster Scenarios RADIOENGINEERING, VOL. 17, NO. 4, DECEMBER 2008 1 Coexistence of Terrestrial and HAP 3G Networks during Disaster Scenarios Jaroslav HOLIŠ, Pavel PECHAČ Dept. of Electromagnetic Field, Czech Technical University

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

Investigation of WI-Fi indoor signals under LOS and NLOS conditions

Investigation of WI-Fi indoor signals under LOS and NLOS conditions Investigation of WI-Fi indoor signals under LOS and NLOS conditions S. Japertas, E. Orzekauskas Department of Telecommunications, Kaunas University of Technology, Studentu str. 50, LT-51368 Kaunas, Lithuania

More information

LECTURE 3. Radio Propagation

LECTURE 3. Radio Propagation LECTURE 3 Radio Propagation 2 Simplified model of a digital communication system Source Source Encoder Channel Encoder Modulator Radio Channel Destination Source Decoder Channel Decoder Demod -ulator Components

More information

Comparison of Receive Signal Level Measurement Techniques in GSM Cellular Networks

Comparison of Receive Signal Level Measurement Techniques in GSM Cellular Networks Comparison of Receive Signal Level Measurement Techniques in GSM Cellular Networks Nenad Mijatovic *, Ivica Kostanic * and Sergey Dickey + * Florida Institute of Technology, Melbourne, FL, USA nmijatov@fit.edu,

More information

RECOMMENDATION ITU-R SF.1719

RECOMMENDATION ITU-R SF.1719 Rec. ITU-R SF.1719 1 RECOMMENDATION ITU-R SF.1719 Sharing between point-to-point and point-to-multipoint fixed service and transmitting earth stations of GSO and non-gso FSS systems in the 27.5-29.5 GHz

More information

Radio Propagation In Outdoor Sub-Urban Environment:Effect On Gsm Signal Strength

Radio Propagation In Outdoor Sub-Urban Environment:Effect On Gsm Signal Strength The International Journal Of Engineering And Science (IJES) Volume 3 Issue 9 Pages 73-79 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Radio Propagation In Outdoor Sub-Urban Environment:Effect On Gsm Signal

More information

Experimental Study of Umts Radio Signal Propagation Characteristics by Field Measurement

Experimental Study of Umts Radio Signal Propagation Characteristics by Field Measurement American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-07, pp-99-106 www.ajer.org Research Paper Open Access Experimental Study of Umts Radio Signal Propagation

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VTC.2001.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VTC.2001. Michaelides, C., & Nix, A. R. (2001). Accurate high-speed urban field strength predictions using a new hybrid statistical/deterministic modelling technique. In IEEE VTC Fall, Atlantic City, USA, October

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Propagation mechanisms

Propagation mechanisms RADIO SYSTEMS ETIN15 Lecture no: 2 Propagation mechanisms Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Short on db calculations Basics about antennas Propagation

More information

Macrocellular Propagation Prediction for Wireless Communications in Urban Environments

Macrocellular Propagation Prediction for Wireless Communications in Urban Environments Macrocellular Propagation Prediction for Wireless Communications in Urban Environments Moses Ekpenyong, Samuel Robinson Department of Mathematics, Statistics and Computer Science University of Uyo, PMB.

More information

Near-Earth Propagation Models

Near-Earth Propagation Models CHAPTER 7 Near-Earth Propagation Models 7.1 INTRODUCTION Many applications require RF or microwave propagation from point to point very near the earth s surface and in the presence of various impairments.

More information

Neural Model for Path Loss Prediction in Suburban Environment

Neural Model for Path Loss Prediction in Suburban Environment Neural Model for Path Loss Prediction in Suburban Environment Ileana Popescu, Ioan Nafornita, Philip Constantinou 3, Athanasios Kanatas 3, Netarios Moraitis 3 University of Oradea, 5 Armatei Romane Str.,

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

292 P a g e. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No.

292 P a g e.   (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No. Wideband Parameters Analysis and Validation for Indoor radio Channel at 60/70/80GHz for Gigabit Wireless Communication employing Isotropic, Horn and Omni directional Antenna E. Affum 1 E.T. Tchao 2 K.

More information

Simulation Analysis of the Long Term Evolution

Simulation Analysis of the Long Term Evolution POSTER 2011, PRAGUE MAY 12 1 Simulation Analysis of the Long Term Evolution Ádám KNAPP 1 1 Dept. of Telecommunications, Budapest University of Technology and Economics, BUTE I Building, Magyar tudósok

More information

RADIO RESOURCE OPTIMIZATION OF A GSM NETWORK USING ACTIX ANALYZER SERVICE VERIFICATION SOLUTION

RADIO RESOURCE OPTIMIZATION OF A GSM NETWORK USING ACTIX ANALYZER SERVICE VERIFICATION SOLUTION International Journal of Latest Research in Science and Technology Volume 3, Issue 3: Page No. 35-39. May-June 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 RADIO RESOURCE OPTIMIZATION

More information

Wireless Communication System

Wireless Communication System Wireless Communication System Generic Block Diagram An t PC An r Source Tx Rx Destination P t G t L p G r P r Source a source of information to be transmitted Destination a destination of the transmitted

More information

Lecture 5. Large Scale Fading and Network Deployment

Lecture 5. Large Scale Fading and Network Deployment Lecture 5 Large Scale Fading and Network Deployment Large Scale Fading 2 n Large scale variation of signal strength with distance n Consider average signal strength values n The average is computed either

More information

Review of Selected Wireless System Path loss Prediction Models and its Adaptation to Indoor Propagation Environments

Review of Selected Wireless System Path loss Prediction Models and its Adaptation to Indoor Propagation Environments , March 15-17, 2017, Hong Kong Review of Selected Wireless System Path loss Prediction Models and its Adaptation to Indoor Propagation Environments O.O. Oni and F.E. Idachaba, Members, IAENG Abstract The

More information

WiFi Network Planning and Intra-Network Interference Issues in Large Industrial Warehouses

WiFi Network Planning and Intra-Network Interference Issues in Large Industrial Warehouses WiFi Network Planning and Intra-Network Interference Issues in Large Industrial Warehouses David Plets 1, Emmeric Tanghe 1, Alec Paepens 2, Luc Martens 1, Wout Joseph 1, 1 iminds-intec/wica, Ghent University,

More information

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MR. AADITYA KHARE TIT BHOPAL (M.P.) PHONE 09993716594, 09827060004 E-MAIL aadkhare@rediffmail.com aadkhare@gmail.com

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

A Parametric Characterization and Comparative Study of Okumura and Hata Propagation-lossprediction Models for Wireless Environment

A Parametric Characterization and Comparative Study of Okumura and Hata Propagation-lossprediction Models for Wireless Environment International Journal of Electronic Engineering Research ISSN 0975-6450 Volume 2 Number 4 (2010) pp. 453 462 Research India Publications http://www.ripublication.com/ijeer.htm A Parametric Characterization

More information

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations RADIOENGINEERING, VOL. 19, NO. 1, APRIL 2010 117 A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations Pavel VALTR 1, Pavel PECHAC

More information