Power Quality Analyzer for Three Phase Systems

Size: px
Start display at page:

Download "Power Quality Analyzer for Three Phase Systems"

Transcription

1 International Conference on Renewable Energy Research and Applications Madrid, Spain, -3 October 3 Power Quality Analyzer for Three Phase Systems Ibrahim Sefa, Necmi Altın Electrical and Electronics Engineering, Faculty of Technology, Gazi University Ankara, Turkey isefa@gazi.edu.tr, naltin@gazi.edu.tr Erdem Asa, Kerim Colak Electrical and Computer Engineering, Polytechnic Institute of New York University New York, USA ea45@nyu.edu, kc353@nyu.edu Abstract In this study, a MATLAB based simulator is designed which can be used for education in power quality and harmonics. The designed simulator is user-interactive and also can be used in undergraduate and graduate laboratory studies. The harmonic components that are entered by the user are visualized graphically. Furthermore, power quality indices such as total harmonic distortion, distortion power factor, and active, reactive, and distortion power are calculated and current waveforms are plotted. In addition, instantaneous and average powers are graphically revealed. Keywords-power quality; harmonics; MATLAB I. INTRODUCTION Today, the number of non-linear loads such as power electronics converters and their power levels is increasing rapidly. These converter systems draw currents containing harmonic components []. The harmonics produced by power systems, rectifiers, transformers, and motors have been identified as early as the 9s, even though they have not been considered important. While harmonics did not affect the operation of the power system, it was not a necessity to meet the requirements of power systems in the past. Today, the increase in the non-linear loads causes energy losses in motors and transformers, communication disturbances, and false tripping of circuit breakers. Moreover, sensitive equipment may not work properly because of the disturbed signal and electricity interferes in the system. The efficiency of the electricity distribution system is also affected adversely []. In these cases, the importance of harmonics in the power distribution system increases every day []. In order to limit the negative effects of harmonic currents in the electric power system, international standards are published such as IEEE , EN 6-3- [3,4]. It is necessary for students to obtain basic information about harmonics and their impacts on power system to reduce these negative effects in the future. The revision of course contents has become a necessity due to the rapid development of technology. Previously, little attention was given to power quality and harmonics in the power electronics and circuit analysis courses. However, nowadays, the non-linear loads and power electronics converters that are used with increasing amounts of power each day negatively affect power system harmonics level [5]. With the new additions to the contents of the course, spending time on these issues brings reduction of time to be allocated to each topic. This raises the need for more effective use of learning methods. In order to ensure more effective learning, information technology is frequently used as a method [6]. For this purpose, various educational tools and simulators have been developed using different programs. These developed systems make education independent from the location and time. So, these educational tools have an important role in improving the effectiveness of the training [7]. One of the programs used in developing computer-based training tool is MATLAB. MATLAB is a software development tool for technical calculations and mathematical analysis of problems. Also, MATLAB GUIDE (Graphical User Interface Development Environment) toolbox allows visualization of information and provides ease to use and develop graphical user interfaces [8]. In this paper, a computer based simulator for learning harmonics, including power quality and power system, has been developed by using MATLAB-GUIDE. The user can define load current (harmonic current components which occur and their proportions) fed from a sinusoidal voltage source. The waveforms of the load current, supply voltage and active, reactive, and apparent power can be sketched by the user. In addition, active, reactive, apparent power, power factor, displacement power factor, total harmonic distortion, and power quality terms can be calculated in the program interfaces. Current waveforms and harmonic components are visualized with this simulator. The effects of different power system parameters like power factor can be compared through monitoring. The simulator is independent of location since it is a computer based system. II. POWER SYSTEM HARMONICS In recent years, increasing power ratio of nonlinear loads, such as the rectifier shown in Fig. has increased interest in power quality and harmonics in power system. Periodic and non-sinusoidal waveform with Fourier expansions of current is () t is expressed as a sum of sinusoidal harmonic components in () [,9,]: Here, i dc Eqs.-4. ( ω ω ) () i () t = I + a cosn t + b sinn t s dc n n n =,,3..., a n, and b n terms are computed with the help of ICRERA 3

2 International Conference on Renewable Energy Research and Applications Madrid, Spain, -3 October 3 where I s represents the fundamental component, while others are harmonic components. The effective values of the harmonic components can be found with Eq. 9: Figure. Nonlinear load sample T idc = is () t dt T () an = is()cos t ( nωt) dωt π (3) bn = is()sin t ( nωt) dωt π (4) Generally, the current signal is symmetric, and therefore the DC component is not included ( i dc =). In this case, sine and cosine functions that are the same frequency can be rewritten as a single sine function as given in Eq. 5: s() = sn sin + n n =,,3... ( ω ϕ ) (5) i t I n t In this equation, ϕn and I sn are given in Eq. 6 and Eq. 7: a ϕ tan n n = b (6) n I sn an + bn = (7) The effective value of the current can be calculated as follows: I = s is() t dωt = Isn sin( nωt ϕn ) dωt + n =,,3... = Isn sin( nωt+ ϕn ) Ism sin( mωt+ ϕm ) dωt n= m= Isn Is Is Is3... (8) n= = = I = I + I + I + (9) h s s3 s4... The relative amount of harmonic components is expressed with a factor called Total Harmonic Distortion (THD). THD is the proportion of the sum of all the harmonic components effective values with effective value of the fundamental component as shown in Eq. : I sn s s n= h I I I THD = = = I I I s s s () The power factor of the load fed from AC power system is explained with Eq. : Pavg PF = () VI s s where P avg is given with Eq. : P cos avg = V I ϕ s s () It is seen that, unlike linear loads, the power factor different from displacement power factor. In nonlinear load condition, additional factor called distortion factor (DF) which is given in Eq. 3 affects the power factor: DF = (3) + THD The load current and AC supply voltage are sinusoidal; the power factor is defined as the cosine of angle between the current and voltage. But that is not valid if the form of the current is not sine wave. In other words, the current contains harmonic components. Fed with sinusoidal voltage and the current with containing harmonic components of a load, the power factor can be computed using Eq. and Eq. 3: VsIs cosϕ Is Iscosϕ PF = = cosϕ = (4) VI I I + I + I +.. s s s s s s3 The case of V s = V s is only valid while the voltage is sinusoidal. As seen in Eq. 4, the harmonic components of current increase the current s effective value; thus this causes the power factor to decrease. III. DEVELOPED POWER QUALITY SIMULATOR Using the MATLAB-GUIDE a simulator is prepared for power quality training with three-phase balanced/unbalanced non-linear loads. The results of the proposed simulator are calculated from the numerical data to be entered into the prepared user interface. Obtained results are given both numerically and graphically. The proposed simulator is useful for graduate and undergraduate educational purposes. In addition, operations which conventional measuring devices ICRERA 3 3

3 International Conference on Renewable Energy Research and Applications Madrid, Spain, -3 October 3 could not realize can be achieved with taking numerical data from measuring instruments, and it can be displayed on the screen. Login window of the proposed simulator which can be designed for 3phase systems, is shown in Fig.. After the user login "Main Page" is shown where the data entries are appears on the screen as given in Fig. 3. In the main page, data entry fields can be either phase-to-neutral or phase-to-phase for three-phase voltage values, and values of the harmonic current component with their phase angle are available to be entered. The fundamental component with 3 rd, 5 th, 7 th, 9 th, th, and 3 th harmonic component's values can be entered in this area. The less effective high grade harmonics in the total harmonic distortion are neglected. Each harmonic component can be left out of the transaction by pressing Eject next to the entry field boxes. Thus, the impact of each harmonic component on to the total harmonic distortion and the current waveform can be detected. By pressing the "Calculate" button, the three phase load current effective value, active, reactive and apparent power values, THD %, displacement power factor ( cosϕ ), and power factor (PF) values are calculated for the voltage are calculated and shown on "Results" region of the main page. By the help of these calculations, THD values and the effective values of the load currents, active power, reactive power, power factor and harmonic components, and the effect on the change of variables can be observed easily. Figure. Power quality simulator login window In addition, some of the harmonic components can be left out of the calculation by selecting the Eject box in the main page. Therefore, in case of a filtered harmonic component in a real application, variation of the current, power, power factor, and THD can be observed. The conventional measuring devices and analyzers cannot provide this feature. Figure 3. Power quality simulator data entry window ICRERA 3 4

4 International Conference on Renewable Energy Research and Applications Madrid, Spain, -3 October 3 Buttons in the "Graphics" section, which is divided into five sequences, provides sketch waveforms of the selected parameters. There is a button in the "Current and Voltage" section for each of the three-phase current and voltage wave shapes in order to graphically plot in a new window. The user can plot phase current and voltage using these buttons. This process demonstrates the impact of the harmonic component on to the current waveform and also ensures to plot graphs that data measured by the user in a real application. The real application values using three-phase power quality analyzer Fluke 434 are received and the current-voltage waveforms are drawn by the simulator. The Fluke 434 three-phase power analyzer screenshots are presented with simulator results in Fig. 4. The "Current and the Component" sections are defined for each of the three phase currents. When these buttons are clicked, the load current is calculated, and the current harmonic components waveforms are depicted according to their angles. Waveforms of the load current and its harmonic components of one of the three phases which is plotted based on the values are given in Fig. 5. This operation can also be performed separately for the other two phases. Thus, how the harmonic components can affect the current wave form is demonstrated. The selected harmonic components that have the Eject box clicked are not shown. So that, if any of the harmonic component is filtered, effects the current waveform effect can be monitored. The "Power" button on the main page in "Graphics" section plots the power values which are calculated with entered values as graphical expressions. This process can be realized for each one of the active, reactive, and apparent powers. In this way, the effect of the harmonic components to the power values of the system. Thus, a better understanding about the effects of harmonics on power values is provided. In Fig. 6, instantaneous value and mean value of active power; active, reactive, distortion and apparent powers in vector form and Fluke 434 screen which shows the measured power values are given. These graphs show the values for one phase. Current and Components [A] The Current and Component Waveforms Figure 4. Waveforms of the load current and its harmonic components. The total power can be found with the sum of the three phase power values. As can be seen, the developed simulator program is able to provide active, reactive, and apparent power during a period of time that cannot be seen with measuring instruments. When the "I a I b I c I n " button in the "Current" section is clicked, the three phase and the neutral current waveforms are depicted in a new page. In Fig. 7, three-phase load current plotted by the proposed simulator and the three-phase currents waveforms measured by Fluke 434, with the neutral current waveforms are indicated. The Harmonic button in the Harmonic Analysis section plots bar graphs of the harmonic components. At this stage, the user is required to choose one of the options inside the panel, which are the THD (f %) (relative to fundamental component) and THD (r %) (relative to the effective value of the total load current). In Fig. 8, the harmonic components results are compared with the Fluke 434 power analyzer and simulator according to the effective value of the total current and main component. Phase A: Voltage and Current Waveforms Voltage [V] Current [A] Figure 5. The current-voltage waveforms a) phase A current and voltage waveforms by simulator b) phase A current and voltage waveforms by Fluke 434 ICRERA 3 5

5 International Conference on Renewable Energy Research and Applications Madrid, Spain, -3 October 3 4 The Power Waveforms 8 Power Apparent Power [S] Active Power [P] Reactive Power [Q] Distortion Power [D] Apparent Power [S] Distortion Power [D] Active Power [P] Reactive Power [Q] (c) Figure 6. Power component graphs a) the power waveforms b) Fluke 434 power values c) triangle power vector forms 5 Three Phase and Neutral Current Waveforms Current [A] Figure 7. Three phase and neutral currents a) Simulator b)fluke 434 ICRERA 3 6

6 International Conference on Renewable Energy Research and Applications Madrid, Spain, -3 October 3 Amplitude [Ih/Ia] Amplitude [Ih/Ib] Amplitude [Ih/Ic] Amlitude [Ih/Ia] Amlitude [Ih/Ib] Amplitude [Ih/Ic] Bar Graph of the Harmonic Components According to Total Current Bar Graph of the Harmonic Components According to Main Current IV. RESULTS In this study, a MATLAB based simulator for education purposes is designed in response to growing interest in the power quality and harmonics due to the negative impact on the power system. The effects of the harmonics on system power components, losses and efficiency are comprehended, and power calculation is visualized for nonlinear loads through developed training tool. Also, students can access this software on their personal computers to continue educational studies outside of the laboratory. The developed simulator calculates and visualizes the power and power quality parameters in the case of filtering some selected harmonics components of the system. This allows the preliminary studies and validation of power filtering studies. REFERENCES [] Ellis, R. G., "Harmonic Analysis of Industrial Power Systems, IEEE Transaction on Industry Applications, 3.,., 47-4, 999. [] Lin, H. C., An Internet-Based Graphical Programming Toll for Teaching Power System Harmonic Measurement IEEE Transaction on Education, 49., 3., 44-44, 6. [3] IEEE Std , IEEE Recommended practice and requirements for harmonic control in electrical power systems, Newyork IEEE, 99 [4] IEC 6-3-4, Limitation of harmonic current in low-voltage power supply systems for equipment with rated current greater than 6 A, 998. [5] Benetazzo L., Bertocco M., Ferraris F., Ferrero, A, Offelli C., Parvis M. ve Piuri V. A Web Based Distributed Virtual Educational Laboratory" IEEE Transactions on Instrumentation and Measurement, 49.,., ,. [6] Hart, D. W., Circuit Simulation as an Aid in Teaching the Principles of Power Electronics, IEEE Transaction on Education, 36.,., -6, 993. [7] Demirba,., Irmak, E. ve Çolak., A Web Based Educational Tool for Simulation of Induction Motor" Journal of Polytechnic, Vol. 9., No. 4., 33-3, 6 (In Turkish). [8] MATLAB Getting Started Guide, 8. [9] Mohan, N., Undeland, T.M., Robbins, W. P., Power Electronics, Converters, Applications and Design, Joe Wiley and Sons Inc., London, 989. [] Hart, D. W., Introduction to Power Electronics, Prentice Hall, 997, (c) Figure 8. a) Bar graph of the harmonic components according to total current values obtained from proposed simulator b) Bar graph of the harmonic components according to total current values measured with Fluke 434 c) Bar graph of the harmonic components according to main component current values obtained from proposed simulator. ICRERA 3 7

Interactive Multimedia Material for an Electrical Power Quality Course

Interactive Multimedia Material for an Electrical Power Quality Course Manuscript received May, 27; revised Aug. 8, 27 Interactive Multimedia Material for an Electrical Power Quality Course P.G. MARAMBEAS, P. STERGIOPOULOS, S. PAPATHANASIOU, P. BAUER, S.N. MANIAS Department

More information

16B2011B1 EASY HARMONICS USER MANUAL

16B2011B1 EASY HARMONICS USER MANUAL 6B0B Issued on 03/08/09 R.00 English This manual is integrant and essential to the product. Carefully read the instructions contained herein as they provide important hints for use and maintenance safety.

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Operation and Analysis of the Three Phase Fully Controlled Bridge Converter

Dr.Arkan A.Hussein Power Electronics Fourth Class. Operation and Analysis of the Three Phase Fully Controlled Bridge Converter Operation and Analysis of the Three Phase Fully Controlled Bridge Converter ١ Instructional Objectives On completion the student will be able to Draw the circuit diagram and waveforms associated with a

More information

Three-Phase, Step-Wave Inverter Circuits

Three-Phase, Step-Wave Inverter Circuits 0 Three-Phase, Step-Wave Inverter Circuits 0. SKELETON INVERTER CIRCUIT The form of voltage-source inverter (VSI) most commonly used consists of a three-phase, naturally commutated, controlled rectifier

More information

The Selective Harmonic Elimination Technique for Harmonic Reduction of Multilevel Inverter Using PSO Algorithm

The Selective Harmonic Elimination Technique for Harmonic Reduction of Multilevel Inverter Using PSO Algorithm The Selective Harmonic Elimination Technique for Harmonic Reduction of Multilevel Inverter Using PSO Algorithm Maruthupandiyan. R 1, Brindha. R 2 1,2. Student, M.E Power Electronics and Drives, Sri Shakthi

More information

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE KARTIK TAMVADA Department of E.E.E, V.S.Lakshmi Engineering College for Women, Kakinada, Andhra Pradesh,

More information

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits 1. Objective AC Circuits In this lab, the student will study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average power. Also, the

More information

Resonant Controller to Minimize THD for PWM Inverter

Resonant Controller to Minimize THD for PWM Inverter IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. III (May Jun. 2015), PP 49-53 www.iosrjournals.org Resonant Controller to

More information

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services edarat group INTRODUCTION Harmonics are a mathematical way of describing distortion

More information

HARMONIC REDUCTION DUE TO MIXING SINGLE-PHASE AND THREE-PHAS E LOAD CURRENT UNDER NON-IDEAL SUPPLY CONDITION. M. Ashari * S. Islam** S.S.

HARMONIC REDUCTION DUE TO MIXING SINGLE-PHASE AND THREE-PHAS E LOAD CURRENT UNDER NON-IDEAL SUPPLY CONDITION. M. Ashari * S. Islam** S.S. HARMONIC REDUCTION DUE TO MIXING SINGLE-PHASE AND THREE-PHAS E LOAD CURRENT UNDER NON-IDEAL SUPPLY CONDITION M. Ashari * S. Islam** S.S. Matair** * Dept. of Electrical Engineering, Faculty of Industrial

More information

Influence of Switching Elements on Harmonics and Power Factor Improvement

Influence of Switching Elements on Harmonics and Power Factor Improvement International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 12 (July 2013), PP. 18-24 Influence of Switching Elements on Harmonics

More information

Harmonics Reduction of a Single Phase Half Bridge Inverter

Harmonics Reduction of a Single Phase Half Bridge Inverter Global Journal of Researches in Engineering Electrical and Electronics Engineering Volume 13 Issue 4 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global

More information

An Implementation of Grid Interactive Inverter with Reactive Power Support Capability for Renewable Energy Sources

An Implementation of Grid Interactive Inverter with Reactive Power Support Capability for Renewable Energy Sources Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives Torremolinos (Málaga), Spain. May 2011 An Implementation of Grid Interactive Inverter with Reactive Power

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM

CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM 3.1 INTRODUCTION Static synchronous compensator is a shunt connected reactive power compensation device that is capable of generating or

More information

AC : PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE

AC : PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE AC 2007-2855: PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE Liping Guo, University of Northern Iowa Liping Guo received the B. E. degree in Automatic Control from Beijing Institute of Technology,

More information

Nicolò Antonante Kristian Bergaplass Mumba Collins

Nicolò Antonante Kristian Bergaplass Mumba Collins Norwegian University of Science and Technology TET4190 Power Electronics for Renewable Energy Mini-project 19 Power Electronics in Motor Drive Application Nicolò Antonante Kristian Bergaplass Mumba Collins

More information

Modeling and Analysis of a Cascaded Battery-Boost Multilevel Inverter Using Different Switching Angle Arrangement Techniques

Modeling and Analysis of a Cascaded Battery-Boost Multilevel Inverter Using Different Switching Angle Arrangement Techniques Engineering, Technology & Applied Science Research Vol. 7, No. 2, 217, 145-1454 145 Modeling and Analysis of a Cascaded Battery-Boost Multilevel Inverter Using Different Switching Angle Arrangement Techniques

More information

2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS. ECE 4501 Power Systems Laboratory Manual Rev OBJECTIVE

2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS. ECE 4501 Power Systems Laboratory Manual Rev OBJECTIVE 2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS 2.1.1 OBJECTIVE To study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average

More information

Harmonic Distortions Analyzer for Power Rectifiers

Harmonic Distortions Analyzer for Power Rectifiers The 18 th National Conference on Electrical Drives CNAE 016 Harmonic Distortions Analyzer for Power Rectifiers Gheorghe-Eugen Subtirelu 1 1 Faculty of Electric Engineering, University of Craiova, Romania

More information

Modeling and Simulation of Paralleled Series-Loaded-Resonant Converter

Modeling and Simulation of Paralleled Series-Loaded-Resonant Converter Second Asia International Conference on Modelling & Simulation Modeling and Simulation of Paralleled Series-Loaded-Resonant Converter Alejandro Polleri (1), Taufik (1), and Makbul Anwari () (1) Electrical

More information

International Journal of Advancements in Research & Technology, Volume 7, Issue 4, April-2018 ISSN

International Journal of Advancements in Research & Technology, Volume 7, Issue 4, April-2018 ISSN ISSN 2278-7763 22 A CONVENTIONAL SINGLE-PHASE FULL BRIDGE CURRENT SOURCE INVERTER WITH LOAD VARIATION 1 G. C. Diyoke *, 1 C. C. Okeke and 1 O. Oputa 1 Department of Electrical and Electronic Engineering,

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

Harmonic Elimination for Multilevel Converter with Programmed PWM Method

Harmonic Elimination for Multilevel Converter with Programmed PWM Method Harmonic Elimination for Multilevel Converter with Programmed PWM Method Zhong Du, Leon M. Tolbert, John. Chiasson The University of Tennessee Department of Electrical and Computer Engineering Knoxville,

More information

1 ONE- and TWO-DIMENSIONAL HARMONIC OSCIL- LATIONS

1 ONE- and TWO-DIMENSIONAL HARMONIC OSCIL- LATIONS SIMG-232 LABORATORY #1 Writeup Due 3/23/2004 (T) 1 ONE- and TWO-DIMENSIONAL HARMONIC OSCIL- LATIONS 1.1 Rationale: This laboratory (really a virtual lab based on computer software) introduces the concepts

More information

Alternating voltages and currents

Alternating voltages and currents Alternating voltages and currents Introduction - Electricity is produced by generators at power stations and then distributed by a vast network of transmission lines (called the National Grid system) to

More information

IEEE Standard Single Phase Power Definitions. RA/TA Kahraman Yumak

IEEE Standard Single Phase Power Definitions. RA/TA Kahraman Yumak IEEE Standard 1459-2010 Single Phase Power Definitions RA/TA Kahraman Yumak September 12, 2012 Electrical Engineering Department Outline 1. Single Phase Power Definitions Under Sinusoidal Conditions 2.

More information

Harmonic detection and filtering

Harmonic detection and filtering M M M M Low-voltage expert guides N 4 Harmonic detection and filtering M M M M M M M M Contents General... 5. Definition of harmonics and their origin... 5.. distortion of a sinusoidal signal... 5.. origin

More information

Phasor. Phasor Diagram of a Sinusoidal Waveform

Phasor. Phasor Diagram of a Sinusoidal Waveform Phasor A phasor is a vector that has an arrow head at one end which signifies partly the maximum value of the vector quantity ( V or I ) and partly the end of the vector that rotates. Generally, vectors

More information

Direct AC/AC power converter for wind power application

Direct AC/AC power converter for wind power application Direct AC/AC power converter for wind power application Kristian Prestrud Astad, Marta Molinas Norwegian University of Science and Technology Department of Electric Power Engineering Trondheim, Norway

More information

CHAPTER 4 HARMONICS AND POWER FACTOR

CHAPTER 4 HARMONICS AND POWER FACTOR 4.1 Harmonics CHAPTER 4 HARMONICS AND POWER FACTOR In this research a comparative study of practical aspects of mixed use of diode and Thyristor converter technologies in Aluminium Smelters has been carried

More information

A μc Controlled Power Factor Corrected AC-to-DC Boost Converter with DCM Operation. Abstract

A μc Controlled Power Factor Corrected AC-to-DC Boost Converter with DCM Operation. Abstract μc Controlled Power Factor Corrected C-to-DC Boost Converter with DCM Operation M.M.. Rahman, Bradley Boersma, and Bryan Schierbeek School of Engineering Padnos College of Engineering and Computing Grand

More information

Power Factor Improvement Using a Three Phase Shunt Active Power Filter

Power Factor Improvement Using a Three Phase Shunt Active Power Filter 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

Simple and Advanced Models for Calculating Single-Phase Diode Rectifier Line-Side Harmonics

Simple and Advanced Models for Calculating Single-Phase Diode Rectifier Line-Side Harmonics Simple and Advanced Models for Calculating Single-Phase Diode Rectifier Line-Side Harmonics Hussein A. Kazem, MIEEE, MIEE, Abdulhakeem Abdullah Albaloshi, Ali Said Ali Al-Jabri, and Khamis Humaid AlSaidi

More information

ECE 528 Understanding Power Quality

ECE 528 Understanding Power Quality ECE 58 Understanding Power Quality http://www.ece.uidaho.edu/ee/power/ece58/ Paul Ortmann portmann@uidaho.edu 08-733-797 (voice) Lecture 9 Today Harmonics fundamentals Harmonic Distortion Voltage and Current

More information

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison Volume 2, Issue 1, January-March, 2014, pp. 14-23, IASTER 2014 www.iaster.com, Online: 2347-5439, Print: 2348-0025 ABSTRACT A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques

More information

Harmonic distortion from induction furnace loads in a steel production plant

Harmonic distortion from induction furnace loads in a steel production plant Harmonic distortion from induction furnace loads in a steel production plant S.L.Gbadamosi 1* A.O.Melodi 2 1. Department of Electrical and Electronics Engineering, School of Engineering and Engineering

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

Introduction to Rectifiers and their Performance Parameters

Introduction to Rectifiers and their Performance Parameters Electrical Engineering Division Page 1 of 10 Rectification is the process of conversion of alternating input voltage to direct output voltage. Rectifier is a circuit that convert AC voltage to a DC voltage

More information

Equivalent Equipment Circuits

Equivalent Equipment Circuits 1. Introduction Equivalent Equipment Circuits The student will analyze the internal properties of the equipment used in lab. The input resistance of the oscilloscope and Digital MultiMeter (DMM) when used

More information

Converters with Power Factor Correction

Converters with Power Factor Correction 32 ACTA ELECTROTEHNICA Converters with Power Factor Correction Daniel ALBU, Nicolae DRĂGHICIU, Gabriela TONŢ and Dan George TONŢ Abstract Traditional diode rectifiers that are commonly used in electrical

More information

DESIGN AND DEVELOPMENT OF CONTROLLED RECTIFIER FOR A PMDC MOTOR

DESIGN AND DEVELOPMENT OF CONTROLLED RECTIFIER FOR A PMDC MOTOR DESIGN AND DEVELOPMENT OF CONTROLLED RECTIFIER FOR A PMDC MOTOR Swagata Sharma 1, Satabdi Kalita 1, Himakshi Mishra 1, Santanu Sharma 2 UG Student, Dept. of ECE, Tezpur University, Napaam, Tezpur, India

More information

Study of Power Factor Correction in Single Phase AC-DC Converter

Study of Power Factor Correction in Single Phase AC-DC Converter Avneet Kaur, Prof. S.K Tripathi, Prof. P. Tiwari 89 Study of Power Factor Correction in Single Phase AC-DC Converter Avneet Kaur, Prof. S.K Tripathi, Prof. P. Tiwari Abstract: This paper is regarding power

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 86 CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 5.1 POWER QUALITY IMPROVEMENT This chapter deals with the harmonic elimination in Power System by adopting various methods. Due to the

More information

I. INTRODUCTION. 10

I. INTRODUCTION.  10 Closed-loop speed control of bridgeless PFC buck- boost Converter-Fed BLDC motor drive Sanjay S Siddaganga Institute Of Technology/Electrical & Electronics, Tumkur, India Email: sanjayshekhar04@gmail.com

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. 3-Phase Voltage Source Inverter With Square Wave Output

Dr.Arkan A.Hussein Power Electronics Fourth Class. 3-Phase Voltage Source Inverter With Square Wave Output 3-Phase Voltage Source Inverter With Square Wave Output ١ fter completion of this lesson the reader will be able to: (i) (ii) (iii) (iv) Explain the operating principle of a three-phase square wave inverter.

More information

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION 5DESIGN PARAMETERS OF SHUNT ACTIE FILTER FOR HARMONICS CURRENT MITIGATION Page 59 A.H. Budhrani 1*, K.J. Bhayani 2, A.R. Pathak 3 1*, 2, 3 Department of Electrical Engineering,..P. Engineering College

More information

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS George Adam, Alina G. Stan (Baciu) and Gheorghe Livinţ Department of Electrical Engineering Technical University of Iaşi 700050, Iaşi, Romania E-mail:

More information

What does Power Factor mean?

What does Power Factor mean? What does Power Factor mean? By: Wouter Ryckaert (Laboratory of lighting technology /Green Light Flanders), Koen Putteman (Eandis) and Dirk Van Kerckhoven (Infrax) Introduction In the lighting world, there

More information

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Lakkireddy Sirisha Student (power electronics), Department of EEE, The Oxford College of Engineering, Abstract: The

More information

POWERED electronic equipment with high-frequency inverters

POWERED electronic equipment with high-frequency inverters IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 2, FEBRUARY 2006 115 A Novel Single-Stage Power-Factor-Correction Circuit With High-Frequency Resonant Energy Tank for DC-Link

More information

v o v an i L v bn V d Load L v cn D 1 D 3 D 5 i a i b i c D 4 D 6 D 2 Lecture 7 - Uncontrolled Rectifier Circuits III

v o v an i L v bn V d Load L v cn D 1 D 3 D 5 i a i b i c D 4 D 6 D 2 Lecture 7 - Uncontrolled Rectifier Circuits III Lecture 7 - Uncontrolled Rectifier Circuits III Three-phase bridge rectifier (p = 6) v o n v an v bn v cn i a i b i c D 1 D 3 D 5 D 4 D 6 D d i L R Load L Figure 7.1 Three-phase diode bridge rectifier

More information

Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with Active Filter

Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with Active Filter IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 07, 2016 ISSN (online): 2321-0613 Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with

More information

Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives

Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives Amit P. Wankhade 1, Prof. C. Veeresh 2 2 Assistant Professor, MIT mandsour E-mail- amitwankhade03@gmail.com Abstract Variable speed AC

More information

Ultra-Modified Control Algorithms for Matrix Converter in Wind Energy System

Ultra-Modified Control Algorithms for Matrix Converter in Wind Energy System Journal of Physical Science and Application 8 (2) (218) 28-42 doi: 1.17265/2159-5348/218.2.5 D DAVID PUBLISHING Ultra-Modified Control Algorithms for Matrix Converter in Wind Energy System Kotb B. Tawfiq,

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 16.4. Power phasors in sinusoidal systems Apparent power is the product of the rms voltage and

More information

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Dr. Jagdish Kumar, PEC University of Technology, Chandigarh Abstract the proper selection of values of energy storing

More information

Abstract. Keywords: Electric vehicle; Modelling; Pulse Width Modulation (PWM) inverters; MOSFET circuits.

Abstract. Keywords: Electric vehicle; Modelling; Pulse Width Modulation (PWM) inverters; MOSFET circuits. Design and Simulate Single Phase Inverter for Smoke Free Cars Used in Golf Course J. Tavalaei, A. A. Mohd Zin, M. Moradi Faculty of Electrical Engineering, Universiti Teknologi Malaysia Abstract It is

More information

MATHEMATICAL MODELING OF POWER TRANSFORMERS

MATHEMATICAL MODELING OF POWER TRANSFORMERS MATHEMATICAL MODELING OF POWER TRANSFORMERS Mostafa S. NOAH Adel A. SHALTOUT Shaker Consultancy Group, Cairo University, Egypt Cairo, +545, mostafanoah88@gmail.com Abstract Single-phase and three-phase

More information

MULTICARRIER TRAPEZOIDAL PWM STRATEGIES FOR A SINGLE PHASE FIVE LEVEL CASCADED INVERTER

MULTICARRIER TRAPEZOIDAL PWM STRATEGIES FOR A SINGLE PHASE FIVE LEVEL CASCADED INVERTER Journal of Engineering Science and Technology Vol. 5, No. 4 (2010) 400-411 School of Engineering, Taylor s University MULTICARRIER TRAPEZOIDAL PWM STRATEGIES FOR A SINGLE PHASE FIVE LEVEL CASCADED INVERTER

More information

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 4 (2013), pp. 473-483 International Research Publication House http://www.irphouse.com A Simple Control Algorithm for Three-Phase

More information

Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm

Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm Parameter control scheme for active power filter based on NARX neural network A. Y. HATATA, M. ELADAWY, K. SHEBL Department of Electric Engineering Mansoura University Mansoura, EGYPT a_hatata@yahoo.com

More information

SVPWM Based Two Level VSI for Micro Grids

SVPWM Based Two Level VSI for Micro Grids SVPWM Based Two Level VSI for Micro Grids P. V. V. Rama Rao, M. V. Srikanth, S. Dileep Kumar Varma Abstract With advances in solid-state power electronic devices and microprocessors, various pulse-width-modulation

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

INTRODUCTION TO AGILENT VEE

INTRODUCTION TO AGILENT VEE INTRODUCTION TO AGILENT VEE I. Introduction The Agilent Visual Engineering Environment (VEE) is a graphical data flow programming language from Agilent Technologies (Keysight) for automated test, measurement,

More information

Effects of MATLAB and Simulink in Engineering Education: A Case Study of Transient Analysis of Direct-Current Machines

Effects of MATLAB and Simulink in Engineering Education: A Case Study of Transient Analysis of Direct-Current Machines Effects of MATLAB and Simulink in Engineering Education: A Case Study of Transient Analysis of Direct-Current Machines Obasi, R. U. Obi, P. I. Chidolue, G. C. Department of Electrical / Department of Electrical

More information

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Lecture Note 10 DC-AC PWM Inverters Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR DC-AC PWM Inverters Inverters are AC converters used

More information

Power Quality of a Battery Energy Storage System (BESS) with Nonlinear Load Gabriel Haines

Power Quality of a Battery Energy Storage System (BESS) with Nonlinear Load Gabriel Haines Power Quality of a Battery Energy Storage System (BESS) with Nonlinear Load Gabriel Haines 18/04/2018 1 INTRODUCTION Power quality is a broad area that describes how well the electrical power system is

More information

EDUCATION STRATEGY REGARDING THE ELECTROMAGNETIC COMPATIBILITY AT LOW-FREQUENCY

EDUCATION STRATEGY REGARDING THE ELECTROMAGNETIC COMPATIBILITY AT LOW-FREQUENCY Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 61, 1, pp. 48 52, Bucarest, 2016 EDUCATION STRATEGY REGARDING THE ELECTROMAGNETIC COMPATIBILITY AT LOW-FREQUENCY VACLAV KUS 1, PAVEL DRABEK, TEREZA JOSEFOVA

More information

Effects of Total Harmonic Distortion on Power System Equipment

Effects of Total Harmonic Distortion on Power System Equipment Effects of Total Harmonic Distortion on Power System Equipment GANIYU ADEDAYO. AJENIKOKO 1, ADEDAPO IBUKUNOLUWA. OJERINDE 2 1,2 Department of Electronic & Electrical Engineering, Ladoke Akintola University

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

The Effect of High Switching Frequency on Inverter Against Measurements of kwh-meter

The Effect of High Switching Frequency on Inverter Against Measurements of kwh-meter 102 IPTEK, Journal of Proceeding Series, Vol. 1, 2014 (eissn: 2354-6026) The Effect of High Switching Frequency on Inverter Against Measurements of kwh-meter Isdawimah 1, Rudy Setiabudy 1, and Ridwan Gunawan

More information

AC Fundamental. Simple Loop Generator: Whenever a conductor moves in a magnetic field, an emf is induced in it.

AC Fundamental. Simple Loop Generator: Whenever a conductor moves in a magnetic field, an emf is induced in it. AC Fundamental Simple Loop Generator: Whenever a conductor moves in a magnetic field, an emf is induced in it. Fig.: Simple Loop Generator The amount of EMF induced into a coil cutting the magnetic lines

More information

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink International Journal Of Engineering Research And Development e- ISSN: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 14, Issue 5 (May Ver. II 2018), PP.27-32 Harmonics Analysis Of A Single Phase Inverter

More information

Power Quality improvement of a three phase four wire system using UPQC

Power Quality improvement of a three phase four wire system using UPQC International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 4 July-215 www.irjet.net p-issn: 2395-72 Power Quality improvement of a three phase four wire system

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

Electronic Power Conversion

Electronic Power Conversion Electronic Power Conversion Challenge the future 1 8. Applications: AC motor drives Uninterruptible Power Supplies (UPS) Categories of voltage-source inverters (VSI,VSC): PWM inverters Square-wave inverters

More information

CHAPTER 14 ALTERNATING VOLTAGES AND CURRENTS

CHAPTER 14 ALTERNATING VOLTAGES AND CURRENTS CHAPTER 4 ALTERNATING VOLTAGES AND CURRENTS Exercise 77, Page 28. Determine the periodic time for the following frequencies: (a) 2.5 Hz (b) 00 Hz (c) 40 khz (a) Periodic time, T = = 0.4 s f 2.5 (b) Periodic

More information

BLDC TORQUE RIPPLE MINIMIZATION USING MODIFIED STAIRCASE PWM

BLDC TORQUE RIPPLE MINIMIZATION USING MODIFIED STAIRCASE PWM BLDC TORQUE RIPPLE MINIMIZATION USING MODIFIED STAIRCASE PWM M. Senthil Raja and B. Geethalakshmi Pondicherry Engineering College, Pondicherry, India E-Mail: muthappa.senthil@yahoo.com ABSTRACT This paper

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 249-256 (217) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Synchronous Reference Frame Fundamental Method in Shunt Active Power Filter for

More information

Fluke 40/41 Power Harmonics Analysers

Fluke 40/41 Power Harmonics Analysers Data Pack A Issued March 2002 232-4752 Fluke 40/41 Power Harmonics Analysers This data sheet refers to the Fluke 40 and Fluke 41 Power Harmonics Analysers. RS stock no. Description 215-9621 Fluke 41B power

More information

TSTE19 Power Electronics. Lecture3 Tomas Jonsson ICS/ISY

TSTE19 Power Electronics. Lecture3 Tomas Jonsson ICS/ISY TSTE19 Power Electronics Lecture3 Tomas Jonsson ICS/ISY 2015-11-09 2 Outline Rectifiers Current commutation Rectifiers, cont. Three phase 2015-11-09 3 Effect of L s on current commutation Current commutation

More information

Power Factor Improvement with Single Phase Diode Rectifier in Interior Permanent Magnet Motor

Power Factor Improvement with Single Phase Diode Rectifier in Interior Permanent Magnet Motor Power Factor Improvement with Single Phase Diode Rectifier in Interior Permanent Magnet Motor G.Sukant 1, N.Jayalakshmi 2 PG Student Shri Andal Alagar college of Engineering, Tamilnadu, India 1 PG Student,

More information

Selective Harmonic Elimination Using Three Phase Shunt Active Power Filter

Selective Harmonic Elimination Using Three Phase Shunt Active Power Filter Selective Harmonic Elimination Using Three Phase Shunt Active Power Filter A.Ilakkia 1, R.Rajalakshmi 2 PG Student [PED], Dept of EEE, PSNA College of Engg and Tech, Dindigul, Tamilnadu, India 1 Assistant

More information

Space Vector PWM Voltage Source Inverter Fed to Permanent Magnet Synchronous Motor

Space Vector PWM Voltage Source Inverter Fed to Permanent Magnet Synchronous Motor International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 6 (June 2016), PP.50-60 Space Vector PWM Voltage Source Inverter Fed to

More information

Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619 Control of Multi-Level Converter Using By-Pass Switches Rasha G. Shahin

More information

Harmonics Elimination Using Shunt Active Filter

Harmonics Elimination Using Shunt Active Filter Harmonics Elimination Using Shunt Active Filter Satyendra Gupta Assistant Professor, Department of Electrical Engineering, Shri Ramswaroop Memorial College of Engineering and Management, Lucknow, India.

More information

Modeling and Simulation of 6-Pulse and 12-Pulse Rectifiers under Balanced and Unbalanced Conditions with Impacts to Input Current Harmonics

Modeling and Simulation of 6-Pulse and 12-Pulse Rectifiers under Balanced and Unbalanced Conditions with Impacts to Input Current Harmonics Second Asia International Conference on Modelling & Simulation Modeling and Simulation of 6-Pulse and 12-Pulse Rectifiers under Balanced and Unbalanced Conditions with Impacts to Input Current Harmonics

More information

Performance Analysis of SPWM and SVPWM Based Three Phase Voltage source Inverter. K. Latha Shenoy* Dr. C.Gurudas Nayak** Dr. Rajashekar P.

Performance Analysis of SPWM and SVPWM Based Three Phase Voltage source Inverter. K. Latha Shenoy* Dr. C.Gurudas Nayak** Dr. Rajashekar P. IJCTA, 9(21), 2016, pp. 07-14 International Science Press Performance Analysis of SPWM and SVPWM Based Three Phase Voltage source Inverter 07 Perf erfor ormance Analysis of SPWM and SVPWM Based Thr hree

More information

Mitigation of Harmonics Produced by Nonlinear Loads in Industrial Power System

Mitigation of Harmonics Produced by Nonlinear Loads in Industrial Power System Mitigation of Harmonics Produced by Nonlinear Loads in Industrial Power System Muhammad Abid 1, Tehzeeb-ul-Hassan 2, Tehseen Ilahi 3 1 National University of Computer and Emerging Sciences, Lahore, Pakistan;

More information

Speed control of Induction Motor Using Push- Pull Converter and Three Phase SVPWM Inverter

Speed control of Induction Motor Using Push- Pull Converter and Three Phase SVPWM Inverter Speed control of Induction Motor Using Push- Pull Converter and Three Phase SVPWM Inverter Dr.Rashmi 1, Rajesh K S 2, Manohar J 2, Darshini C 3 Associate Professor, Department of EEE, Siddaganga Institute

More information

Study on Multi-tone Signals for Design and Testing of Linear Circuits and Systems

Study on Multi-tone Signals for Design and Testing of Linear Circuits and Systems Study on Multi-tone Signals for Design and Testing of Linear Circuits and Systems Yukiko Shibasaki 1,a, Koji Asami 1,b, Anna Kuwana 1,c, Yuanyang Du 1,d, Akemi Hatta 1,e, Kazuyoshi Kubo 2,f and Haruo Kobayashi

More information

Graphing Sine and Cosine

Graphing Sine and Cosine The problem with average monthly temperatures on the preview worksheet is an example of a periodic function. Periodic functions are defined on p.254 Periodic functions repeat themselves each period. The

More information

Dynamic Harmonic Mitigation and Power Factor Correction

Dynamic Harmonic Mitigation and Power Factor Correction Dynamic Harmonic itigation and Power Factor Correction Cesar Chavez, Eng Engineering Dept., Arteche. Naucalpan, Edo. de éxico, éxico John A. Houdek, ember, IEEE President, Allied Industrial arketing ilwaukee,

More information

Elsevier Editorial System(tm) for Energy Conversion and Management Manuscript Draft

Elsevier Editorial System(tm) for Energy Conversion and Management Manuscript Draft Elsevier Editorial System(tm) for Energy Conversion and Management Manuscript Draft Manuscript Number: Title: Progressive Decrement PWM Algorithm for Minimum Mean Square Error Inverter Output Voltage.

More information

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source M.M. A. Rahman, Kurt Hammons, Phillip Beemer, Marcia Isserstedt, and Matt Trommater School of Engineering Padnos

More information