COURSE PLAN. : DIGITAL SIGNAL PROCESSING : Dr.M.Pallikonda.Rajasekaran, Professor/ECE

Size: px
Start display at page:

Download "COURSE PLAN. : DIGITAL SIGNAL PROCESSING : Dr.M.Pallikonda.Rajasekaran, Professor/ECE"

Transcription

1 COURSE PLAN SUBJECT NAME FACULTY NAME : DIGITAL SIGNAL PROCESSING : Dr.M.Pallikonda.Rajasekaran, Professor/ECE Contents 1. Pre-requisite 2. Objective 3. Learning outcome and end use 4. Lesson Plan with Reference Book, Web Resources 5. Portion for Sessional-I,II 6. Details of Assignments-I,II,III,IV,V,VI 7. Details of Tutorials 8. Seminar Topics 9. Additional topics 10. Related books & Magazines 11. Related Experiments DEPARTMENT OF INSTUMENTAION & CONTROL ENGINEERING KALASALINGAM UNIVERSITY (Kalasalingam Academy of Research and Education) Anand Nagar, krishnankoil Tamil Nadu, INDIA

2 1. Pre-requisite: a. Fundamentals of Fourier Transform & Fourier series. 2. Objectives : 1. To have an overview of signals and systems. 2. To study DFT & FFT 3. To study the design of IIR filters. 4. To study the design of FIR filters. 5. To study the effect of finite word lengths & applications of DSP 3. Learning outcome and end use: Upon completion of this course, students will be able to: 1. Describe and analyze discrete time signals in the time domain and frequency domain. 2. Apply digital signal processing techniques to analyze discrete time signals and systems 3. Apply digital signal processing techniques to design discrete time systems 4. Solve digital signal processing problems using Matlab. 5. Design and apply digital filters 6. Knowledge about Signal processing, Architecture, Programming of TMS320C50 & ADSP kit. 4. REFERENCE BOOK : R1.Openheim A.V., and Shaefer R.W., Discrete Time Signal Processing, Prentice Hall, NJ, R2.Proakis J.G. and Manolakis, D.G., Introduction to Digital Signal Processing, Maxwell Macwilliam International Edition, London, R3.Antonian A., Digital Filters analysis and Design, Tata McGraw Hill Publishing Co., New Delhi, 198. R4.Stanley W.D., Digital Signal Processing, Restion Publishing House, Web resources : 24 units covering the syllabus. rleweb.mit.edu/publications/pr141/ acrobat/rep141-iii.2.1.pdf wp pdf?filename=wp pdf AN334.pdf Lesson Plan Sl.No Topics Book Periods Cumulative Hours UNIT I REPRESENTATION OF SIGNALS 1. Continuous - discrete time signals R1&R2 2 2

3 2. classification of signals discrete time signals and systems Properties-Discrete time signals analog to digital converter digital to analog convertor 1 11 UNIT - II DISCRETE TIME SIGNALS 7. Computation of impulse response transfer function using z transform - z- transform definition region of convergence properties of roc properties of z-transform - R1&R2 9. inverse z-transform convolution linear convolution circular 1 16 convolution 11. overlap add method - over lap save 1 17 method UNIT- III DFT & FFT 12. DFT - DTFT Properties Introduction to Radix 2 FFT s decimation in time FFT algorithm decimation in frequency FFT algorithm R2&R computing inverse DFT using FFT 2 26 UNITY - IV IIR & FIR 15. Classification reliability constrains IIR design bilinear transform method IIR-impulse invariant method R2&R FIR design Fourier series method 2 36 window function method UNIT - V DIGITAL SIGNAL PROCESSORS 18. Introduction to DSP architecture 2 38 Harvard architecture Dedicated MAC unit - Multiple ALUs, Advanced addressing modes, Pipelining, Overview of instruction set of 5 51 R2 TMS320C5X and C54X. (Simulations of Digital signals, DFT, FFT, filters in matlab) 22. Application- Audio processing Image processing 7. Portion for Sessional Exam: Sl.No Sessional Exam Topics 1 I II

4 8. Assignment: S.No Assignment Topic 1 I Systems-40 Problems-Enclosure-1 2 II Convolution 10 Problems- Enclosure-2 3 III DFT-5 Problems-Enclosure-3 4 IV FFT-5 Problems-Enclosure-4 5 V Filters-FIR-2 Problems IIR 3 Problems-Enclosure-5 6 VI Digital Signal Processors- Enclosure-6 9. Seminar Topics: Architecture of DSP processors. Applications of DSP processors-tms320c50, ADSP Additional topics: Introduction to Embedded systems. Architecture of Embedded systems. Programming of Embedded systems. Real time applications on embedded systems. 11. Related books & Magazines: IEEE transaction on signal processing. 12. Related Experiments: Basic programs in MATLAB- signal generations. Programming of DSP TMS320C50 processors. 13. Tutorials: PART-A UNIT-1 1. What is meant by discrete time signals? 2. What are the methods used to represent the discrete time signals? 3. Define Z transform? 4. What is meant by continuous time signals? 5. Define System 6. Sketch the block diagram of DSP system 7. What are the advantages and dis advantages of DSP? 8. Give some application of DSP? 9. Define impulse & unit step signals 10. List the mathematical operations performed on discrete time signals? 11. perform addition of discrete time signals X 1 (n)={2,2,1,1} X 2 (n)={-2,-1,3,2} 12. Classify the system with examples 13. define signals & describe the classification of signals

5 UNIT II 14. Define Z transform 15. Define convolution& mention its properties 16. What are the methods used to perform inverse Z transform? 17. Define DFS? 18. List properties of DFS. 19. Define DFT? 20. List the properties of DFT. 21. What are the drawback in Fourier transform & how it is overcome? 22. What is the relation between DTFT &DFT? 23. Give two application of DFT OR Mention the importance of DFT. 24. What is the relation between Z transform & DFT? 25. In Y(n)=X(n)*h(n) how will you determine the start and end of Y(n)?What will be length of Y(n)? 26. What is sectioned convolution? 27. Why sectioned convolution is performed? 28. What are the two methods of sectioned convolution? 29. Compare overlap & overlap save method? 30. How is Z transform obtained from Laplace transform & z transform? 31. Describe the relationship between Laplace transform & Z transform? 32. State & explain the properties of Z transform? 33. Define DFT & explain the properties of DFT? UNIT III 34. What is FFT? Why FFT is needed? 35. What is radix 2 FFT? 36. How many multiplications additions are involved in Radix 2 FFT? 37. Calculate the percentage saving in calculations in a 512 pt radix -2 FFT when compared to direct DFT? 38. What is DIT radix -2 FFT? 39. What is DIF radix -2 FFT? 40. Arrange the 8 pt sequence X(n)=1,2,3,4,-1,-2,-3,-4} in bit reversed order? 41. Draw the basic butterfly diagram of DIT radix -2 FFT? 42. Draw the basic butterfly diagram of DIF radix -2 FFT? 43. Compare DIT radix -2 FFT & DIF radix-2 FFT? 44. What is phase factor or twiddle factor? UNIT IV 45. How LTI systems behave as a frequency selective filters? 46. What are FIR filters? 47. What are the advantages & disadvantages FIR filters? 48. Write the steps involved in FIR filter design? 49. List the well known design techniques for linear phase FIR filter? 50. What is Gibb s phenomenon? 51. Write the procedure for FIR filter design by a. Fourier series method b.frequency sampling c.window method 52. What are the necessary & sufficient conditions for linear phase characteristics of FIR filter? 53. Define IIR filter & list important features of IIR filter 54. Distinguish IIR & FIR filter

6 55. Classify the filter based on frequency response? 56. What are the requirements for an analog filter to be stable and causal? 57. What are the requirements for an digital filter to be stable and causal? 58. Write a brief note on design of IIR filter. 59. Compare digital & analog filter. 60. What are the advantages & disadvantages of digital filters. 61. What is impulse invariant transformation? Mention its advantages & disadvantages of it? 62. What is bilinear transformation? Mention its Advantages & disadvantages of it? 63. What is pre warping? Why it is employed? UNIT V 64. What is meant by haward architecture? 65. What are the advantages of parallel processing? 66. What are the advantages of DSP over microprocessors? 67. List the generations of DSP Processors? 68. Define floating point & fixed point processor. 69. Explain the instruction MACD? 70. What is the purpose of auxiliary register? 71. Explain the instruction ZAP? 72. Mention the application of TMS320C50 processor? 73. Explain the instruction IN & OUT? 74. Mention the application of ADSP 2181 processor? 75. Explain the instruction SPLK? PART B 1) Consider the analog Signal X(t)=3 COS (100п t) i) Determine the minimum sampling rate required to avoid Aliasing ii) What is the signal obtained if the sampling is 200 Hz iii) What is the signal obtained after f= 75 Hz 2) Determine whether the system described by the following equations are liner time invariant i)y(n)=nx(n) ii)y(n)=ax(n)+b 3)Find the output of the given system by use of convolution i)x(n)={1,2,1,3,2} ii)h(n) ={1,1,2,1,3} 4)Find out the convolution by using the Z transform i)h(n)={1,1,2,3} ii)x(n)={2,5,6,8} 5)Determine the impulse response of the system described by the difference equation Y(k)=Y(n-k)+X(k) 6) Solve the following Difference Equation by Z transform X(k+2)+3X(k+1)+2X(k)=0 X(0)=0:X(1)=1 7) Define z transform and its properties with proof.

7 8) Explain the properties of the system? 9) Explain the advantages and disadvantages of DSP over ASP 10) Find Z transform Of δ(n)-0.95δ(n-6) 11) State and explain the properties of DFT 12) The five samples of the 9 point DFT are given as follows i)4 point DFT of X(n)={ 1, 2,2,1} ii)x(n)= { 1,2,2,1} iii)x(n)={1,2,3} 13)Compute the 5 point of x(n)={0,1,2,3,4}. 14) Compute the 8 point of x(n)={ 1, 0 n 3 0, 4 n 7 15) Compute 8 pt DFT of X(n)by radix-2 DIT FFT. X(n)={1,3,2,2,2,1,3,2} 16) Compute 8 pt DFT of X(n)by radix-2 DIT FFT. X(n)={1,2,3,4,4,3,2,1 } 17) Compute 8 pt DFT of X(n)by radix-2 DIT FFT. X(n)={1,3,2,2,7,3,9,5 } 18) Compute 8 pt DFT of X(n)by radix-2 DIT FFT. X(n)={1,3,5,6,2,1,3,2 } 19) Compute 8 pt DFT of X(n)by radix-2 DIT FFT. X(n)={1,0,1,1,0,1,1,1} 20) Compute 8 pt DFT of X(n)by radix-2 DIT FFT. X(n)={1,1,1,1,0,1,1,1} 21) Compute 8 pt DFT of X(n)by radix-2 DIF FFT. X(n)={1,0,1,1,0,1,1,1} 22) Determine 8 pt DFT of the signal X(n)={1,1,1,1,1,1,0,0} 23) An 8 point sequence is given by X(n)={2,2,2,2,1,1,1,1}.Compute 8pt DFT of x(n) by Radix-2 DIF-FFT. 24) An 8 point sequence is given by X(n)={2,2,2,2,1,1,1,1}.Compute * pt DFT of x(n) by Radix-2 DIF-FFT. 25) Convert the following analog filter in to digital filter by using Backward Difference method i) H(s) =1/s+2 ii) H(s) =1/s 2 +6

8 26) Convert the analog filter in to digital filter by using impulse invariant method S+0.2 i) H(s) = (S+0.2) ii) H(s) = (S+1) (S+2) 27) Convert the analog filter in to digital filter by using bilinear transformation method. 28) Design a LPF using rectangular window by taking a sample of W (n) & with Fc=1.2 rad/sec 29)Design a HPF using Hamming window by taking samples of W(n) with Fc=1.2 rad/sec 30)Design a BPF to pass frequencies in the range 1 to2 rad/sec using hamming window with N=5 Prepared By: Dr.M.Pallikonda Rajasekaran/ Professor / ECE

B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 DIGITAL SIGNAL PROCESSING (Common to ECE and EIE)

B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 DIGITAL SIGNAL PROCESSING (Common to ECE and EIE) Code: 13A04602 R13 B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 (Common to ECE and EIE) PART A (Compulsory Question) 1 Answer the following: (10 X 02 = 20 Marks)

More information

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING 1. State the properties of DFT? UNIT-I DISCRETE FOURIER TRANSFORM 1) Periodicity 2) Linearity and symmetry 3) Multiplication of two DFTs 4) Circular convolution 5) Time reversal 6) Circular time shift

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY Type of course: Compulsory GUJARAT TECHNOLOGICAL UNIVERSITY SUBJECT NAME: Digital Signal Processing SUBJECT CODE: 2171003 B.E. 7 th SEMESTER Prerequisite: Higher Engineering Mathematics, Different Transforms

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Theory, Analysis and Digital-filter Design B. Somanathan Nair DIGITAL SIGNAL PROCESSING Theory, Analysis and Digital-filter Design B. SOMANATHAN NAIR Principal SHM Engineering

More information

DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014)

DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014) Course Code : EEEB363 DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014) Course Status : Core for BEEE and BEPE Level : Degree Semester Taught : 6 Credit : 3 Co-requisites : Signals and Systems

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Assoc.Prof. Lăcrimioara GRAMA, Ph.D. http://sp.utcluj.ro/teaching_iiiea.html February 26th, 2018 Lăcrimioara GRAMA (sp.utcluj.ro) Digital Signal Processing February 26th, 2018

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

ECE Digital Signal Processing

ECE Digital Signal Processing University of Louisville Instructor:Professor Aly A. Farag Department of Electrical and Computer Engineering Spring 2006 ECE 520 - Digital Signal Processing Catalog Data: Office hours: Objectives: ECE

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam Date: December 18, 2017 Course: EE 313 Evans Name: Last, First The exam is scheduled to last three hours. Open

More information

CS3291: Digital Signal Processing

CS3291: Digital Signal Processing CS39 Exam Jan 005 //08 /BMGC University of Manchester Department of Computer Science First Semester Year 3 Examination Paper CS39: Digital Signal Processing Date of Examination: January 005 Answer THREE

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

ECE 429 / 529 Digital Signal Processing

ECE 429 / 529 Digital Signal Processing ECE 429 / 529 Course Policy & Syllabus R. N. Strickland SYLLABUS ECE 429 / 529 Digital Signal Processing SPRING 2009 I. Introduction DSP is concerned with the digital representation of signals and the

More information

EE 403: Digital Signal Processing

EE 403: Digital Signal Processing OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE 1 EEE 403 DIGITAL SIGNAL PROCESSING (DSP) 01 INTRODUCTION FALL 2012 Yrd. Doç. Dr. Didem Kıvanç Türeli didem.kivanc@okan.edu.tr EE 403: Digital Signal

More information

y(n)= Aa n u(n)+bu(n) b m sin(2πmt)= b 1 sin(2πt)+b 2 sin(4πt)+b 3 sin(6πt)+ m=1 x(t)= x = 2 ( b b b b

y(n)= Aa n u(n)+bu(n) b m sin(2πmt)= b 1 sin(2πt)+b 2 sin(4πt)+b 3 sin(6πt)+ m=1 x(t)= x = 2 ( b b b b Exam 1 February 3, 006 Each subquestion is worth 10 points. 1. Consider a periodic sawtooth waveform x(t) with period T 0 = 1 sec shown below: (c) x(n)= u(n). In this case, show that the output has the

More information

SKP Engineering College

SKP Engineering College SKP Engineering College Tiruvannamalai 606611 A Course Material on Principles Of Digital Signal Processing By R.Rajesh Assistant Professor Electronics and Communication Engineering Department Electronics

More information

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MICRO LESSON PLAN SUBJECT NAME SUBJECT CODE SEMESTER YEAR : SIGNALS AND SYSTEMS

More information

McGraw-Hill Irwin DIGITAL SIGNAL PROCESSING. A Computer-Based Approach. Second Edition. Sanjit K. Mitra

McGraw-Hill Irwin DIGITAL SIGNAL PROCESSING. A Computer-Based Approach. Second Edition. Sanjit K. Mitra DIGITAL SIGNAL PROCESSING A Computer-Based Approach Second Edition Sanjit K. Mitra Department of Electrical and Computer Engineering University of California, Santa Barbara Jurgen - Knorr- Kbliothek Spende

More information

UNIT IV FIR FILTER DESIGN 1. How phase distortion and delay distortion are introduced? The phase distortion is introduced when the phase characteristics of a filter is nonlinear within the desired frequency

More information

DSP Filter Design for Flexible Alternating Current Transmission Systems

DSP Filter Design for Flexible Alternating Current Transmission Systems DSP Filter Design for Flexible Alternating Current Transmission Systems O. Abarrategui Ranero 1, M.Gómez Perez 1, D.M. Larruskain Eskobal 1 1 Department of Electrical Engineering E.U.I.T.I.M.O.P., University

More information

AC : INTERACTIVE LEARNING DISCRETE TIME SIGNALS AND SYSTEMS WITH MATLAB AND TI DSK6713 DSP KIT

AC : INTERACTIVE LEARNING DISCRETE TIME SIGNALS AND SYSTEMS WITH MATLAB AND TI DSK6713 DSP KIT AC 2007-2807: INTERACTIVE LEARNING DISCRETE TIME SIGNALS AND SYSTEMS WITH MATLAB AND TI DSK6713 DSP KIT Zekeriya Aliyazicioglu, California State Polytechnic University-Pomona Saeed Monemi, California State

More information

ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona ECE 429/529 RNS

ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona ECE 429/529 RNS ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona 2007 SPRING 2007 SCHEDULE All dates are tentative. Lesson Day Date Learning outcomes to be Topics Textbook HW/PROJECT

More information

DIGITAL SIGNAL PROCESSING WITH VHDL

DIGITAL SIGNAL PROCESSING WITH VHDL DIGITAL SIGNAL PROCESSING WITH VHDL GET HANDS-ON FROM THEORY TO PRACTICE IN 6 DAYS MODEL WITH SCILAB, BUILD WITH VHDL NUMEROUS MODELLING & SIMULATIONS DIRECTLY DESIGN DSP HARDWARE Brought to you by: Copyright(c)

More information

UNIT II IIR FILTER DESIGN

UNIT II IIR FILTER DESIGN UNIT II IIR FILTER DESIGN Structures of IIR Analog filter design Discrete time IIR filter from analog filter IIR filter design by Impulse Invariance, Bilinear transformation Approximation of derivatives

More information

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet Lecture 10: Summary Taneli Riihonen 16.05.2016 Lecture 10 in Course Book Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th

More information

M.Tech Student, Asst Professor Department Of Eelectronics and Communications, SRKR Engineering College, Andhra Pradesh, India

M.Tech Student, Asst Professor Department Of Eelectronics and Communications, SRKR Engineering College, Andhra Pradesh, India Computational Performances of OFDM using Different Pruned FFT Algorithms Alekhya Chundru 1, P.Krishna Kanth Varma 2 M.Tech Student, Asst Professor Department Of Eelectronics and Communications, SRKR Engineering

More information

EENG 479 Digital signal processing Dr. Mohab A. Mangoud

EENG 479 Digital signal processing Dr. Mohab A. Mangoud EENG 479 Digital signal processing Dr. Mohab A. Mangoud Associate Professor Department of Electrical and Electronics Engineering College of Engineering University of Bahrain P.O.Box 32038- Kingdom of Bahrain

More information

SYLLABUS. For B.TECH. PROGRAMME ELECTRONICS & COMMUNICATION ENGINEERING

SYLLABUS. For B.TECH. PROGRAMME ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS For B.TECH. PROGRAMME In ELECTRONICS & COMMUNICATION ENGINEERING INSTITUTE OF TECHNOLOGY UNIVERSITY OF KASHMIR ZAKURA CAMPUS SRINAGAR, J&K, 190006 Course No. Lect Tut Prac ECE5117B Digital Signal

More information

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Digital Signal Processing VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Overview Signals and Systems Processing of Signals Display of Signals Digital Signal Processors Common Signal Processing

More information

MATLAB for Audio Signal Processing. P. Professorson UT Arlington Night School

MATLAB for Audio Signal Processing. P. Professorson UT Arlington Night School MATLAB for Audio Signal Processing P. Professorson UT Arlington Night School MATLAB for Audio Signal Processing Getting real world data into your computer Analysis based on frequency content Fourier analysis

More information

Teaching Plan - Dr Kavita Thakur

Teaching Plan - Dr Kavita Thakur Teaching Plan - Dr Kavita Thakur Semester Date Day Paper Paper/Unit Topic to be covered Topic Covered : 25/02/2016 Waveform Synthesis Standard signals, Unit Step Function, Ramp, Impulse Function, Voltage/Current

More information

Signals and Systems Using MATLAB

Signals and Systems Using MATLAB Signals and Systems Using MATLAB Second Edition Luis F. Chaparro Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh, PA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK

More information

Gibb s Phenomenon Analysis on FIR Filter using Window Techniques

Gibb s Phenomenon Analysis on FIR Filter using Window Techniques 86 Gibb s Phenomenon Analysis on FIR Filter using Window Techniques 1 Praveen Kumar Chakravarti, 2 Rajesh Mehra 1 M.E Scholar, ECE Department, NITTTR, Chandigarh 2 Associate Professor, ECE Department,

More information

An Efficient Design of Parallel Pipelined FFT Architecture

An Efficient Design of Parallel Pipelined FFT Architecture www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3, Issue 10 October, 2014 Page No. 8926-8931 An Efficient Design of Parallel Pipelined FFT Architecture Serin

More information

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 2017 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

DSP Design Lecture 1. Introduction and DSP Basics. Fredrik Edman, PhD

DSP Design Lecture 1. Introduction and DSP Basics. Fredrik Edman, PhD DSP Design Lecture 1 Introduction and DSP Basics Fredrik Edman, PhD fredrik.edman@eit.lth.se Lecturers Fredrik Edman (course responsible) Mail: fredrik.edman@eit.lth.se Room E:2538 Mojtaba Mahdavi (exercises

More information

EE 470 Signals and Systems

EE 470 Signals and Systems EE 470 Signals and Systems 9. Introduction to the Design of Discrete Filters Prof. Yasser Mostafa Kadah Textbook Luis Chapparo, Signals and Systems Using Matlab, 2 nd ed., Academic Press, 2015. Filters

More information

Bibliography. Practical Signal Processing and Its Applications Downloaded from

Bibliography. Practical Signal Processing and Its Applications Downloaded from Bibliography Practical Signal Processing and Its Applications Downloaded from www.worldscientific.com Abramowitz, Milton, and Irene A. Stegun. Handbook of mathematical functions: with formulas, graphs,

More information

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 3 Review of Signals and Systems: Part 2 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Computing Tools in an Advanced Filter Theory Course

Computing Tools in an Advanced Filter Theory Course Paper ID #8728 Computing Tools in an Advanced Filter Theory Course Dr. S. Hossein Mousavinezhad, Idaho State University Dr. Mousavinezhad is an active member of IEEE and ASEE having chaired sessions in

More information

Problem Point Value Your score Topic 1 28 Filter Analysis 2 24 Filter Implementation 3 24 Filter Design 4 24 Potpourri Total 100

Problem Point Value Your score Topic 1 28 Filter Analysis 2 24 Filter Implementation 3 24 Filter Design 4 24 Potpourri Total 100 The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 Date: March 8, 2013 Course: EE 445S Evans Name: Last, First The exam is scheduled to last 50 minutes. Open books

More information

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003 CG40 Advanced Dr Stuart Lawson Room A330 Tel: 23780 e-mail: ssl@eng.warwick.ac.uk 03 January 2003 Lecture : Overview INTRODUCTION What is a signal? An information-bearing quantity. Examples of -D and 2-D

More information

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing Class Subject Code Subject II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing 1.CONTENT LIST: Introduction to Unit I - Signals and Systems 2. SKILLS ADDRESSED: Listening 3. OBJECTIVE

More information

Department of Electrical and Electronics Engineering Institute of Technology, Korba Chhattisgarh, India

Department of Electrical and Electronics Engineering Institute of Technology, Korba Chhattisgarh, India Design of Low Pass Filter Using Rectangular and Hamming Window Techniques Aayushi Kesharwani 1, Chetna Kashyap 2, Jyoti Yadav 3, Pranay Kumar Rahi 4 1, 2,3, B.E Scholar, 4 Assistant Professor 1,2,3,4 Department

More information

EE 438 Final Exam Spring 2000

EE 438 Final Exam Spring 2000 2 May 2000 Name: EE 438 Final Exam Spring 2000 You have 120 minutes to work the following six problems. Each problem is worth 25 points. Be sure to show all your work to obtain full credit. The exam is

More information

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems.

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems. PROBLEM SET 6 Issued: 2/32/19 Due: 3/1/19 Reading: During the past week we discussed change of discrete-time sampling rate, introducing the techniques of decimation and interpolation, which is covered

More information

Electrical and Telecommunication Engineering Technology NEW YORK CITY COLLEGE OF TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK

Electrical and Telecommunication Engineering Technology NEW YORK CITY COLLEGE OF TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK NEW YORK CITY COLLEGE OF TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT: Electrical and Telecommunication Engineering Technology SUBJECT CODE AND TITLE: DESCRIPTION: REQUIRED TCET 4202 Advanced

More information

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications EE4900/EE6420: Digital Communications 1 Lecture 2 Review of Signals and Systems: Part 1 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

The Comparative Study of FPGA based FIR Filter Design Using Optimized Convolution Method and Overlap Save Method

The Comparative Study of FPGA based FIR Filter Design Using Optimized Convolution Method and Overlap Save Method International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-3, Issue-1, March 2014 The Comparative Study of FPGA based FIR Filter Design Using Optimized Convolution Method

More information

Signals. Continuous valued or discrete valued Can the signal take any value or only discrete values?

Signals. Continuous valued or discrete valued Can the signal take any value or only discrete values? Signals Continuous time or discrete time Is the signal continuous or sampled in time? Continuous valued or discrete valued Can the signal take any value or only discrete values? Deterministic versus random

More information

EASWARI ENGINEERING COLLEGE

EASWARI ENGINEERING COLLEGE EASWARI ENGINEERING COLLEGE DEPARTMENT OF ECE QUESTION BANK Sub Code: EC1302 Subject : Digital signal Processing Faculty :S.Sridharan Degree/Branch:B.E / ECE Year/semester/Section: III / V / A& B PART-A

More information

Qäf) Newnes f-s^j^s. Digital Signal Processing. A Practical Guide for Engineers and Scientists. by Steven W. Smith

Qäf) Newnes f-s^j^s. Digital Signal Processing. A Practical Guide for Engineers and Scientists. by Steven W. Smith Digital Signal Processing A Practical Guide for Engineers and Scientists by Steven W. Smith Qäf) Newnes f-s^j^s / *" ^"P"'" of Elsevier Amsterdam Boston Heidelberg London New York Oxford Paris San Diego

More information

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No Final Exam EE313 Signals and Systems Fall 1999, Prof. Brian L. Evans, Unique No. 14510 December 11, 1999 The exam is scheduled to last 50 minutes. Open books and open notes. You may refer to your homework

More information

Outline. Introduction to Biosignal Processing. Overview of Signals. Measurement Systems. -Filtering -Acquisition Systems (Quantisation and Sampling)

Outline. Introduction to Biosignal Processing. Overview of Signals. Measurement Systems. -Filtering -Acquisition Systems (Quantisation and Sampling) Outline Overview of Signals Measurement Systems -Filtering -Acquisition Systems (Quantisation and Sampling) Digital Filtering Design Frequency Domain Characterisations - Fourier Analysis - Power Spectral

More information

Experiment 4- Finite Impulse Response Filters

Experiment 4- Finite Impulse Response Filters Experiment 4- Finite Impulse Response Filters 18 February 2009 Abstract In this experiment we design different Finite Impulse Response filters and study their characteristics. 1 Introduction The transfer

More information

Subra Ganesan DSP 1.

Subra Ganesan DSP 1. DSP 1 Subra Ganesan Professor, Computer Science and Engineering Associate Director, Product Development and Manufacturing Center, Oakland University, Rochester, MI 48309 Email: ganesan@oakland.edu Topics

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Fourth Edition John G. Proakis Department of Electrical and Computer Engineering Northeastern University Boston, Massachusetts Dimitris G. Manolakis MIT Lincoln Laboratory Lexington,

More information

Electronics & Communication Engineering.

Electronics & Communication Engineering. Electronics & Communication Engineering. EC1307-Digital Signal Processing 1. What is a continuous and discrete time signal? Continuous time signal: A signal x(t) is said to be continuous if it is defined

More information

UNIVERSITY OF SWAZILAND

UNIVERSITY OF SWAZILAND UNIVERSITY OF SWAZILAND MAIN EXAMINATION, MAY 2013 FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING TITLE OF PAPER: INTRODUCTION TO DIGITAL SIGNAL PROCESSING COURSE

More information

EE 351M Digital Signal Processing

EE 351M Digital Signal Processing EE 351M Digital Signal Processing Course Details Objective Establish a background in Digital Signal Processing Theory Required Text Discrete-Time Signal Processing, Prentice Hall, 2 nd Edition Alan Oppenheim,

More information

Teaching Scheme. Credits Assigned (hrs/week) Theory Practical Tutorial Theory Oral & Tutorial Total

Teaching Scheme. Credits Assigned (hrs/week) Theory Practical Tutorial Theory Oral & Tutorial Total Code ITC7051 Name Processing Teaching Scheme Credits Assigned (hrs/week) Theory Practical Tutorial Theory Oral & Tutorial Total Practical 04 02 -- 04 01 -- 05 Code ITC704 Name Wireless Technology Examination

More information

Digital Signal Processing

Digital Signal Processing Unit T8: Digital Signal Processing Unit code: R/503/7380 QCF level: 6 Credit value: 15 Aim This unit aims to develop learners understanding of engineering signal conversion and digital signal processing.

More information

Digital Filters FIR and IIR Systems

Digital Filters FIR and IIR Systems Digital Filters FIR and IIR Systems ELEC 3004: Systems: Signals & Controls Dr. Surya Singh (Some material adapted from courses by Russ Tedrake and Elena Punskaya) Lecture 16 elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/

More information

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu Concordia University Discrete-Time Signal Processing Lab Manual (ELEC442) Course Instructor: Dr. Wei-Ping Zhu Fall 2012 Lab 1: Linear Constant Coefficient Difference Equations (LCCDE) Objective In this

More information

TABLE OF CONTENTS TOPIC NUMBER NAME OF THE TOPIC 1. OVERVIEW OF SIGNALS & SYSTEMS 2. ANALYSIS OF LTI SYSTEMS- Z TRANSFORM 3. ANALYSIS OF FT, DFT AND FFT SIGNALS 4. DIGITAL FILTERS CONCEPTS & DESIGN 5.

More information

EEM478-WEEK8 Finite Impulse Response (FIR) Filters

EEM478-WEEK8 Finite Impulse Response (FIR) Filters EEM478-WEEK8 Finite Impulse Response (FIR) Filters Learning Objectives Introduction to the theory behind FIR filters: Properties (including aliasing). Coefficient calculation. Structure selection. Implementation

More information

Digital Filter Design using MATLAB

Digital Filter Design using MATLAB Digital Filter Design using MATLAB Dr. Tony Jacob Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati April 11, 2015 Dr. Tony Jacob IIT Guwahati April 11, 2015

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 Date: October 18, 2013 Course: EE 445S Evans Name: Last, First The exam is scheduled to last 50 minutes. Open books

More information

One-Dimensional FFTs. Figure 6.19a shows z(t), a continuous cosine wave with a period of T 0. . Its Fourier transform, Z(f) is two impulses, at 1/T 0

One-Dimensional FFTs. Figure 6.19a shows z(t), a continuous cosine wave with a period of T 0. . Its Fourier transform, Z(f) is two impulses, at 1/T 0 6.7 LEAKAGE The input to an FFT is not an infinite-time signal as in a continuous Fourier transform. Instead, the input is a section (a truncated version) of a signal. This truncated signal can be thought

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

More information

Lesson 7. Digital Signal Processors

Lesson 7. Digital Signal Processors Lesson 7 Digital Signal Processors Instructional Objectives After going through this lesson the student would learn o Architecture of a Real time Signal Processing Platform o Different Errors introduced

More information

Computer-Aided Design (CAD) of Recursive/Non-Recursive Filters

Computer-Aided Design (CAD) of Recursive/Non-Recursive Filters Paper ID #12370 Computer-Aided Design (CAD) of Recursive/Non-Recursive Filters Chengying Xu, Florida State University Dr. Chengying Xu received the Ph.D. in 2006 in mechanical engineering from Purdue University,

More information

REAL TIME DIGITAL SIGNAL PROCESSING. Introduction

REAL TIME DIGITAL SIGNAL PROCESSING. Introduction REAL TIME DIGITAL SIGNAL Introduction Why Digital? A brief comparison with analog. PROCESSING Seminario de Electrónica: Sistemas Embebidos Advantages The BIG picture Flexibility. Easily modifiable and

More information

DESIGN OF FIR AND IIR FILTERS

DESIGN OF FIR AND IIR FILTERS DESIGN OF FIR AND IIR FILTERS Ankit Saxena 1, Nidhi Sharma 2 1 Department of ECE, MPCT College, Gwalior, India 2 Professor, Dept of Electronics & Communication, MPCT College, Gwalior, India Abstract This

More information

2. Pre-requisites - CGS 2425 and MAC 2313; Corequisite - MAP 2302 and one of: EEL 3105, MAS 3114 or MAS 4105

2. Pre-requisites - CGS 2425 and MAC 2313; Corequisite - MAP 2302 and one of: EEL 3105, MAS 3114 or MAS 4105 EEL 3135 Introduction to Signals and Systems 1. Catalog Description (3 credits) Continuous-time and discrete-time signal analysis including Fourier series and transforms; sampling; continuous-time and

More information

A Comparative Study on Direct form -1, Broadcast and Fine grain structure of FIR digital filter

A Comparative Study on Direct form -1, Broadcast and Fine grain structure of FIR digital filter A Comparative Study on Direct form -1, Broadcast and Fine grain structure of FIR digital filter Jaya Bar Madhumita Mukherjee Abstract-This paper presents the VLSI architecture of pipeline digital filter.

More information

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT-based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed by Friday, March 14, at 3 PM or the lab will be marked

More information

Aparna Tiwari, Vandana Thakre, Karuna Markam Deptt. Of ECE,M.I.T.S. Gwalior, M.P, India

Aparna Tiwari, Vandana Thakre, Karuna Markam Deptt. Of ECE,M.I.T.S. Gwalior, M.P, India International Journal of Computer & Communication Engineering Research (IJCCER) Volume 2 - Issue 3 May 2014 Design Technique of Lowpass FIR filter using Various Function Aparna Tiwari, Vandana Thakre,

More information

Corso di DATI e SEGNALI BIOMEDICI 1. Carmelina Ruggiero Laboratorio MedInfo

Corso di DATI e SEGNALI BIOMEDICI 1. Carmelina Ruggiero Laboratorio MedInfo Corso di DATI e SEGNALI BIOMEDICI 1 Carmelina Ruggiero Laboratorio MedInfo Digital Filters Function of a Filter In signal processing, the functions of a filter are: to remove unwanted parts of the signal,

More information

4. Design of Discrete-Time Filters

4. Design of Discrete-Time Filters 4. Design of Discrete-Time Filters 4.1. Introduction (7.0) 4.2. Frame of Design of IIR Filters (7.1) 4.3. Design of IIR Filters by Impulse Invariance (7.1) 4.4. Design of IIR Filters by Bilinear Transformation

More information

Microcomputer Systems 1. Introduction to DSP S

Microcomputer Systems 1. Introduction to DSP S Microcomputer Systems 1 Introduction to DSP S Introduction to DSP s Definition: DSP Digital Signal Processing/Processor It refers to: Theoretical signal processing by digital means (subject of ECE3222,

More information

EEE33350 Signals and Data Communications

EEE33350 Signals and Data Communications Palestine Technical College Engineering Professions Department EEE33350 Signals and Data Communications Syllabus Nasser M. Sabah Teaching & Learning Strategies 2 Teaching Strategies Presentation Lecture

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 3 FIR Filters Written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 19, 2015 Objectives:

More information

FIR window method: A comparative Analysis

FIR window method: A comparative Analysis IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 1, Issue 4, Ver. III (Jul - Aug.215), PP 15-2 www.iosrjournals.org FIR window method: A

More information

Design and Analysis of RNS Based FIR Filter Using Verilog Language

Design and Analysis of RNS Based FIR Filter Using Verilog Language International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013 www..org 61 Design and Analysis of RNS Based FIR Filter Using Verilog Language P. Samundiswary 1, S. Kalpana

More information

Digital Signal Processing Lecture 1

Digital Signal Processing Lecture 1 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I-38123 Povo, Trento, Italy Digital Signal Processing Lecture 1 Prof. Begüm Demir

More information

ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130,

ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130, ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130, 1. Enter your name, student ID number, e-mail address, and signature in the space provided

More information

Basic Signals and Systems

Basic Signals and Systems Chapter 2 Basic Signals and Systems A large part of this chapter is taken from: C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H. W. Schüssler: Computer-based exercises for

More information

GEORGIA INSTITUTE OF TECHNOLOGY. SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters

GEORGIA INSTITUTE OF TECHNOLOGY. SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters Date: 19. Jul 2018 Pre-Lab: You should read the Pre-Lab section of

More information

Architecture for Canonic RFFT based on Canonic Sign Digit Multiplier and Carry Select Adder

Architecture for Canonic RFFT based on Canonic Sign Digit Multiplier and Carry Select Adder Architecture for Canonic based on Canonic Sign Digit Multiplier and Carry Select Adder Pradnya Zode Research Scholar, Department of Electronics Engineering. G.H. Raisoni College of engineering, Nagpur,

More information

Recall. Sampling. Why discrete time? Why discrete time? Many signals are continuous-time signals Light Object wave CCD

Recall. Sampling. Why discrete time? Why discrete time? Many signals are continuous-time signals Light Object wave CCD Recall Many signals are continuous-time signals Light Object wave CCD Sampling mic Lens change of voltage change of voltage 2 Why discrete time? With the advance of computer technology, we want to process

More information

FACULTY OF ENGINEERING AND TECHNOLOGY

FACULTY OF ENGINEERING AND TECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF INSTRUMENTATION AND CONTROL ENGINEERING COURSE FILE ACADEMIC YEAR OF JUNE 2013 DEC 2013 SUBJECT CODE: IC0311 SUBJECT TITLE: DIGITAL SIGNAL PROCESSING

More information

LECTURER NOTE SMJE3163 DSP

LECTURER NOTE SMJE3163 DSP LECTURER NOTE SMJE363 DSP (04/05-) ------------------------------------------------------------------------- Week3 IIR Filter Design -------------------------------------------------------------------------

More information

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises Digital Video and Audio Processing Winter term 2002/ 2003 Computer-based exercises Rudolf Mester Institut für Angewandte Physik Johann Wolfgang Goethe-Universität Frankfurt am Main 6th November 2002 Chapter

More information

DIGITAL SIGNAL PROCESSING LABORATORY

DIGITAL SIGNAL PROCESSING LABORATORY DIGITAL SIGNAL PROCESSING LABORATORY SECOND EDITION В. Preetham Kumar CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations are next mon in 1311EECS.

Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations are next mon in 1311EECS. Lecture 8 Today: Announcements: References: FIR filter design IIR filter design Filter roundoff and overflow sensitivity Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations

More information

Understanding Digital Signal Processing 3rd Edition

Understanding Digital Signal Processing 3rd Edition We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with understanding digital

More information

Performance Analysis of FIR Digital Filter Design Technique and Implementation

Performance Analysis of FIR Digital Filter Design Technique and Implementation Performance Analysis of FIR Digital Filter Design Technique and Implementation. ohd. Sayeeduddin Habeeb and Zeeshan Ahmad Department of Electrical Engineering, King Khalid University, Abha, Kingdom of

More information