Adaptive Modulation and Coding

Size: px
Start display at page:

Download "Adaptive Modulation and Coding"

Transcription

1 Adaptive Modulation and Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria

2 Contents Introduction Rate adaptation Power adaptation Adaptive coding Hybrid techniques Adaptive Modulation and Coding 0/17

3 Estimación del canal Canal de retorno Adaptive Modulation and Coding 1/17 Introduction Goal: to adapt the transmitted power, constellation size, and/or coding technique in order Esquema to maintain general a given fixed instantaneous BER for each symbol while maximizing the average data rate

4 System model SISO system with symbol period T s and thus symbol rate R s = 1/T s We assume ideal Nyquist pulses so the bandwidth is also W = 1/T s We assume a flat fading channel in which each channel use corresponds to one symbol The channel power gain is g[n] = h[n] 2, with pdf p(g) (exponential for a Rayleigh channel) The noise is AWGN with psd N 0 /2 The average transmitted power is P, and hence the instantaneous SNR is γ[n] = Pg[n] N 0 W Adaptive Modulation and Coding 2/17

5 The average SNR is γ = PE[g] N 0 W We estimate the power gain at time n, ĝ[n], (or received SNR ˆγ[n]) and then adapt the data rate R[n], coding parameters C[n] and transmit power P[n] Adaptive Mod. Power Adapt. & Coding g[n] P[n] R[ n], C[ n] r[n] Demod & Decoding gˆ [ n] or ˆ[ γ n] gˆ [ n] or ˆ[ γ n] Channel Est. We assume that the estimate is perfect and that the feedback channel involves no delay: ĝ[n] = g[n], ˆγ[n] = γ[n] Adaptive Modulation and Coding 3/17

6 For M-ary modulations R[n] = log(m[n])/t s bps, where M[n] is the constellation size The spectral efficiency (note that it might change with time) is R[n]/W bps/hz For simplicity, and to stress the dependence of the rate, coding, and transmitted power with the SNR, we will omit the time index and denote P(γ), R(γ), C(γ) The rate of channel variation dictates how often the Tx must adapt its transmission parameters To further proceed we need to review the BER expressions for the AWGN as a function of the SNR = γ for different constellations Adaptive Modulation and Coding 4/17

7 BER expressions for the AWGN channel We assume that the average symbol energy is divided equally among all bits and that Gray encoding is used, so P b P s log(m) BPSK QPSK MPSK ( ) P b = P s = Q 2γ P s = 2Q ( γ) ( ) P s = 2Q 2γ sin(π/m) Adaptive Modulation and Coding 5/17

8 MPAM P s = ( ) 2(M 1) 6γ M Q M 2 1 MQAM P s = 4Q ( ) 3γ M 1 A useful approximation for the BER for MQAM modulations is P b 0.2e 1.5γ/(M 1), which allows us to obtain M as a function of the target P b Adaptive Modulation and Coding 6/17

9 Rate adaptation R(γ) is changed depending on the received SNR γ. How? 1. We fix the modulation (e.g., QPSK) and change the symbol period difficult to implement 2. We fix the symbol rate and change the constellation size or modulation type much simpler to implement, preferred option The modulation parameters are typically fixed over a block of symbols or frame The goal os to maintain a minimum BER: each constellation is selected for a range of values of γ Adaptive Modulation and Coding 7/17

10 Example An adaptive modulation system with a target Pb = 10 3, uses two modulation formats: QPSK and 8-PSK. If the target P b cannot be met, no data is transmitted. Find the range of SNR (γ) values associated to the 3 possible transmission schemes (8PSK, QPSK, and no transmission) Find the average spectral efficiency of the system, assuming a Rayleigh fading channel with γ = 20dB Adaptive Modulation and Coding 8/17

11 Continuous power adaptation P(γ) is changed depending on the received SNR γ The goal is to maintain a fixed BER or, equivalently, a constant received SNR We ve seen that the solution is channel inversion, which converts the fading channel into an equivalent fixed-snr AWGN channel P(γ) = β h 2 = β γ where β is the constant (target) received SNR The average power constraint implies that β P(γ)f (γ)dγ = γ f (γ)dγ = P The constant SNR achieved with channel inversion is β = P/E[1/γ] Adaptive Modulation and Coding 9/17

12 Suppose we have a target BER of P b, and we use a fixed modulation. Then, if the value of β (constant SNR) needed to meet that target is greater than P/E[1/γ] then this target cannot be met Remember that for a Rayleigh channel 1/E[1/γ] = and no BER target can be met A more practical alternative was truncated channel inversion { 0, γ < γ0, P(γ) = β γ, γ γ 0. where the cutoff value γ 0 can be based on a desired outage probability P out = Prob(γ γ 0 ) or on a desired target BER The constant SNR achieved when the channel is in use is β = P γ 0 1 γ f (γ)dγ Adaptive Modulation and Coding 10/17

13 Example Find the power adaptation for BPSK modulation that maintains a fixed P b = 10 3 in non-outage for a Rayleigh fading channel with γ = 10dB. The average power is P = 1 W. Find the resulting outage probability. Adaptive Modulation and Coding 11/17

14 Discrete power adaptation For channel inversion or truncated channel inversion we assume a continuous power variation, but sometimes only a discrete set of power values is possible at the Tx side P Tx = {0, P 1,..., P Np } where P Tx = 0 means no transmission, and P 1 >... > P Np The solution in this case consists of discretizing the fading states of the channel and assign to each channel state a transmitted power γ γ 3 γ 2 γ 1 P 3 P 2 P 1 = P max 0 Decreasing power P3, P2, P( γ ) = P1, 0, γ γ < 3 γ γ < γ 2 γ γ < γ 1 0 γ < γ Adaptive Modulation and Coding 12/17

15 Discrete power adaptation For a given M-ary modulation (fixed), the levels are chosen to guarantee the target BER: P b ( ) Pn γ n BER = P b, n = 1,..., N p N 0 W γ n = N 0W P n BER 1 (P b ), n = 1,..., N p The average transmitted power is N p P = P n Prob(S n ), Prob(S n ) = n=1 γn+1 The spectral efficiency is (1 Prob(E 1 )) log(m) γ n p(γ)dγ Adaptive Modulation and Coding 13/17

16 Example Consider a transmitter with a set of discrete powers P Tx = {0, 0.1W, 0.05W, 0.01W } The transmitter uses QPSK, the bandwidth is W = 1 MHz, and N 0 = 10 9 W/Hz. The channel is Rayleigh with γ = 5dB. 1. Find the rule to assign the power levels as a function of the channel states to maintain a fixed P b = Find the probability of no transmission. 3. Find the average transmitted power. Adaptive Modulation and Coding 14/17

17 Adaptive coding In adaptive coding, different channel codes,c(γ), are used to provide different amounts of channel protection against errors to the transmitted bits Intuition: stronger error protection should be provided when γ is small, whereas a weaker coder should be used when γ is large Adaptive coding is typically achieved by puncturing: not transmitting certain coded bits in convolutional encoders Adaptive Modulation and Coding 15/17

18 Hybrid techniques Hybrid techniques can adapt multiple parameters of the transmission scheme: rate, coding scheme, power, and even the target BER Typical examples include Rate and power adaptation Adaptive modulation and coding (MCS) Adaptive Modulation and Coding 16/17

19 Adaptive Modulation and Coding 17/17

ELEC E7210: Communication Theory. Lecture 7: Adaptive modulation and coding

ELEC E7210: Communication Theory. Lecture 7: Adaptive modulation and coding ELEC E721: Communication Theory Lecture 7: Adaptive modulation and coding Adaptive modulation and coding (1) Change modulation and coding relative to fading AMC enable robust and spectrally efficient transmission

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 4 : Capacity of Wireless Channels Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.4 Dr. Musbah Shaat 1 / 18 Outline 1 Capacity in AWGN 2 Capacity of

More information

Degrees of Freedom in Adaptive Modulation: A Unified View

Degrees of Freedom in Adaptive Modulation: A Unified View Degrees of Freedom in Adaptive Modulation: A Unified View Seong Taek Chung and Andrea Goldsmith Stanford University Wireless System Laboratory David Packard Building Stanford, CA, U.S.A. taek,andrea @systems.stanford.edu

More information

PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY

PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY 1 MOHAMMAD RIAZ AHMED, 1 MD.RUMEN AHMED, 1 MD.RUHUL AMIN ROBIN, 1 MD.ASADUZZAMAN, 2 MD.MAHBUB

More information

#8 Adaptive Modulation Coding

#8 Adaptive Modulation Coding 06 Q Wireless Communication Engineering #8 Adaptive Modulation Coding Kei Sakaguchi sakaguchi@mobile.ee. July 5, 06 Course Schedule () Date Text Contents #7 July 5 4.6 Error correction coding #8 July 5

More information

CT-516 Advanced Digital Communications

CT-516 Advanced Digital Communications CT-516 Advanced Digital Communications Yash Vasavada Winter 2017 DA-IICT Lecture 17 Channel Coding and Power/Bandwidth Tradeoff 20 th April 2017 Power and Bandwidth Tradeoff (for achieving a particular

More information

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 44 CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 3.1 INTRODUCTION A unique feature of the OFDM communication scheme is that, due to the IFFT at the transmitter and the FFT

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

Rate and Power Adaptation in OFDM with Quantized Feedback

Rate and Power Adaptation in OFDM with Quantized Feedback Rate and Power Adaptation in OFDM with Quantized Feedback A. P. Dileep Department of Electrical Engineering Indian Institute of Technology Madras Chennai ees@ee.iitm.ac.in Srikrishna Bhashyam Department

More information

Performance of wireless Communication Systems with imperfect CSI

Performance of wireless Communication Systems with imperfect CSI Pedagogy lecture Performance of wireless Communication Systems with imperfect CSI Yogesh Trivedi Associate Prof. Department of Electronics and Communication Engineering Institute of Technology Nirma University

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 10 Performance of Communication System: Bit Error Rate (BER) Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video,

More information

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. About Homework The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. Good news: No complicated mathematics and calculations! Concepts: Understanding and remember! Homework: review

More information

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5 Spring 217 MIMO Communication Systems Solution of Homework Assignment #5 Problem 1 (2 points Consider a channel with impulse response h(t α δ(t + α 1 δ(t T 1 + α 3 δ(t T 2. Assume that T 1 1 µsecs and

More information

Digital modulation techniques

Digital modulation techniques Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Revision of Previous Six Lectures

Revision of Previous Six Lectures Revision of Previous Six Lectures Previous six lectures have concentrated on Modem, under ideal AWGN or flat fading channel condition multiplexing multiple access CODEC MODEM Wireless Channel Important

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

More information

Revision of Previous Six Lectures

Revision of Previous Six Lectures Revision of Previous Six Lectures Previous six lectures have concentrated on Modem, under ideal AWGN or flat fading channel condition Important issues discussed need to be revised, and they are summarised

More information

Revision of Lecture 3

Revision of Lecture 3 Revision of Lecture 3 Modulator/demodulator Basic operations of modulation and demodulation Complex notations for modulation and demodulation Carrier recovery and timing recovery This lecture: bits map

More information

Joint Adaptive Modulation and Diversity Combining with Feedback Error Compensation

Joint Adaptive Modulation and Diversity Combining with Feedback Error Compensation Joint Adaptive Modulation and Diversity Combining with Feedback Error Compensation Seyeong Choi, Mohamed-Slim Alouini, Khalid A. Qaraqe Dept. of Electrical Eng. Texas A&M University at Qatar Education

More information

Problem Sheets: Communication Systems

Problem Sheets: Communication Systems Problem Sheets: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Department of Electrical & Electronic Engineering Imperial College London v.11 1 Topic: Introductory

More information

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27)

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27) ECEn 665: Antennas and Propagation for Wireless Communications 131 9. Modulation Modulation is a way to vary the amplitude and phase of a sinusoidal carrier waveform in order to transmit information. When

More information

Performance of Selected Diversity Techniques Over The α-µ Fading Channels

Performance of Selected Diversity Techniques Over The α-µ Fading Channels Performance of Selected Diversity Techniques Over The α-µ Fading Channels TAIMOUR ALDALGAMOUNI 1, AMER M. MAGABLEH, AHMAD AL-HUBAISHI Electrical Engineering Department Jordan University of Science and

More information

TCM-coded OFDM assisted by ANN in Wireless Channels

TCM-coded OFDM assisted by ANN in Wireless Channels 1 Aradhana Misra & 2 Kandarpa Kumar Sarma Dept. of Electronics and Communication Technology Gauhati University Guwahati-781014. Assam, India Email: aradhana66@yahoo.co.in, kandarpaks@gmail.com Abstract

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Nyquist, Shannon and the information carrying capacity of signals

Nyquist, Shannon and the information carrying capacity of signals Nyquist, Shannon and the information carrying capacity of signals Figure 1: The information highway There is whole science called the information theory. As far as a communications engineer is concerned,

More information

Performance Comparison of MIMO Systems over AWGN and Rician Channels using OSTBC3 with Zero Forcing Receivers

Performance Comparison of MIMO Systems over AWGN and Rician Channels using OSTBC3 with Zero Forcing Receivers www.ijcsi.org 355 Performance Comparison of MIMO Systems over AWGN and Rician Channels using OSTBC3 with Zero Forcing Receivers Navjot Kaur, Lavish Kansal Electronics and Communication Engineering Department

More information

Digital Communication

Digital Communication Digital Communication (ECE4058) Electronics and Communication Engineering Hanyang University Haewoon Nam Lecture 15 1 Quadrature Phase Shift Keying Constellation plot BPSK QPSK 01 11 Bit 0 Bit 1 00 M-ary

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

A Method for Estimating the Average Packet Error Rates of Multi-carrier Systems With Interference

A Method for Estimating the Average Packet Error Rates of Multi-carrier Systems With Interference A Method for Estimating the Average Packet Error Rates of Multi-carrier Systems With Interference Zaid Hijaz Information and Telecommunication Technology Center Department of Electrical Engineering and

More information

BER Comparison of DCT-based OFDM and FFT-based OFDM using BPSK Modulation over AWGN and Multipath Rayleigh Fading Channel

BER Comparison of DCT-based OFDM and FFT-based OFDM using BPSK Modulation over AWGN and Multipath Rayleigh Fading Channel BER Comparison of DCT-based and FFT-based using BPSK Modulation over AWGN and Multipath Rayleigh Channel Lalchandra Patidar Department of Electronics and Communication Engineering, MIT Mandsaur (M.P.)-458001,

More information

PERFORMANCE EVALUATION OF WCDMA SYSTEM FOR DIFFERENT MODULATIONS WITH EQUAL GAIN COMBINING SCHEME

PERFORMANCE EVALUATION OF WCDMA SYSTEM FOR DIFFERENT MODULATIONS WITH EQUAL GAIN COMBINING SCHEME PERFORMANCE EVALUATION OF WCDMA SYSTEM FOR DIFFERENT MODULATIONS WITH EQUAL GAIN COMBINING SCHEME Rajkumar Gupta Assistant Professor Amity University, Rajasthan Abstract The performance of the WCDMA system

More information

Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel

Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel Dilip Mandloi PG Scholar Department of ECE, IES, IPS Academy, Indore [India]

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS 1 Ali A. Ghrayeb New Mexico State University, Box 30001, Dept 3-O, Las Cruces, NM, 88003 (e-mail: aghrayeb@nmsu.edu) ABSTRACT Sandia National Laboratories

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 8: Digital Modulation Techniques Textbook: Ch 8.4.8.7 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered data baseband Digital

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at certain rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth requirement

More information

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

Comparison of BER for Various Digital Modulation Schemes in OFDM System

Comparison of BER for Various Digital Modulation Schemes in OFDM System ISSN: 2278 909X Comparison of BER for Various Digital Modulation Schemes in OFDM System Jaipreet Kaur, Hardeep Kaur, Manjit Sandhu Abstract In this paper, an OFDM system model is developed for various

More information

UNIT I Source Coding Systems

UNIT I Source Coding Systems SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: DC (16EC421) Year & Sem: III-B. Tech & II-Sem Course & Branch: B. Tech

More information

Adaptive Modulation with Adaptive Pilot Symbol Assisted Estimation and Prediction of Rapidly Fading Channels

Adaptive Modulation with Adaptive Pilot Symbol Assisted Estimation and Prediction of Rapidly Fading Channels 003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 1 14, 003 Adaptive Modulation with Adaptive Pilot Symbol Assisted Estimation and Prediction of Rapidly Fading Channels

More information

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model X Courses» Introduction to Wireless and Cellular Communications Announcements Course Forum Progress Mentor Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model Course outline

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

Chapter 14 MODULATION INTRODUCTION

Chapter 14 MODULATION INTRODUCTION Chapter 14 MODULATION INTRODUCTION As we have seen in previous three chapters, different types of media need different types of electromagnetic signals to carry information from the source to the destination.

More information

Lecture 4 Diversity and MIMO Communications

Lecture 4 Diversity and MIMO Communications MIMO Communication Systems Lecture 4 Diversity and MIMO Communications Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 1 Outline Diversity Techniques

More information

Chapter 3 Convolutional Codes and Trellis Coded Modulation

Chapter 3 Convolutional Codes and Trellis Coded Modulation Chapter 3 Convolutional Codes and Trellis Coded Modulation 3. Encoder Structure and Trellis Representation 3. Systematic Convolutional Codes 3.3 Viterbi Decoding Algorithm 3.4 BCJR Decoding Algorithm 3.5

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1.1 Motivation An increasing demand for high data rates in wireless communications has made it essential to investigate methods of achieving high spectral efficiency which would

More information

THE idea behind constellation shaping is that signals with

THE idea behind constellation shaping is that signals with IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 3, MARCH 2004 341 Transactions Letters Constellation Shaping for Pragmatic Turbo-Coded Modulation With High Spectral Efficiency Dan Raphaeli, Senior Member,

More information

Lecture 3 Digital Modulation, Detection and Performance Analysis

Lecture 3 Digital Modulation, Detection and Performance Analysis MIMO Communication Systems Lecture 3 Digital Modulation, Detection and Performance Analysis Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/3/26

More information

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 89 CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 4.1 INTRODUCTION This chapter investigates a technique, which uses antenna diversity to achieve full transmit diversity, using

More information

On Performance Improvements with Odd-Power (Cross) QAM Mappings in Wireless Networks

On Performance Improvements with Odd-Power (Cross) QAM Mappings in Wireless Networks San Jose State University From the SelectedWorks of Robert Henry Morelos-Zaragoza April, 2015 On Performance Improvements with Odd-Power (Cross) QAM Mappings in Wireless Networks Quyhn Quach Robert H Morelos-Zaragoza

More information

d[m] = [m]+ 1 2 [m 2]

d[m] = [m]+ 1 2 [m 2] DIGITAL COMMUNICATIONS PART A (Time: 60 minutes. Points 4/0) Last Name(s):........................................................ First (Middle) Name:.................................................

More information

Decrease Interference Using Adaptive Modulation and Coding

Decrease Interference Using Adaptive Modulation and Coding International Journal of Computer Networks and Communications Security VOL. 3, NO. 9, SEPTEMBER 2015, 378 383 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) Decrease

More information

CDMA Tutorial April 29, Michael Souryal April 29, 2006

CDMA Tutorial April 29, Michael Souryal April 29, 2006 Michael Souryal April 29, 2006 Common Components Encoding, modulation, spreading Common Features/Functionality Power control, diversity, soft handoff System Particulars cdmaone (IS-95) cdma2000 Sources:

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

THRESHOLD-BASED PARALLEL MULTIUSER SCHEDULING

THRESHOLD-BASED PARALLEL MULTIUSER SCHEDULING The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC 7 THRESHOLD-BASED PARALLEL MULTIUSER SCHEDULING Sung Sik Nam Dept of ECE College Station, Texas Email:

More information

Bit Error Rate Performance Measurement of Wireless MIMO System Based on FPGA

Bit Error Rate Performance Measurement of Wireless MIMO System Based on FPGA Bit Error Rate Performance Measurement of Wireless MIMO System Based on FPGA Aravind Kumar. S, Karthikeyan. S Department of Electronics and Communication Engineering, Vandayar Engineering College, Thanjavur,

More information

Efficient Diversity Technique for Hybrid Narrowband-Powerline/Wireless Smart Grid Communications

Efficient Diversity Technique for Hybrid Narrowband-Powerline/Wireless Smart Grid Communications Efficient Diversity Technique for Hybrid Narrowband-Powerline/Wireless Smart Grid Communications Mostafa Sayed, and Naofal Al-Dhahir University of Texas at Dallas Ghadi Sebaali, and Brian L. Evans, University

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

Revision of Wireless Channel

Revision of Wireless Channel Revision of Wireless Channel Quick recap system block diagram CODEC MODEM Wireless Channel Previous three lectures looked into wireless mobile channels To understand mobile communication technologies,

More information

Cross-Layer Design and Analysis of Wireless Networks Using the Effective Bandwidth Function

Cross-Layer Design and Analysis of Wireless Networks Using the Effective Bandwidth Function 1 Cross-Layer Design and Analysis of Wireless Networks Using the Effective Bandwidth Function Fumio Ishizaki, Member, IEEE, and Gang Uk Hwang, Member, IEEE Abstract In this paper, we propose a useful framework

More information

Chapter 6 Passband Data Transmission

Chapter 6 Passband Data Transmission Chapter 6 Passband Data Transmission Passband Data Transmission concerns the Transmission of the Digital Data over the real Passband channel. 6.1 Introduction Categories of digital communications (ASK/PSK/FSK)

More information

Resource allocation for Hybrid ARQ based Mobile Ad Hoc networks

Resource allocation for Hybrid ARQ based Mobile Ad Hoc networks Resource allocation for Hybrid ARQ based Mobile Ad Hoc networks Philippe Ciblat Joint work with N. Ksairi, A. Le Duc, C. Le Martret, S. Marcille Télécom ParisTech, France Part 1 : Introduction to HARQ

More information

Principles of Communications

Principles of Communications Principles of Communications Meixia Tao Shanghai Jiao Tong University Chapter 8: Digital Modulation Techniques Textbook: Ch 8.4 8.5, Ch 10.1-10.5 1 Topics to be Covered data baseband Digital modulator

More information

Combined Transmitter Diversity and Multi-Level Modulation Techniques

Combined Transmitter Diversity and Multi-Level Modulation Techniques SETIT 2005 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 27 3, 2005 TUNISIA Combined Transmitter Diversity and Multi-Level Modulation Techniques

More information

Error Correcting Codes for Cooperative Broadcasting

Error Correcting Codes for Cooperative Broadcasting San Jose State University SJSU ScholarWorks Faculty Publications Electrical Engineering 11-30-2010 Error Correcting Codes for Cooperative Broadcasting Robert H. Morelos-Zaragoza San Jose State University,

More information

Performance Evaluation of different α value for OFDM System

Performance Evaluation of different α value for OFDM System Performance Evaluation of different α value for OFDM System Dr. K.Elangovan Dept. of Computer Science & Engineering Bharathidasan University richirappalli Abstract: Orthogonal Frequency Division Multiplexing

More information

C802.16a-02/76. IEEE Broadband Wireless Access Working Group <

C802.16a-02/76. IEEE Broadband Wireless Access Working Group < Project IEEE 802.16 Broadband Wireless Access Working Group Title Convolutional Turbo Codes for 802.16 Date Submitted 2002-07-02 Source(s) Re: Brian Edmonston icoding Technology

More information

Exercises for chapter 2

Exercises for chapter 2 Exercises for chapter Digital Communications A baseband PAM system uses as receiver filter f(t) a matched filter, f(t) = g( t), having two choices for transmission filter g(t) g a (t) = ( ) { t Π =, t,

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

Cross-Layer Design of Adaptive Wireless Multicast Transmission with Truncated HARQ

Cross-Layer Design of Adaptive Wireless Multicast Transmission with Truncated HARQ Cross-Layer Design of Adaptive Wireless Multicast Transmission with Truncated HARQ Tan Tai Do, Jae Chul Park,YunHeeKim, and Iickho Song School of Electronics and Information, Kyung Hee University 1 Seocheon-dong,

More information

Joint Power and Rate Adaptation aided Network-Coded PSK for Two-way Relaying over Fading Channels

Joint Power and Rate Adaptation aided Network-Coded PSK for Two-way Relaying over Fading Channels IEEE ICC 215 - Wireless Communications Symposium Joint Power and Rate Adaptation aided Network-Coded PSK for Two-way Relaying over Fading Channels Yanping Yang, Wei Chen, Ou Li, Ke Ke and Lajos Hanzo National

More information

Spectrum efficiency of Fixed WiMAX OFDM network in the presence of co-channel interference with diversity combining

Spectrum efficiency of Fixed WiMAX OFDM network in the presence of co-channel interference with diversity combining Available online at www.sciencedirect.com Procedia Engineering 3 ( ) 34 347 International onference on ommunication Technology and System Design Spectrum efficiency of Fixed WiAX OFD networ in the presence

More information

Data Encoding g(p (part 2)

Data Encoding g(p (part 2) Data Encoding g(p (part 2) CSE 3213 Instructor: U.T. Nguyen 10/11/2007 12:44 PM 1 Analog Data, Digital Signals (5.3) 2 1 Analog Data, Digital Signals Digitization Conversion of analog data into digital

More information

On the performance of Turbo Codes over UWB channels at low SNR

On the performance of Turbo Codes over UWB channels at low SNR On the performance of Turbo Codes over UWB channels at low SNR Ranjan Bose Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA Abstract - In this paper we propose the use

More information

Physical-Layer Network Coding Using GF(q) Forward Error Correction Codes

Physical-Layer Network Coding Using GF(q) Forward Error Correction Codes Physical-Layer Network Coding Using GF(q) Forward Error Correction Codes Weimin Liu, Rui Yang, and Philip Pietraski InterDigital Communications, LLC. King of Prussia, PA, and Melville, NY, USA Abstract

More information

COMPARISON OF SOURCE DIVERSITY AND CHANNEL DIVERSITY METHODS ON SYMMETRIC AND FADING CHANNELS. Li Li. Thesis Prepared for the Degree of

COMPARISON OF SOURCE DIVERSITY AND CHANNEL DIVERSITY METHODS ON SYMMETRIC AND FADING CHANNELS. Li Li. Thesis Prepared for the Degree of COMPARISON OF SOURCE DIVERSITY AND CHANNEL DIVERSITY METHODS ON SYMMETRIC AND FADING CHANNELS Li Li Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS August 2009 APPROVED: Kamesh

More information

An Energy-Division Multiple Access Scheme

An Energy-Division Multiple Access Scheme An Energy-Division Multiple Access Scheme P Salvo Rossi DIS, Università di Napoli Federico II Napoli, Italy salvoros@uninait D Mattera DIET, Università di Napoli Federico II Napoli, Italy mattera@uninait

More information

Superposition Coding in the Downlink of CDMA Cellular Systems

Superposition Coding in the Downlink of CDMA Cellular Systems Superposition Coding in the Downlink of CDMA Cellular Systems Surendra Boppana and John M. Shea Wireless Information Networking Group University of Florida Feb 13, 2006 Outline of the talk Introduction

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON ELEC6014W1 SEMESTER II EXAMINATIONS 2007/08 RADIO COMMUNICATION NETWORKS AND SYSTEMS Duration: 120 mins Answer THREE questions out of FIVE. University approved calculators may

More information

The Impact of Interference on an OFDM System with AMC, Hybrid ARQ, and a Finite Queue on End-to- End Performance

The Impact of Interference on an OFDM System with AMC, Hybrid ARQ, and a Finite Queue on End-to- End Performance The Impact of Interference on an OFDM System with AMC, Hybrid ARQ, and a Finite Queue on End-to- End Performance Z. Hijaz and V. S. Frost Information and Telecommunication Technology Center Department

More information

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels SUDAKAR SINGH CHAUHAN Electronics and Communication Department

More information

Lab/Project Error Control Coding using LDPC Codes and HARQ

Lab/Project Error Control Coding using LDPC Codes and HARQ Linköping University Campus Norrköping Department of Science and Technology Erik Bergfeldt TNE066 Telecommunications Lab/Project Error Control Coding using LDPC Codes and HARQ Error control coding is an

More information

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Study of Turbo Coded OFDM over Fading Channel

Study of Turbo Coded OFDM over Fading Channel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 2 (August 2012), PP. 54-58 Study of Turbo Coded OFDM over Fading Channel

More information

Modulation and Coding Tradeoffs

Modulation and Coding Tradeoffs 0 Modulation and Coding Tradeoffs Contents 1 1. Design Goals 2. Error Probability Plane 3. Nyquist Minimum Bandwidth 4. Shannon Hartley Capacity Theorem 5. Bandwidth Efficiency Plane 6. Modulation and

More information

MIMO Wireless Systems

MIMO Wireless Systems MIMO Wireless Systems Andreas Constantinides Assaf Shacham May 14, 2004 1 Introduction Communication in a slow flat Rayleigh fading channel with AWGN is not reliable as the channel frequently enters into

More information

Study of Space-Time Coding Schemes for Transmit Antenna Selection

Study of Space-Time Coding Schemes for Transmit Antenna Selection American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-11, pp-01-09 www.ajer.org Research Paper Open Access Study of Space-Time Coding Schemes for Transmit

More information

Optimal Rate-Diversity-Delay Tradeoff in ARQ Block-Fading Channels

Optimal Rate-Diversity-Delay Tradeoff in ARQ Block-Fading Channels Optimal Rate-Diversity-Delay Tradeoff in ARQ Block-Fading Channels Allen Chuang School of Electrical and Information Eng. University of Sydney Sydney NSW, Australia achuang@ee.usyd.edu.au Albert Guillén

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

On the Spectral Efficiency of MIMO MC-CDMA System

On the Spectral Efficiency of MIMO MC-CDMA System I J C T A, 9(19) 2016, pp. 9311-9316 International Science Press On the Spectral Efficiency of MIMO MC-CDMA System Madhvi Jangalwa and Vrinda Tokekar ABSTRACT The next generation wireless communication

More information

Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation

Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation Convolutional Coder Basics Coder State Diagram Encoder Trellis Coder Tree Viterbi Decoding For Simplicity assume Binary Sym.Channel

More information

PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES

PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES SHUBHANGI CHAUDHARY AND A J PATIL: PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES DOI: 10.21917/ijct.2012.0071 PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING

More information

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel Journal of Scientific & Industrial Research Vol. 73, July 2014, pp. 443-447 Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel S. Mohandass * and

More information

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model M. Prem Anand 1 Rudrashish Roy 2 1 Assistant Professor 2 M.E Student 1,2 Department of Electronics & Communication

More information

TELE4652 Mobile and Satellite Communications

TELE4652 Mobile and Satellite Communications Mobile and Satellite Communications Lecture 7 Modulation Modulation he process of inserting our information signal onto a carrier wave he carrier wave is better suited to propagation over the channel Systematically

More information

Joint Power and Rate Control for Packet Coding over Fading Channels

Joint Power and Rate Control for Packet Coding over Fading Channels 1 Joint Power and Rate Control for Packet Coding over Fading Channels Rameez Ahmed and Milica Stojanovic Department of Electrical and Computer Engineering Northeastern University Boston, MA 02115 E-mail:

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

CHAPTER 4. DESIGN OF ADAPTIVE MODULATION SYSTEM BY USING 1/3 RATE TURBO CODER (SNR Vs BER)

CHAPTER 4. DESIGN OF ADAPTIVE MODULATION SYSTEM BY USING 1/3 RATE TURBO CODER (SNR Vs BER) 112 CHAPTER 4 DESIGN OF ADAPTIVE MODULATION SYSTEM BY USING 1/3 RATE TURBO CODER (SNR Vs BER) 4.1 NECESSITY FOR SYSTEM DESIGN The improved BER was achieved by inhibiting 1/3 rated Turbo coder instead of

More information