E-ISSN :

Size: px
Start display at page:

Download "E-ISSN :"

Transcription

1 International Conference on Engineering Innovations and Solutions DESIGN OF CASCADE CONTROL BASED FPID TUNING FOR NON-LINEAR PROCESS N.Jayaprakashnarayanan ( PG Scholar) Dept of Electronics and Instrumentation Bannari Amman Institute of Technology Sathyamangalam,Erode. I.Aravindaguru (PG Scholar) Dept of Electronics and Instrumentation Bannari Amman Institute of Technology Sathyamangalam,Erode. Abstract - This paper evaluates the performance of cascaded FPID design for the level and flow control of non-linear tank system. The level control of nonlinear tank is the massive challenge in process industry and it cannot be effectively controlled by means of conventional linear PID controller. FPID controller in cascaded architecture is the best choice compared to conventional single loop control system for controlling these non-linear process. Based on consideration about the expected operating modes of both FPID controller, the tuning of both inner and outer loop controllers are selected accordingly. Here the Spherical tank system is taken as non-linear system and their mathematical modelling is developed to show the system dynamic performance. The output response of cascade based FPID controller is simulated using LabVIEW and compared with conventional PID controllers. Keywords - Cascade, Conventional PID, FPID,DAQ card, LabVIEW, Spherical tank system I. INTRODUCTION Measurement of level, temperature, pressure and flow parameters are very vital in all Process Industries. Real time systems provide many challenging control problems due to their dynamic behaviour, uncertainty and time varying parameters, constraints on manipulated variables, dead time on input and measurements, interaction between manipulated and controlled variables and unmeasured frequent disturbances. Because of the inherent nonlinearity, most of the chemical process industries are in need of modern control techniques. Level control of spherical tank is one of the requirements in industries, where the storage of large volumes of highly pressurized liquids takes place. The level control in spherical tank is cumbersome due to variation of cross sectional area with respect to its height. The nonlinearities may also due to the saturation-type introduced by maximum or minimum allowed level in tanks, valve geometry, flow dynamics, pumps and valves. The most basic and pervasive control algorithm used in the feedback Derivative (PID) control algorithm. A PID controller attempts to correct the error between a measured process variable and a desired set point by calculating and then providing a corrective action that can adjust the process accordingly. Level and flow are the process measurement of spherical tank system, in which level can be controlled using flow of process known as cascade control.it is widely used in process industries and is particularly useful when the disturbances are associated with the manipulated variable or when final control element exhibits nonlinear behaviour. A simulation of cascade based PID control of spherical tank system to control level is done with LabVIEW software. Cascade Control is an advanced application of the PID that can improve control of systems that are subject to significant lag. Since such systems are slow to respond to disturbances their performance can suffer with each upset. The Cascade architecture can be applied effectively to such sluggish processes when a related and faster responding loop is available. When applied in concert the faster loop serves as an early warning mechanism that buffers the impact on its slower counterpart, allowing for smoother control and enhanced performance. Cascade control should always be used if you have a process with relatively slow dynamics (like level, temperature, composition, humidity) and a liquid or gas flow, or some other relatively-fast process, has to be manipulated to control the slow process. The calibration of modern transmitters is done using HART. Its most notable advantage is that it can communicate over legacy 4-20 ma analog instrumentation wiring. Calibrating the level transmitter means that the instrument must show an output of 4mA when there is no level and 20mA during full level. Before calibrating, the height between bottom tank and transmitter (LRV) and height between top tank from the transmitter (URV) are noted. To get an effective and accurate mathematical model, the spherical tank level is controlled in closed loop and step is given in open loop, then it is allowed for self regulation to get the E-ISSN :

2 International Conference on Engineering Innovations and Solutions International Conference on Engineering Innovations and Solutions process reaction curve. The selection of the model could be from the open-loop step response. The open loop step response is obtained by providing a step change in VFD frequency which will increase or decrease the inflow rate. LabVIEW developed by National Instruments (NI) is a graphical development with built in functionality for simulation, data acquisition, instrument control, measurement, analysis and data presentation it gives the flexibility of a powerful programming language without the complexity of traditional development environments. Data acquisition is the process of gathering and generating information in an automated fashion from analogue and digital measurement sources such as sensors and software to provide a flexible, user defined measurement system. The Data Acquisition (DAQ) system is used to pass a conditioned electric signal to a computer for software analysis and data logging. level values initially then signal is converted to current signal in the range 4 to 20mA. pressure signal acts on a control value which controls the flow of water in to the tank there by controlling the level. II. PROCESS MODELING The level process station was used to conduct the experiments and collect the data. The computer acts as a controller [3].It consists of the software used to control the level process station. The setup consists of a process tank, reservoir tank, control valve, I to P converter, level sensor and pneumatic signals from the compressor. When the set up is Switched on, level sensor senses the actual Fig. 1. Level Control of Spherical Tank System E-ISSN :

3 International Conference on Engineering Innovations and Solutions A. Description of the Spherical Tank Level Process The tank is made up of stainless steel body and is mounted over a stand vertically. Water enters the tank from the top and leaves the bottom to the storage tank. are as follows, The inlet pipe has a Rotameter, Electromagnetic type flow meter called as Flow Transmitter (FT1), air-to-open type pneumatic Control Valve (CV) and a hand valve to monitor and control the flow rate. The outlet has a hand valve, Electromagnetic type flow Spherical tank system The real time system consists of one input (inflow) and one output (level of the tank). The inflow is taken from a reservoir tank through a centrifugal pump with single phase motor. Table 1. Specifications of Spherical Tank System S.No. Parts/Field Description instruments Material: Stainless Steel, Diameter: 43 cm, 1. Spherical Tank (LRV= mmh2o, URV=866.5 mmh2o, Volume: 42 liters VFD: ABB-ACS350, 3Φ 4-20 ma to 0 to Pump and VFD Hz.Pump: Grundfos- JP5 centrifugal pump, 3Φ. DPT for level 3. measurement (LT) 6200T Series, Range:0 to6500mmh2o, DPT for level Output: 4 to 4. measurement (FT) 20mA+HART 5. Control valves Linear, Air to open, Body :1, Trim1/2 6. Rotameter 150 to 1500 lph 7. E/P converter Input:4-20 ma, 20 psi Output: 3 to 15 psi Analog input: 8, Analog output:2, Resolution: NI USB bits, Sampling rate: DAQ 250kS/s input & output voltage: -10V to +10V E-ISSN :

4 3 3 ( ) A (Re) +1 3 ( ) +1 ti me delay ] International Conference on Engineering Innovations and Solutions International Conference on Engineering Innovations and Solutions meter called as Flow Transmitter (FT2) and airto-open type pneumatic CV. The tank level is measured using a DPT, called as Level transmitter (LT). The level in the tank is directly proportional to the pressure created by liquid in it. LT measures the level by measuring pressure at bottom of the tank with reference to the atmosphere and coverts into an electrical quantity (4 to 20 ma). The LT is energized with 24V DC source and Lower Rage Value (LRV) & Upper Range Value (URV) are set using a Highway Addressable Remote Transducer (HART) communicator. The system is interfaced to the computer through NI USB 6211 data acquisition card (NI DAQ) and it can handle a maximum of 10 V, so the DPT outputs (4 to 20 ma) are converted into 2 to 10V using a 500Ω resistances and scaled up using LabVIEW. The controller signals (0 to 10V) from computer via NI DAQ is converted into 4 to 20 ma using a voltage to current convertor and given to current to pressure (E/P) convertor. The pneumatic line from the compressor is connected to an air regulator and its output is given as constant inputs (20 psi) for two different E/P converters. The CVs are operated based on the pneumatic outputs from E/Ps B. Mathematical model for Spherical tank system In order to design any control system the value of its transfer function should be known. To get the transfer function, mathematical modeling of the system needs to be done.the spherical tank in figure 5.3 is essentially a system with nonlinear dynamics. The nonlinear dynamics described by first-order differential equation. Fig.2.Schematic Diagram of Spherical Tank Area [A] = 4 π( h ) (3) Differentiating with respect to time = 8 π( ) 2 h h 1 h [A +8π 2 ] h = ( = ) =A h [Mass Balance Equation] Fin-Fout = A h Fout = h = h Fin = A h + h = Fin-Fout (1) Where V is the volume of the tank, Fin is the inlet flow and fault is the output flow. Volume of sphere (V) = 4 3π 3 Area of sphere (A) = 4 π 2 Taking Laplace Transform Fin(s) = As ( ) + ( ) (4) ( ) = Re (5) Thus, it is the first order system. Practically there will be a time delay. So, the equation becomes V= 1 [AR] = 1 [Ah] (2) ( ) Ke τds = [τd= Differentiating with respect to time E-ISSN : = 1 [A h +h ] 3

5 International Conference on Engineering Innovations and Solutions From the diagram, = h III.EXISTING SYSTEM A. Conventional PID Controller The Proportional-plus-Integral-plus- Derivative (PID) controllers have found wide acceptance and applications in the industries for the past few decades. It has a simple control structure E-ISSN :

6 International Conference on Engineering Innovations and Solutions International Conference on Engineering Innovations and Solutions which was understood by plant operators and which they found relatively easy to tune. In spite of the simple structures, PID controllers are proven to be sufficient for many practical control problems and hence are particularly appealing to practicing engineers. controller is the level controller using the level setpoint and measurement to determine the setpoint for the slave controller driving the input flow valve. Measurements of input and output flow are taken into account, enabling the system to faster respond to output flow disturbances. IV.PROPOSED SYSTEM Fig.3. PID Loop Control An abundant amount of research work has been reported in the past on the tuning of PID controllers. Ziegler Nichols step response, Ziegler Nichols ultimate cycling, Cohen Coon, Internal model control, and error-integral criteria tuning formulae are to mention only a few. "PID" means Proportional-Integral-Derivative, referring to the three terms operating on the error signal to produce a control signal. Since many control systems using PID control have proved satisfactory, it still has a wide range of applications in industrial control. Defining u(t) as the controller output, the final form of the PID algorithm is: A.Cascade FPID An alternative approach and one that can significantly improve the dynamic response to disturbances, employs a secondary measurement and a secondary feedback controller. The secondary measurement point is located so that it recognizes the upset condition sooner than the controlled variable, but the disturbance is not necessarily measured. This approach, called cascade control, is widely used in the process industries and is particularly useful when the disturbances are associated with the manipulated variable or when the final control element exhibits nonlinear behavior. The Self-tuning fuzzy PID controller, which takes error "e" and rate of change-in-error "ec" as the input to the controller makes use of the fuzzy control rules to modify PID parameters on-line. The self-tuning of the PID controller refers to finding the fuzzy relationship between the three parameters of PID,Kp,Ki, and Kd and "e" and "ec", and according to the principle of fuzzy control modifying the three parameters in order to meet different requirements for control parameters when "e" and "ec" are different and making the control object produce a good dynamic and static performance. Selecting the language variables of "e","ec", Kp, Ki, Kdby choosing seven fuzzy values (NL,NS,ZE,PS,PL). The region of these variables, in this case, is taken to be {-2,-1, 0, 1, 2}. S d u e d Fuzzy PID controller Plant P Where: Pout : Proportional term of output Kp : Proportional gain, a tuning parameter Ki : Integral gain, a tuning parameter Kd : Derivative gain, a tuning parameter E : Error = SP PV T : Time or instantaneous time (the present) MV : Manipulated variable The PID controller output determines the E-ISSN :

7 International Conference on Engineering Innovations and Solutions state of the feed valve. The system has limitations in reacting to variations in output flow, which is to be regarded as a system disturbance. The cascade control uses two PID controllers for a better performance of the level control. The master Fig.4. Basic structure of a fuzzy PID controller Here (NL,NS,ZE,PS,PL) is the set of linguistic values which respectively represent Negative Large, Negative Small, Zero, Positive Small, Positive Large.The following E-ISSN :

8 International Conference on Engineering Innovations and Solutions International Conference on Engineering Innovations and Solutions figure is the block diagram of a fuzzy self-tuning PID controller. As it can be seen from the block diagram, the fuzzification takes two inputs (e ande c) and gives three outputs ( K p, K i, K d). The set of linguistic rules is the essential part of a fuzzy controller. In the designed fuzzy system, conventional fuzzy conditions and relations such as If e is A and ec is B, then Kpis C, Ki is D andkd is E. are used to create the fuzzy rule tables Tab le 2. Fuzzy rules for kp = + = + = + e / ec NL NS ZE PS PL NL PVS PVL PVL PVL PVL NS PML PML PML PL PL ZE PVS PVS PS PMS PMS PS PML PML PML PL PVL HereKp,Ki and Kd refer to the previous value of the PID parameters whereaskp,ki andkd refer to the new corrected values of the parameters after a particular tuning step was completed. Therefore, with the help of Fuzzy sets (error and change in error) the above mentioned output variables K p, K i, K d fuzzy set values determined and fuzzy set rules framed. Totally 25 fuzzy set rules framed which is mentioned n table 2, table 3 and table 4 along with the error and change in error various values (NB,NM,NS,ZO,PS,PM,PB). The self-tuning of the PID controller refers to finding the fuzzy relationship between the three parameters of PID,Kp,Ki, and Kd and "e" and "ec". B. Simulation of Cascade PID PL PVL PVL PVL PVL PVL Table 3. Fuzzy Rules for Ki e / NL NS ZE PS PL ec NL PM PM PM PM PM NS PMS PMS PMS PMS PMS ZE PS PS PVS PS PS PS PMS PMS PMS PMS PMS PL PM PM PM PM PM Table 4.Fuzzy Rules for Kd e / ec NL NS ZE PS PL NL PM PM PM PM PM NS PMS PMS PMS PMS PMS ZE PS PS PVS PS PS PS PMS PMS PMS PMS PMS PL PM PM PM PM PM Fig.5. Front Panel of Cascade PID in LabVIEW V.RESULTS & DISCUSSION Open loop test is conducted for 200mm of height and then it is allowed to settle at 250mm height by giving a step change in flow. The response of open loop test is shown in the below figure. Process parameters such as Process gain, Time constant and dead time are calculated from the Process Reaction Curve. Kp = τ = 570 Td = 5.4sec Adaptive corrections can be made by the following methods, E-ISSN :

9 International Conference on Engineering Innovations and Solutions International Conference on Engineering Innovations and Solutions response method for PID control, Journal of Process Control, Vol. 14, pp AnandanatrajanR, ChidambaramM and Jayasingh T (2005), Design of controllers using variable transformations for a nonlinear process with dead time, ISA Transactions, Vol. 44, no. 1, pp Fig.6. Process Reaction Curve Obtained transfer function for the height of 200 mm, 3. Nithya, S., G. Abhay Singh, N. Sivakumaran, T. Balasubramanian and N. Anantharaman,, (2008), Design of intelligent controllers for non-linear processes,asian J.Applied science 1,pp ( ) ( ) = Table 5.Comparison between PID and Cascade FPID Controller Rise Settling Set Controller time time point tr ts (cm) (sec) (sec) 20 PID Cascade 4 11 FPID VI.CONCLUSION In this paper, the experimental setup of spherical tank system have studied and level control measurement was done. Calibration of level and flow transmitter was done using HART communicator. The process reaction curve of the spherical tank system was obtained through open loop test and dynamic performance was obtained from the transfer function. Simulation of cascade control for level and flow measurement have been done using LabVIEW software. The three parameters of conventional PID control need to be adjusted constantly in an online by Fuzzy controller to achieve better control performance. Thus the settling time, rise time, and other parameters of the system had been achieved with better dynamic performance. 4. Truong Nguyen Luan Vu, Moonyong Lee (2010), Independent design of multi-loop PI/PID controllers for interacting multivariable processes,journal of Process Control 20 (2010) D.Dinesh Kumar, B.Meenakshipriya (2012), Design and implementation of Non Linear System Using Gain Scheduled PI Controller,journal of process control (Elsevier), Procedia Engineering 38 ( 2012 ) K.Hari Krishna, J SatheeshKumar and MahaboobShaik, Design and Development of Model Based Controller for a Spherical Tank, International Journal of Current Engineering and Technology,Vol.2, No.4(Dec. 2012),ISSN Selvaraj S.P and Nirmalkumar A (2014), Implementation of GA based online parameter tuning of the Conical tank system, International Journal of Applied Engineering Research, Vol. 9, no. 22, pp PradeepKannan.D, Sathiyamoorthy,(2012) Design and Modelling of State Feedback with Intergal Controller for a Non-Linear spherical tank Process., International Journal of Emerging Technology and Advanced Engineering, 2(11), REFERENCES 1. Astrom K.J and Hagglund T (2004), Revisiting the Ziegler Nichols step E-ISSN :

CONTROL OF A NON LINEAR SYSTEM USING IMC-PID CONTROLLER

CONTROL OF A NON LINEAR SYSTEM USING IMC-PID CONTROLLER CONTROL OF A NON LINEAR SYSTEM USING IMC-PID CONTROLLER K.M.Nandhini PG Scholar, Department of EIE Bannari Amman Institute of Technology Sathyamangalm, Erode,India kmsrnandhu@gmail.com S.Kaushik Assistant

More information

CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS

CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS Journal of Engineering Science and Technology EURECA 2013 Special Issue August (2014) 59-67 School of Engineering, Taylor s University CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

Non Linear Tank Level Control using LabVIEW Jagatis Kumaar B 1 Vinoth K 2 Vivek Vijayan C 3 P Aravind 4

Non Linear Tank Level Control using LabVIEW Jagatis Kumaar B 1 Vinoth K 2 Vivek Vijayan C 3 P Aravind 4 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 01, 2015 ISSN (online): 2321-0613 Non Linear Tank Level Control using LabVIEW Jagatis Kumaar B 1 Vinoth K 2 Vivek Vijayan

More information

Relay Feedback based PID Controller for Nonlinear Process

Relay Feedback based PID Controller for Nonlinear Process Relay Feedback based PID Controller for Nonlinear Process I.Thirunavukkarasu, Dr.V.I.George, * and R.Satheeshbabu Abstract This work is about designing a relay feedback based PID controller for a conical

More information

Modeling and Control of Liquid Level Non-linear Interacting and Non-interacting System

Modeling and Control of Liquid Level Non-linear Interacting and Non-interacting System ISSN (Print) : 30 3765 ISSN (Online): 78 8875 (An ISO 397: 007 Certified Organization) Vol. 3, Issue 3, March 04 Modeling and Control of Liquid Level Non-linear Inter and Non-inter System S.Saju B.E.M.E.(Ph.D.),

More information

Keywords: Fuzzy Logic, Genetic Algorithm, Non-linear system, PI Controller.

Keywords: Fuzzy Logic, Genetic Algorithm, Non-linear system, PI Controller. Volume 3, Issue 8, August 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Implementation

More information

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System Journal of Advanced Computing and Communication Technologies (ISSN: 347-84) Volume No. 5, Issue No., April 7 Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System By S.Janarthanan,

More information

Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time Process

Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time Process International Journal of Electronics and Computer Science Engineering 538 Available Online at www.ijecse.org ISSN- 2277-1956 Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time

More information

MODEL BASED CONTROL FOR INTERACTING AND NON-INTERACTING LEVEL PROCESS USING LABVIEW

MODEL BASED CONTROL FOR INTERACTING AND NON-INTERACTING LEVEL PROCESS USING LABVIEW MODEL BASED CONTROL FOR INTERACTING AND NON-INTERACTING LEVEL PROCESS USING LABVIEW M.Lavanya 1, P.Aravind 2, M.Valluvan 3, Dr.B.Elizabeth Caroline 4 PG Scholar[AE], Dept. of ECE, J.J. College of Engineering&

More information

Design of Model Based PID Controller Tuning for Pressure Process

Design of Model Based PID Controller Tuning for Pressure Process ISSN (Print) : 3 3765 Design of Model Based PID Controller Tuning for Pressure Process A.Kanchana 1, G.Lavanya, R.Nivethidha 3, S.Subasree 4, P.Aravind 5 UG student, Dept. of ICE, Saranathan College Engineering,

More information

Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model

Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model Sumit 1, Ms. Kajal 2 1 Student, Department of Electrical Engineering, R.N College of Engineering, Rohtak,

More information

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental Think About Control Fundamentals Training Terminology Control Eko Harsono eko.harsononus@gmail.com; 1 Contents Topics: Slide No: Process Control Terminology 3-10 Control Principles 11-18 Basic Control

More information

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control 1 Deepa Shivshant Bhandare, 2 Hafiz Shaikh and 3 N. R. Kulkarni 1,2,3 Department of Electrical Engineering,

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design of Self-tuning PID controller using Fuzzy Logic for Level Process P D Aditya Karthik *1, J Supriyanka 2 *1, 2 Department

More information

CHAPTER 4 PID CONTROLLER BASED SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

CHAPTER 4 PID CONTROLLER BASED SPEED CONTROL OF THREE PHASE INDUCTION MOTOR 36 CHAPTER 4 PID CONTROLLER BASED SPEED CONTROL OF THREE PHASE INDUCTION MOTOR 4.1 INTRODUCTION Now a day, a number of different controllers are used in the industry and in many other fields. In a quite

More information

LABVIEW BASED TUNING OF PI CONTROLLERS FOR A REAL TIME NON LINEAR PROCESS

LABVIEW BASED TUNING OF PI CONTROLLERS FOR A REAL TIME NON LINEAR PROCESS LABVIEW BASED TUNING OF PI CONTROLLERS FOR A REAL TIME NON LINEAR PROCESS 1 M.KALYAN CHAKRAVARTHI, 2 NITHYA VENKATESAN 1 Assistant Professor, School of Electronics Engineering, 2 Associate Professor, School

More information

Online Tuning of Two Conical Tank Interacting Level Process

Online Tuning of Two Conical Tank Interacting Level Process Online Tuning of Two Conical Tank Interacting Level Process S.Vadivazhagi 1, Dr.N.Jaya Research Scholar, Dept. of E&I, Annamalai University, Chidambaram, Tamilnadu, India 1 Associate Professor, Dept. of

More information

International Journal of Research in Advent Technology Available Online at:

International Journal of Research in Advent Technology Available Online at: OVERVIEW OF DIFFERENT APPROACHES OF PID CONTROLLER TUNING Manju Kurien 1, Alka Prayagkar 2, Vaishali Rajeshirke 3 1 IS Department 2 IE Department 3 EV DEpartment VES Polytechnic, Chembur,Mumbai 1 manjulibu@gmail.com

More information

An Implementation for Comparison of Various PID Controllers Tuning Methodologies for Heat Exchanger Model

An Implementation for Comparison of Various PID Controllers Tuning Methodologies for Heat Exchanger Model An Implementation for Comparison of Various PID Controllers Tuning Methodologies for Heat Exchanger Model Akshay Dhanda 1 and Dharam Niwas 2 1 M. Tech. Scholar, Indus Institute of Engineering and Technology,

More information

Modeling and Analysis of a Real Time Spherical Tank Process for Sewage Treatment Plant

Modeling and Analysis of a Real Time Spherical Tank Process for Sewage Treatment Plant Appl. Math. Inf. Sci. 11, No. 5, 1491-1498 (2017) 1491 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/110528 Modeling and Analysis of a Real Time Spherical

More information

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station RESEARCH ARTICLE OPEN ACCESS Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station Shaunak Chakrabartty 1, Dr.I.Thirunavukkarasu 2 And Mukul Kumar Shahi 3 1 Department

More information

Labview Based Gain scheduled PID Controller for a Non Linear Level Process Station

Labview Based Gain scheduled PID Controller for a Non Linear Level Process Station IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 05-11 www.iosrjournals.org Labview Based Gain scheduled PID Controller for a Non Linear Level

More information

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental - Con't

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental - Con't Think About Control Fundamentals Training Terminology Control Eko Harsono eko.harsononus@gmail.com; 1 Contents Topics: Slide No: Advance Control Loop 3-10 Control Algorithm 11-25 Control System 26-32 Exercise

More information

EMPIRICAL MODEL IDENTIFICATION AND PID CONTROLLER TUNING FOR A FLOW PROCESS

EMPIRICAL MODEL IDENTIFICATION AND PID CONTROLLER TUNING FOR A FLOW PROCESS Volume 118 No. 20 2018, 2015-2021 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu EMPIRICAL MODEL IDENTIFICATION AND PID CONTROLLER TUNING FOR A FLOW

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 Special 11(5): pages 129-137 Open Access Journal Comparison of

More information

Getting the Best Performance from Challenging Control Loops

Getting the Best Performance from Challenging Control Loops Getting the Best Performance from Challenging Control Loops Jacques F. Smuts - OptiControls Inc, League City, Texas; jsmuts@opticontrols.com KEYWORDS PID Controls, Oscillations, Disturbances, Tuning, Stiction,

More information

Logic Developer Process Edition Function Blocks

Logic Developer Process Edition Function Blocks GE Intelligent Platforms Logic Developer Process Edition Function Blocks Delivering increased precision and enabling advanced regulatory control strategies for continuous process control Logic Developer

More information

FUZZY ADAPTIVE PI CONTROLLER FOR SINGLE INPUT SINGLE OUTPUT NON-LINEAR SYSTEM

FUZZY ADAPTIVE PI CONTROLLER FOR SINGLE INPUT SINGLE OUTPUT NON-LINEAR SYSTEM FUZZY ADAPTIVE PI CONTROLLER FOR SINGLE INPUT SINGLE OUTPUT NON-LINEAR SYSTEM A. Ganesh Ram and S. Abraham Lincoln Department of E and I, FEAT, Annamalai University, Annamalainagar, Tamil Nadu, India E-Mail:

More information

PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING

PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING 83 PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING B L Chua 1, F.S.Tai 1, N.A.Aziz 1 and T.S.Y Choong 2 1 Department of Process and Food Engineering, 2 Department of Chemical and Environmental

More information

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System PAPER ID: IJIFR / V1 / E10 / 031 www.ijifr.com ijifr.journal@gmail.com ISSN (Online): 2347-1697 An Enlightening Online Open Access, Refereed & Indexed Journal of Multidisciplinary Research Simulation and

More information

CHAPTER 11: DIGITAL CONTROL

CHAPTER 11: DIGITAL CONTROL When I complete this chapter, I want to be able to do the following. Identify examples of analog and digital computation and signal transmission. Program a digital PID calculation Select a proper execution

More information

International Journal of Engineering and Techniques - Volume 5 Issue 2, Mar-Apr 2019

International Journal of Engineering and Techniques - Volume 5 Issue 2, Mar-Apr 2019 RESEARCH ARTICLE OPEN ACCESS Temperature Process Monitoring and Control using LabVIEW P.Thirumurugan 1, M.Arshad Alam Mohammed 2, S.Karthikeyan 3, D.Marimuthu 4, P.S.Vijay 5 1(Asst Professor, Department

More information

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

More information

Different Controller Terms

Different Controller Terms Loop Tuning Lab Challenges Not all PID controllers are the same. They don t all use the same units for P-I-and D. There are different types of processes. There are different final element types. There

More information

Procidia Control Solutions Dead Time Compensation

Procidia Control Solutions Dead Time Compensation APPLICATION DATA Procidia Control Solutions Dead Time Compensation AD353-127 Rev 2 April 2012 This application data sheet describes dead time compensation methods. A configuration can be developed within

More information

CONTROLLER DESIGN BASED ON MODEL PREDICTIVE CONTROL FOR A NONLINEAR PROCESS

CONTROLLER DESIGN BASED ON MODEL PREDICTIVE CONTROL FOR A NONLINEAR PROCESS CONTROLLER DESIGN BASED ON MODEL PREDICTIVE CONTROL FOR A NONLINEAR PROCESS Nithya Venkatesan School of Electrical Engineering, VIT University, Chennai Campus TamilNadu, India,600 048. nithya.venkatesan@gmail.com

More information

Experiment 9. PID Controller

Experiment 9. PID Controller Experiment 9 PID Controller Objective: - To be familiar with PID controller. - Noting how changing PID controller parameter effect on system response. Theory: The basic function of a controller is to execute

More information

Comparison Effectiveness of PID, Self-Tuning and Fuzzy Logic Controller in Heat Exchanger

Comparison Effectiveness of PID, Self-Tuning and Fuzzy Logic Controller in Heat Exchanger J. Appl. Environ. Biol. Sci., 7(4S)28-33, 2017 2017, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Comparison Effectiveness of PID, Self-Tuning

More information

The Open Automation and Control Systems Journal, 2015, 7, Application of Fuzzy PID Control in the Level Process Control

The Open Automation and Control Systems Journal, 2015, 7, Application of Fuzzy PID Control in the Level Process Control Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 205, 7, 38-386 38 Application of Fuzzy PID Control in the Level Process Control Open Access Wang

More information

EFFICIENT CONTROL OF LEVEL IN INTERACTING CONICAL TANKS USING REAL TIME CONCEPTS

EFFICIENT CONTROL OF LEVEL IN INTERACTING CONICAL TANKS USING REAL TIME CONCEPTS EFFICIENT CONTROL OF LEVEL IN INTERACTING CONICAL TANKS USING REAL TIME CONCEPTS V. Karthikeyan Department of Electrical and Electronics Engineering, Dr. M.G.R. Educational and Research Institute, University,

More information

Design and Simulation of Gain Scheduled Adaptive Controller using PI Controller for Conical Tank Process

Design and Simulation of Gain Scheduled Adaptive Controller using PI Controller for Conical Tank Process IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 04 September 2015 ISSN (online): 2349-6010 Design and Simulation of Gain Scheduled Adaptive Controller using

More information

Sensors & Transducers 2015 by IFSA Publishing, S. L.

Sensors & Transducers 2015 by IFSA Publishing, S. L. Sensors & Transducers 2015 by IFSA Publishing, S. L. http://www.sensorsportal.com Real Time Control of Non-Linear Conical Tank Sitanshu SATPATHY, Prabhu RAMANATHAN School of Electrical Engineering, VIT

More information

Auto-tuning of PID Controller for the Cases Given by Forbes Marshall

Auto-tuning of PID Controller for the Cases Given by Forbes Marshall International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 6 (2017) pp. 809-814 Research India Publications http://www.ripublication.com Auto-tuning of PID Controller for

More information

Today s meeting. Themes 2/7/2016. Instrumentation Technology INST 1010 Introduction to Process Control

Today s meeting. Themes 2/7/2016. Instrumentation Technology INST 1010 Introduction to Process Control Instrumentation Technology INST 1010 Introduction to Basile Panoutsopoulos, Ph.D. CCRI Department of Engineering and Technology Engineering Physics II 1 Today s meeting Call Attendance Announcements Collect

More information

Real Time Level Control of Conical Tank and Comparison of Fuzzy and Classical Pid Controller

Real Time Level Control of Conical Tank and Comparison of Fuzzy and Classical Pid Controller Indian Journal of Science and Technology, Vol 8(S2), 40 44, January 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 DOI : 10.17485/ijst/2015/v8iS2/58407 Real Time Level Control of Conical Tank

More information

Comparative Study of PID and FOPID Controller Response for Automatic Voltage Regulation

Comparative Study of PID and FOPID Controller Response for Automatic Voltage Regulation IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 09 (September. 2014), V5 PP 41-48 www.iosrjen.org Comparative Study of PID and FOPID Controller Response for

More information

Research Article Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

Research Article Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm Research Journal of Applied Sciences, Engineering and Technology 7(17): 3441-3445, 14 DOI:1.196/rjaset.7.695 ISSN: 4-7459; e-issn: 4-7467 14 Maxwell Scientific Publication Corp. Submitted: May, 13 Accepted:

More information

Fuzzy Adapting PID Based Boiler Drum Water Level Controller

Fuzzy Adapting PID Based Boiler Drum Water Level Controller IJSRD - International Journal for Scientific Research & Development Vol., Issue 0, 203 ISSN (online): 232-063 Fuzzy Adapting PID Based Boiler Drum ater Level Controller Periyasamy K Assistant Professor

More information

A Comparative Novel Method of Tuning of Controller for Temperature Process

A Comparative Novel Method of Tuning of Controller for Temperature Process A Comparative Novel Method of Tuning of Controller for Temperature Process E.Kalaiselvan 1, J. Dominic Tagore 2 Associate Professor, Department of E.I.E, M.A.M College Of Engineering, Trichy, Tamilnadu,

More information

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM J. Arulvadivu, N. Divya and S. Manoharan Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, Tamilnadu,

More information

The PID controller. Summary. Introduction to Control Systems

The PID controller. Summary. Introduction to Control Systems The PID controller ISTTOK real-time AC 7-10-2010 Summary Introduction to Control Systems PID Controller PID Tuning Discrete-time Implementation The PID controller 2 Introduction to Control Systems Some

More information

Digital Control of MS-150 Modular Position Servo System

Digital Control of MS-150 Modular Position Servo System IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland

More information

Assessment Of Diverse Controllers For A Cylindrical Tank Level Process

Assessment Of Diverse Controllers For A Cylindrical Tank Level Process IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Assessment Of Diverse Controllers For A Cylindrical Tank Level Process

More information

A Rule Based Design Methodology for the Control of Non Self-Regulating Processes

A Rule Based Design Methodology for the Control of Non Self-Regulating Processes contents A Rule Based Design Methodology for the Control of Non Self-Regulating Processes Robert Rice Research Assistant Dept. Of Chemical Engineering University of Connecticut Storrs, CT 06269-3222 Douglas

More information

InstrumentationTools.com

InstrumentationTools.com Author: Instrumentation Tools Categories: Control Systems Ziegler-Nichols Closed-Loop Method (Ultimate Gain) Closed-loop refers to the operation of a control system with the controlling device in automatic

More information

A NOVEL METHOD OF RATIO CONTROL WITHOUT USING FLOWMETERS

A NOVEL METHOD OF RATIO CONTROL WITHOUT USING FLOWMETERS A NOVEL METHOD OF RATIO CONTROL WITHOUT USING FLOWMETERS R.Prabhu Jude, L.Sridevi, Dr.P.Kanagasabapathy Madras Institute Of Technology, Anna University, Chennai - 600 044. ABSTRACT This paper describes

More information

Process Control Laboratory Using Honeywell PlantScape

Process Control Laboratory Using Honeywell PlantScape Process Control Laboratory Using Honeywell PlantScape Christi Patton Luks, Laura P. Ford University of Tulsa Abstract The University of Tulsa has recently revised its process controls class from one 3-hour

More information

Find, read or write documentation which describes work of the control loop: Process Control Philosophy. Where the next information can be found:

Find, read or write documentation which describes work of the control loop: Process Control Philosophy. Where the next information can be found: 1 Controller uning o implement continuous control we should assemble a control loop which consists of the process/object, controller, sensors and actuators. Information about the control loop Find, read

More information

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

Some Tuning Methods of PID Controller For Different Processes

Some Tuning Methods of PID Controller For Different Processes International Conference on Information Engineering, Management and Security [ICIEMS] 282 International Conference on Information Engineering, Management and Security 2015 [ICIEMS 2015] ISBN 978-81-929742-7-9

More information

PID control. since Similarly, modern industrial

PID control. since Similarly, modern industrial Control basics Introduction to For deeper understanding of their usefulness, we deconstruct P, I, and D control functions. PID control Paul Avery Senior Product Training Engineer Yaskawa Electric America,

More information

Relay Based Auto Tuner for Calibration of SCR Pump Controller Parameters in Diesel after Treatment Systems

Relay Based Auto Tuner for Calibration of SCR Pump Controller Parameters in Diesel after Treatment Systems Abstract Available online at www.academicpaper.org Academic @ Paper ISSN 2146-9067 International Journal of Automotive Engineering and Technologies Special Issue 1, pp. 26 33, 2017 Original Research Article

More information

Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive Applications by Using Soft Switching Technique

Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive Applications by Using Soft Switching Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 232-3331 PP 4-44 www.iosrjournals.org Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive

More information

Modified ultimate cycle method relay auto-tuning

Modified ultimate cycle method relay auto-tuning Adaptive Control - Autotuning Structure of presentation: Relay feedback autotuning outline Relay feedback autotuning details How close is the estimate of the ultimate gain and period to the actual ultimate

More information

Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process

Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process International Journal of Computer Science & Communication Vol. 1, No. 2, July-December 2010, pp. 161-165 Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process Pradeep Kumar

More information

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 92 CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 4.1 OVERVIEW OF PI CONTROLLER Proportional Integral (PI) controllers have been developed due to the unique

More information

Real-Time Performance Evaluation of a Fuzzy PI + Fuzzy PD Controller for Liquid-Level Process

Real-Time Performance Evaluation of a Fuzzy PI + Fuzzy PD Controller for Liquid-Level Process NTERNATONAL JOURNAL OF NTELLGENT CONTROL AND SYSTEMS VOL. 13, NO. 2, JUNE 2008, 89-96 Real-Time Performance Evaluation of a Fuzzy P + Fuzzy PD Controller for Liquid-Level Process Vineet KUMAR, K.P.S. RANA

More information

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Engr. Joseph, E. A. 1, Olaiya O. O. 2 1 Electrical Engineering Department, the Federal Polytechnic, Ilaro, Ogun State,

More information

Fuzzy Based Control Using Lab view For Temperature Process

Fuzzy Based Control Using Lab view For Temperature Process Fuzzy Based Control Using Lab view For Temperature Process 1 S.Kavitha, 2 B.Chinthamani, 3 S.Joshibha Ponmalar 1 Assistant Professor, Dept of EEE, Saveetha Engineering College Tamilnadu, India 2 Assistant

More information

Comparative Study of PID Controller tuning methods using ASPEN HYSYS

Comparative Study of PID Controller tuning methods using ASPEN HYSYS Comparative Study of PID Controller tuning methods using ASPEN HYSYS Bhavatharini S #1, Abirami S #2, Arun Prem Anand N #3 # Department of Chemical Engineering, Sri Venkateswara College of Engineering

More information

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department,

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department, OPTIMAL TUNING PARAMETERS OF PROPORTIONAL INTEGRAL CONTROLLER IN FEEDBACK CONTROL SYSTEMS. Gamze İŞ 1, ChandraMouli Madhuranthakam 2, Erdoğan Alper 1, Ibrahim H. Mustafa 2,3, Ali Elkamel 2 1 Chemical Engineering

More information

TEMPERATURE PROCESS CONTROL MANUAL. Penn State Chemical Engineering

TEMPERATURE PROCESS CONTROL MANUAL. Penn State Chemical Engineering TEMPERATURE PROCESS CONTROL MANUAL Penn State Chemical Engineering Revised Summer 2015 Contents LEARNING OBJECTIVES... 3 EXPERIMENTAL OBJECTIVES AND OVERVIEW... 3 Pre-lab study:... 3 Experiments in the

More information

PYKC 7 March 2019 EA2.3 Electronics 2 Lecture 18-1

PYKC 7 March 2019 EA2.3 Electronics 2 Lecture 18-1 In this lecture, we will examine a very popular feedback controller known as the proportional-integral-derivative (PID) control method. This type of controller is widely used in industry, does not require

More information

DESIGN OF MODEL REFERENCE ADAPTIVE CONTROLLER FOR CYLINDER TANK SYSTEM

DESIGN OF MODEL REFERENCE ADAPTIVE CONTROLLER FOR CYLINDER TANK SYSTEM Volume 8 No. 20 208, 2007-203 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DESIGN OF MODEL REFERENCE ADAPTIVE CONTROLLER FOR CYLINDER TANK SYSTEM Nandhinipriyanka

More information

Design of Fuzzy- PID Controller for First Order Non-Linear Liquid Level System

Design of Fuzzy- PID Controller for First Order Non-Linear Liquid Level System Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 5 IJCTA, 9(39), 26, pp. 5-57 International Science Press Design of Fuzzy- PID Controller for First Order Non-Linear Liquid

More information

Comparison of Conventional Controller with Model Predictive Controller for CSTR Process

Comparison of Conventional Controller with Model Predictive Controller for CSTR Process Comparison of Conventional Controller with Model Predictive Controller for CSTR Process S.Allwin 1, S.Biksha natesan 2, S.Abirami 3, H.Kala 4, A.Udhaya prakash 5 Assistant professor, Department of ICE,

More information

SIMULINK MODELING OF FUZZY CONTROLLER FOR CANE LEVEL CONTROLLING

SIMULINK MODELING OF FUZZY CONTROLLER FOR CANE LEVEL CONTROLLING International Journal of Industrial Engineering & Technology (IJIET) ISSN 2277-4769 Vol. 3, Issue 1, Mar 2013, 43-50 TJPRC Pvt. Ltd. SIMULINK MODELING OF FUZZY CONTROLLER FOR CANE LEVEL CONTROLLING YOGESH

More information

Embedded based Automation System for Industrial Process Parameters

Embedded based Automation System for Industrial Process Parameters Embedded based Automation System for Industrial Process Parameters Godhini Prathyusha 1 Lecturer, Department of Physics (P.G), Govt.Degree College, Anantapur, Andhra Pradesh, India 1 ABSTRACT: Automation

More information

Instrumentation and Control Systems

Instrumentation and Control Systems Unit 16: Unit Instrumentation and Control Systems D/615/1490 Unit level 4 Credit value 15 Introduction Instrumentation and control can also be described as measurement automation, which is a very important

More information

PROCESS CONTROL LAB. Lab In charge COURSE OBJECTIVES

PROCESS CONTROL LAB. Lab In charge COURSE OBJECTIVES PROCESS CONTROL LAB COURSE OBJECTIVES 1. To control temperature, pressure, flow, level using PC with the help of different control modes. 2. To verify the operation of control valves. 3. To verify the

More information

Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic Nasser Mohamed Ramli, Mohamad Syafiq Mohamad 1 Abstract Many types of controllers were applied on the continuous

More information

Simulation of process identification and controller tuning for flow control system

Simulation of process identification and controller tuning for flow control system IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Simulation of process identification and controller tuning for flow control system To cite this article: I M Chew et al 2017 IOP

More information

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

An Expert System Based PID Controller for Higher Order Process

An Expert System Based PID Controller for Higher Order Process An Expert System Based PID Controller for Higher Order Process K.Ghousiya Begum, D.Mercy, H.Kiren Vedi Abstract The proportional integral derivative (PID) controller is the most widely used control strategy

More information

Optimized Tuning of PI Controller for a Spherical Tank Level System Using New Modified Repetitive Control Strategy

Optimized Tuning of PI Controller for a Spherical Tank Level System Using New Modified Repetitive Control Strategy International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume 3, Issue 6 (September 212), PP. 74-82 Optimized Tuning of PI Controller for a Spherical

More information

Level control drain valve tuning. Walter Bischoff PE Brunswick Nuclear Plant

Level control drain valve tuning. Walter Bischoff PE Brunswick Nuclear Plant Level control drain valve tuning Walter Bischoff PE Brunswick Nuclear Plant Tuning Introduction Why is it important PI and PID controllers have been accepted throughout process design and all forms of

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

An Introduction to Proportional- Integral-Derivative (PID) Controllers

An Introduction to Proportional- Integral-Derivative (PID) Controllers An Introduction to Proportional- Integral-Derivative (PID) Controllers Stan Żak School of Electrical and Computer Engineering ECE 680 Fall 2017 1 Motivation Growing gap between real world control problems

More information

Enhance operational efficiency with Advanced Process Control (APC) Integration of APC in SIMATIC PCS 7 SIMATIC PCS 7. Answers for industry.

Enhance operational efficiency with Advanced Process Control (APC) Integration of APC in SIMATIC PCS 7 SIMATIC PCS 7. Answers for industry. Enhance operational efficiency with Advanced Control (APC) Integration of APC in SIMATIC PCS 7 SIMATIC PCS 7 Answers for industry. Modern closed-loop control systems in the process industry In today s

More information

Paul Schafbuch. Senior Research Engineer Fisher Controls International, Inc.

Paul Schafbuch. Senior Research Engineer Fisher Controls International, Inc. Paul Schafbuch Senior Research Engineer Fisher Controls International, Inc. Introduction Achieving optimal control system performance keys on selecting or specifying the proper flow characteristic. Therefore,

More information

TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION

TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION 1 K.LAKSHMI SOWJANYA, 2 L.RAVI SRINIVAS M.Tech Student, Department of Electrical & Electronics Engineering, Gudlavalleru Engineering College,

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 259-268 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Ziegler-Nichols First Tuning Method for Air Blower PT326 Mahanijah Md Kamal*

More information

Neural Network Predictive Controller for Pressure Control

Neural Network Predictive Controller for Pressure Control Neural Network Predictive Controller for Pressure Control ZAZILAH MAY 1, MUHAMMAD HANIF AMARAN 2 Department of Electrical and Electronics Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar,

More information

Resistance Furnace Temperature Control System Based on OPC and MATLAB

Resistance Furnace Temperature Control System Based on OPC and MATLAB 569257MAC0010.1177/0020294015569257Resistance Furnace Temperature Control System Based on and MATLABResistance Furnace Temperature Control System Based on and MATLAB research-article2015 Themed Paper Resistance

More information

EVALUATION AND SELF-TUNING OF ROBUST ADAPTIVE PID CONTROLLER & FUZZY LOGIC CONTROLLER FOR NON-LINEAR SYSTEM-SIMULATION STUDY

EVALUATION AND SELF-TUNING OF ROBUST ADAPTIVE PID CONTROLLER & FUZZY LOGIC CONTROLLER FOR NON-LINEAR SYSTEM-SIMULATION STUDY EVALUATION AND SELF-TUNING OF ROBUST ADAPTIVE PID CONTROLLER & FUZZY LOGIC CONTROLLER FOR NON-LINEAR SYSTEM-SIMULATION STUDY By Dr. POLAIAH BOJJA Sree Vidyanikethan Engineering College Tiruapti, India

More information

A SOFTWARE-BASED GAIN SCHEDULING OF PID CONTROLLER

A SOFTWARE-BASED GAIN SCHEDULING OF PID CONTROLLER A SOFTWARE-BASED GAIN SCHEDULING OF PID CONTROLLER Hussein Sarhan Department of Mechatronics Engineering, Faculty of Engineering Technology, Amman, Jordan ABSTRACT In this paper, a scheduled-gain SG-PID

More information

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 130 CHAPTER 6 CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 6.1 INTRODUCTION Vibration control of rotating machinery is tougher and a challenging challengerical technical problem.

More information

Tuning of PID Controller for Cascade Unstable systems Using Genetic Algorithm P.Vaishnavi, G.Balasubramanian.

Tuning of PID Controller for Cascade Unstable systems Using Genetic Algorithm P.Vaishnavi, G.Balasubramanian. Volume 8 No. 8 28, 2-29 ISSN: 3-88 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Tuning of PID Controller for Cascade Unstable systems Using Genetic Algorithm P.Vaishnavi,

More information

DESIGN AND ANALYSIS OF TUNING TECHNIQUES USING DIFFERENT CONTROLLERS OF A SECOND ORDER PROCESS

DESIGN AND ANALYSIS OF TUNING TECHNIQUES USING DIFFERENT CONTROLLERS OF A SECOND ORDER PROCESS Journal of Electrical Engineering & Technology (JEET) Volume 3, Issue 1, January- December 2018, pp. 1 6, Article ID: JEET_03_01_001 Available online at http://www.iaeme.com/jeet/issues.asp?jtype=jeet&vtype=3&itype=1

More information