One-Time Programmable, Linear-Taper Digital Potentiometers

Size: px
Start display at page:

Download "One-Time Programmable, Linear-Taper Digital Potentiometers"

Transcription

1 ; Rev 1; 7/9 EVAUATION KIT AVAIABE One-Time Programmable, inear-taper Digital General Description The linear-taper digital potentiometers perform the same function as mechanical potentiometers, replacing the mechanics with a simple 2-wire up/down digital interface. These digital potentiometers provide an optional one-time programmable feature that sets the power-on reset position of the wiper. Once the wiper position is programmed, the 2-wire interface can be disabled to prevent unwanted adjustment. The provide an end-to-end resistance of 1kΩ, 5kΩ, and 1kΩ, respectively. The devices feature low temperature coefficients of 35ppm/ C end-to-end and 5ppm/ C ratiometric. All devices offer 64 wiper positions and operate from a single +2.7V to +5.5V supply. An ultra-low,.25µa (typ) standby supply current saves power in battery-operated applications. The are available in 3mm x 3mm, 8-pin TDFN and 5mm x 3mm, 8-pin µmax packages. Each device is guaranteed over the -4 C to +15 C temperature range. Applications Products Using One-Time Factory Calibration Mechanical Potentiometer Replacements TOP VIE 2 Pin Configurations Features iper Position Stored After One-Time Fuse Programming 64 Tap Positions iper Position Programmed Through Simple 2-ire Up/Down Interface 35ppm/ C End-to-End Temperature Coefficient 5ppm/ C Ratiometric Temperature Coefficient Ultra-ow 1.5µA (max) Static Supply Current +2.7V to +5.5V Single-Supply Operation 1kΩ, 5kΩ, and 1kΩ End-to-End Resistances Tiny, 3mm x 3mm, 8-Pin TDFN and 5mm x 3mm, 8-Pin µmax Packages Ordering Information PART PIN-PACKAGE RESISTANCE (kω) TOP MARK GTA+ 8 TDFN-EP* 1 AOG GUA+ 8 µmax 1 GTA+ 8 TDFN-EP* 5 AO GUA+ 8 µmax 5 GTA+ 8 TDFN-EP* 1 AOI GUA+ 8 µmax 1 +Denotes a lead(pb)-free/ros-compliant package. *EP = Exposed pad. Note: All devices are specified over the -4 C to +15 C operating temperature range. 3 4 µmax 6 5 PV PV Functional Diagram S 63 R 62 S 62 PV UP/DON COUNTER ONE-TIME PROGRAM BOCK 64- POSITION DECODER R 61 R 1 S 61 R S 2 S R VDD TDFN* *EXPOSED PADDE. CONNECT TO. µmax is a registered trademark of Maxim Integrated Products, Inc. Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at , or visit Maxim s website at S

2 ABSOUTE MAXIMUM RATINGS to...-.3v to +6.V PV to...-.3v to +12.V All Other Pins to...-.3v to ( +.3V) Maximum Continuous Current into,, and...±.5ma...±1.ma...±2.ma Continuous Power Dissipation (T A = +7 C) 8-Pin µmax (derate 4.5m/ C above +7 C)...362m 8-Pin TDFN (derate 18.2m/ C above +7 C) m Operating Temperature Range...-4 C to +15 C Junction Temperature C Storage Temperature Range C to +15 C ead Temperature (soldering, 1s)...+3 C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. EECTRICA CARACTERISTI ( = +2.7V to +5.5V, V =, V =, T A = -4 C to +15 C, unless otherwise noted. Typical values are at = +5.V, T A = +25 C.) (Note 1) PARAMETER SYMBO CONDITIONS MIN TYP MAX UNITS DC PERFORMANCE Resolution 64 Taps End-to-End Resistance End-to-End Resistance Temperature Coefficent TC R 35 ppm/ C Resistance Ratio Temperature / 5 Coefficient 1 kω ppm/ C Integral Nonlinearity IN Potentiometer configuration, no load, Figure 1 ±.25 ±1 SB Differential Nonlinearity DN Potentiometer configuration, no load, Figure 1 ±.1 ±1 SB Full-Scale Error Potentiometer configuration, no load, Figure SB Zero-Scale Error Potentiometer configuration, no load, Figure SB 3V 9 2 iper Resistance (Note 2) R < 3V Ω DYNAMIC CARACTERISTI iper -3dB Bandwidth (Note 3) Total armonic Distortion f = 1kz, midscale, 1V RMS R = 1kΩ kz db 2

3 EECTRICA CARACTERISTI (continued) ( = +2.7V to +5.5V, V =, V =, T A = -4 C to +15 C, unless otherwise noted. Typical values are at = +5.V, T A = +25 C.) (Note 1) PARAMETER SYMBO CONDITIONS MIN TYP MAX UNITS DIGITA INPUTS (, ) Input igh Voltage V I.7 x.3 x Input ow Voltage V I V Input Current I IN ±.1 ±1 µa Input Capacitance C IN 5 pf TIMING CARACTERISTI (Note 4) Mode to Setup Time t CU Figures 2 and 3 5 ns Mode to old Time t CI Figures 2 and 3 5 ns to Step old Time t IC Figures 2 and 3 ns Step ow Time t I Figures 2 and 3 1 ns Step igh Time t I Figures 2 and 3 1 ns iper Settling Time t I C = pf, Figures 2 and 3 (Note 5) 4 ns PV Rising Edge to Falling Edge Falling Edge to PV Falling Edge t PC Figure 5 1 ms t CP Figure 5 5 ms Step ow Time t C Figure 5 5 ms Step igh Time t C Figure 5 5 ms PV Falling Edge to Rising Edge t P Figure 5 1 ms Frequency f MAX 5 Mz Power-Up Time t UP (Note 6) 1 ms POER SUPPY Supply Voltage V Static Supply Current I DD = = or 1.5 µa Programming Voltage PV T A < +5 C T A +5 C Programming Current I PV V PV = 11V 4 5 ma V V Note 1: All devices are production tested at T A = +25 C, and are guaranteed by design for T A = -4 C to +15 C. Note 2: The wiper resistance is measured by driving the wiper terminal with a source of 2µA for the, 4µA for the, and 2µA for the. Note 3: iper at midscale with a 1pF load. Note 4: Digital timing is guaranteed by design, not production tested. Note 5: iper setting time is measured for a single step from transition until wiper voltage reaches 9% of final value. Note 6: Power-up time is the period of time from when the power supply is applied, until the serial interface is ready for writing. 3

4 ( = +5.V, T A = +25 C, unless otherwise noted.) R-DN ERROR (SB) R-IN ERROR (SB) R-DN ERROR vs. IPER POSITION IPER POSITION.1.5 R-IN ERROR vs. IPER POSITION toc1 toc4 R-IN ERROR (SB) R-DN ERROR (SB) R-IN ERROR vs. IPER POSITION IPER POSITION.1.5 R-DN ERROR vs. IPER POSITION Typical Operating Characteristics toc2 toc5 R-DN ERROR (SB) R-IN ERROR (SB) R-DN ERROR vs. IPER POSITION IPER POSITION.1.5 R-IN ERROR vs. IPER POSITION toc3 toc IPER POSITION IPER POSITION IPER POSITION IPER RESISTANCE (Ω) IPER RESISTANCE vs. IPER VOTAGE 15 = 3V = 5V : = 5V, I SOURCE = 5µA 5 = 3V, I SOURCE = 3µA : = 5V, I SOURCE = 1µA 25 = 3V, I SOURCE = 6µA : = 5V, I SOURCE = 5µA = 3V, I SOURCE = 3µA IPER VOTAGE (V) toc7 END-TO-END RESISTANCE CANGE (%) END-TO-END RESISTANCE PERCENTAGE CANGE vs. TEMPERATURE TEMPERATURE ( C) toc8 -TO- RESISTANCE (kω) -TO- RESISTANCE vs. IPER POSITION IPER POSITION toc9 4

5 SUPPY CURRENT (na) Typical Operating Characteristics (continued) ( = +5V, T A = +25 C, unless otherwise noted.) STATIC SUPPY CURRENT vs. TEMPERATURE = 5V = 3V = = TEMPERATURE ( C) GAIN (db) toc1 SUPPY CURRENT (na) MIDSCAE IPER RESPONSE vs. FREQUENCY STATIC SUPPY CURRENT vs. SUPPY VOTAGE = = SUPPY VOTAGE (V) toc13 TD (db) toc11 SUPPY CURRENT (µa) SUPPY CURRENT vs. DIGITA INPUT VOTAGE = 3V = 5V DIGITA INPUT VOTAGE (V) TOTA ARMONIC DISTORTION vs. FREQUENCY MIDSCAE, 1V RMS, R = 1kΩ toc14 toc , FREQUENCY (kz) FREQUENCY (kz) TAP-TO-TAP SITCING TRANSIENT toc15 OUTPUT 5mV/div 4ns 5

6 Typical Operating Characteristics (continued) ( = +5V, T A = +25 C, unless otherwise noted.) TAP-TO-TAP SITCING TRANSIENT toc16 4ns POER-UP IPER TRANSIENT toc18 OUTPUT 5mV/div POER-UP IPER TRANSIENT toc17 2µs POER-UP IPER TRANSIENT toc19 OUTPUT OUTPUT OUTPUT 1µs 2µs 6

7 PIN NAME FUNCTION 1 iper Connection 2 Detailed Description The 1kΩ/5kΩ/1kΩ end-to-end resistance digitally-controlled potentiometers offer 64 wiper tap positions accessible along the resistor array between and. These devices function as potentiometers or variable resistors (see Figure 1). The wiper () position is adjusted sequentially through the tap positions using a simple 2-wire up/down interface. These digital potentiometers provide an optional one-time programmable feature that sets and locks the power-on reset position of the wiper (see the PV One- Time Programming section). Once the desired wiper position is programmed, the 2-wire interface can be disabled to prevent unwanted adjustment. Digital Interface Operation The provide two modes of operation when the serial interface is active: increment mode or decrement mode. The serial interface is only active when is low. The and inputs control the position of the wiper along the resistor array. Set high to increment the when transitions from high to low (Figure 2). Set low to decrement the when transitions high to low (Figure 3). Once is held low, each lowto-high transition at increments or decrements the wiper one position. Once the increment or decrement POTENTIOMETER CONFIGURATION Pin Description Chip-Select Input. A high-to-low transition determines the increment/decrement mode. Increment if is high, or decrement if is low. is also used for one-time programming. See the PV One- Time Programming section. 3 Supply Voltage. Bypass with a.1µf capacitor to. 4 Ground 5 PV 6 7 Resistor ow Terminal 8 Resistor igh Terminal EP One-Time Programming Voltage. Connect PV to an 11V supply at the time the device is programmed/locked, and bypass with a 22µF capacitor to. For normal operation, connect to or leave floating. Up/Down Control Input. hen is low, a low-to-high transition at increments or decrements the wiper position. See the Digital Interface Operation section. Exposed Pad (TDFN Only). Internally connected to. Connect to a large ground plane to maximize thermal dissipation. VARIABE-RESISTOR CONFIGURATION Figure 1. Potentiometer/Variable-Resistor Configuration mode is set, the device remains in that mode until goes high. Idle high for normal operation. If is low when transitions low to high, the wiper moves one additional tap in its present direction. The wiper remains in the same position when is high and transitions low to high. After returns high, the wiper position remains the same (Figure 4). Additional increments do not change the wiper position when the wiper is at the maximum end of the resistor array. Additional decrements do not change the wiper position when the wiper is at the minimum end of the resistor array. 7

8 t UP t CU t CI t I t I t IC t I V Figure 2. Increment-Mode Timing Diagram t UP t CU t CI t I t I t IC t I V Figure 3. Decrement-Mode Timing Diagram V IPER REMAINS TE SAME IT IG AND RISING IPER CANGES IT O AND RISING Figure 4. ow-to-igh Transition Timing Diagram PV One-Time Programming The power up and function after power-up with the wiper position set in one of three ways: 1) Factory default power-up position, midscale, adjustable wiper 2) A newly programmed power-up position, adjustable wiper 3) A new programmed power-up position, locked wiper The wiper is set to the factory default position at powerup (midscale, tap 31). Connect PV to or leave floating to continue powering up the wiper position at midscale. See Table 1 for the default and one-time programming options. 8

9 +11V PV V t PC 6 PUSES RECORD IPER POSITION Figure 5. One-Time Program Mode, Serial-Interface Timing Diagram Table 1. One-Time Programming Options MODE Factory Default (Unprogrammed) Programmed by Six Pulses Programmed by Seven Pulses POER-ON RESET IPER POSITION Tap 31 Programmed position Programmed position Change the wiper s power-up position using the PV one-time programming sequence after power-up (see Figure 5). After setting the wiper to the desired powerup position, perform the following six-step sequence: 1) Set and high. 2) Connect an external voltage source at PV in the range of +11V to V. 3) Pull low. 4a) Pulse high for six cycles, consisting of starting low and going high for at least t C, and then low for at least t C, to change the wiper power-up position. The wiper remains adjustable. 4b) Pulse high for seven cycles, consisting of starting low and going high for at least t C and then low for at least t C, to change the wiper power-up position and lock the wiper in that same position. The seventh pulse is labeled the optional lockout bit in Figure 5. 5) Connect PV to or release the voltage source, leaving PV floating. 6) Pull high. t C t C t CP t P ADJUSTABE IPER Yes Yes No 11V 22µF TRACE PARASITI PARASITIC < 25µ OPTIONA 7T OCKOUT BIT R PARASITIC < 4Ω Figure 6. PV Power-Supply Decoupling Pulse high for six cycles to change the wiper powerup position. The wiper position returns to this programmed position on power-up, but remains adjustable. Pulse high for seven cycles to lock the / / to a specific wiper position with no further adjustments allowed. This effectively converts the potentiometer to a fixed resistor-divider. The seventh pulse locks the wiper position and disables the up/down interface. Once locked, connect and high, low, or leave them floating without increasing the supply current (see Table 1). If six clock pulses are used, the interface is enabled and the device can be put into program mode again. owever, the part uses one-time programmable (OTP) memory and should be programmed only once. If the part is programmed more than once, all applied values are ORed together. Thus, if 111 is programmed the first time and 111 is programmed the second time, the result will be The external PV power supply must source at least 5mA and have a good transient response. Decouple the PV power supply with a 22µF capacitor to. Ensure that no more than 25µ of inductance and/or 4Ω of parasitic resistance exists between the capacitor and the device (see Figure 6). PV 9

10 5V V OUT Figure 7. Positive CD Bias Control Using a Voltage-Divider V IN R3 C R2 5V 3V R1 V OUT 5V 3V V OUT Figure 8. Positive CD Bias Control Using a Variable Resistor +5V V IN MAX616 OUT ADJ R 1 R 2 V REF V = 1.23V x 1kΩ FOR TE R 2 (kω) V = 1.23V x 5kΩ FOR TE R 2 (kω) V = 1.23V x 1kΩ FOR TE R 2 (kω) Figure 9. Programmable Filter Figure 1. Adjustable Voltage Reference Applications Information Use the in applications requiring digitally controlled adjustable resistance, such as CD contrast control where voltage biasing adjusts the display contrast, or for programmable filters with adjustable gain and/or cutoff frequency. Positive CD Bias Control Figures 7 and 8 show an application where the voltagedivider or variable resistor is used to make an adjustable, positive CD bias voltage. The op-amp provides buffering and gain to the resistor-divider network made by the potentiometer (Figure 7), or to a fixed resistor and a variable resistor (Figure 8). Programmable Filter Figure 9 shows the configuration for a 1st-order programmable filter. The gain of the filter is adjusted by R2, and the cutoff frequency is adjusted by R3. Use the following equations to calculate the gain (G), and the -3dB cutoff frequency (f C ), only up to frequencies one decade below the wiper -3dB bandwidth. R1 G = 1 + R2 1 fc = 2π xr3 xc Adjustable Voltage Reference Figure 1 shows the used as the feedback resistors in an adjustable-voltage reference application. 1

11 ayout and Power-Supply Considerations Proper layout and power-supply bypassing can affect device performance. Bypass with a.1µf capacitor as close to the device as possible. hen programming the wiper position, bypass PV with a 22µF capacitor as close to the device as possible. For a power supply with a slew rate greater than 1V/µs or in applications where power-supply overshoot is prevalent, connect a 1Ω resistor in series to and bypass with an additional 4.7µF capacitor to ground. Chip Information TRANSISTOR COUNT: 342 PROCESS: BiCMOS Package Information For the latest package outline information and land patterns, go to Note that a "+", "#", or "-" in the package code indicates RoS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoS status. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 8 TDFN-EP T µmax U

12 REVISION NUMBER REVISION DATE DESCRIPTION Revision istory PAGES CANGED 5/5 Initial release 1 7/9 Added lead-free note to the Ordering Information. Added exposed pad information to the Pin Description. Added text to PV One-Time Programming section. 1, 7, 9 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 Maxim Integrated Products, 12 San Gabriel Drive, Sunnyvale, CA Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.

EVALUATION KIT AVAILABLE Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers. S Dual, 256-Tap, Linear Taper Positions

EVALUATION KIT AVAILABLE Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers. S Dual, 256-Tap, Linear Taper Positions 19-4599; Rev 2; 1/1 EVAUATION KIT AVAIABE Dual, 256-Tap, Volatile, ow-voltage General Description The dual, 256-tap, volatile, low-voltage linear taper digital potentiometers offer three end-to-end resistance

More information

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers EVAUATION KIT AVAIABE MAX5386/MAX5388 General Description The MAX5386/MAX5388 dual, 256-tap, volatile, low- voltage linear taper digital potentiometers offer three endto-end resistance values of 1kΩ, 5kΩ,

More information

Low-Power Digital Potentiometers

Low-Power Digital Potentiometers 19-143; Rev 2a; 2/1 ow-power Digital Potentiometers General Description The linear-taper digital potentiometers perform the same function as a mechanical potentiometer or a variable resistor. They coist

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-3371; Rev ; 7/4 EVAUATION KIT AVAIABE 256-Tap, Nonvolatile, SPI-Interface, General Description The nonvolatile, lineartaper, digital potentiometers perform the function of a mechanical potentiometer,

More information

32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23 19-367; Rev 1; 2/6 EVALUATION KIT AVAILABLE 32-Tap, Nonvolatile, Linear-Taper Digital General Description The lineartaper digital potentiometers function as mechanical potentiometers, but replace the mechanics

More information

±15V, 128-Tap, Low-Drift Digital Potentiometers

±15V, 128-Tap, Low-Drift Digital Potentiometers 9-265; Rev 2; /4 General Description The are 28-tap high-voltage (±5V to ±5V) digital potentiometers in packages that are half the size of comparable devices in 8-pin SO. They perform the same function

More information

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm µdfn Package

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm µdfn Package 19-3929; Rev 2; 6/7 EVAUATION KIT AVAIABE 128-Tap, Nonvolatile, inear-taper Digital General Description The nonvolatile, single, linear-taper, digital potentiometer performs the function of a mechanical

More information

EVALUATION KIT AVAILABLE Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

EVALUATION KIT AVAILABLE Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer 19-514; Rev 2; 11/1 EVAUATION KIT AVAIABE Dual, 256-Tap, Volatile, ow-voltage General Description The dual, 256-tap, volatile, low-voltage linear taper digital potentiometer offers three end-to-end resistance

More information

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers 19-3478; Rev 4; 4/1 EVALUATION KIT AVAILABLE Dual, 256-Tap, Nonvolatile, SPI-Interface, General Description The dual, linear-taper, digital potentiometers function as mechanical potentiometers with a simple

More information

PART GND MAX5461 MAX5462 MAX MAX5468 SOT23, SC70 MAX5467 SOT23, SC70. Maxim Integrated Products 1

PART GND MAX5461 MAX5462 MAX MAX5468 SOT23, SC70 MAX5467 SOT23, SC70. Maxim Integrated Products 1 9-956; Rev 3; /5 32-Tap FleaPoT, 2-ire Digital General Description The linear-taper digital potentiometers perform the same function as a mechanical potentiometer or a variable resistor. These devices

More information

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer EVAUATION KIT AVAIABE MAX5387 General Description The MAX5387 dual, 256-tap, volatile, low-voltage linear taper digital potentiometer offers three end-to-end resistance values of 1kΩ, 5kΩ, and 1kΩ. Operating

More information

PART MAX5467 SOT23. Maxim Integrated Products 1

PART MAX5467 SOT23. Maxim Integrated Products 1 19-1956; Rev ; 2/1 32-Tap FleaPoT TM, 2-ire Digital General Description The MAX546/MAX5463/MAX5466//MAX5468 linear-taper digital potentiometers perform the same function as a mechanical potentiometer or

More information

256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23

256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23 19-1848; Rev ; 1/ 256-Tap SOT-PoT, General Description The MAX54/MAX541 digital potentiometers offer 256-tap SOT-PoT digitally controlled variable resistors in tiny 8-pin SOT23 packages. Each device functions

More information

MAX MAX Wiper Capacitance C W 60 pf. W at code = 15, H and L shorted to V SS, measure

MAX MAX Wiper Capacitance C W 60 pf. W at code = 15, H and L shorted to V SS, measure AVAIABE MAX5481 MAX5484 1-Bit, Nonvolatile, inear-taper Digital General Description The MAX5481 MAX5484 1-bit (124-tap) nonvolatile, linear-taper, programmable voltage-dividers and variable resistors perform

More information

MAX5452EUB 10 µmax 50 U10C-4 MAX5451EUD 14 TSSOP 10 U14-1

MAX5452EUB 10 µmax 50 U10C-4 MAX5451EUD 14 TSSOP 10 U14-1 9-997; Rev 2; 2/06 Dual, 256-Tap, Up/Down Interface, General Description The are a family of dual digital potentiometers that perform the same function as a mechanical potentiometer or variable resistor.

More information

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers MAX5487/MAX5488/ MAX5489. Benefits and Features

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers MAX5487/MAX5488/ MAX5489. Benefits and Features EVALUATION KIT AVAILABLE MAX5487/MAX5488/ General Description The MAX5487/MAX5488/ dual, linear-taper, digital potentiometers function as mechanical potentiometers with a simple 3-wire SPI -compatible

More information

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer 19-5122; Rev 1; 4/1 查询 "" 供应商 EVAUATION KIT AVAIABE General Description The dual, 256-tap, volatile, low-voltage, linear taper digital potentiometer offers three end-to-end resistance values of 1kI, 5kI,

More information

EVALUATION KIT AVAILABLE 10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers TOP VIEW

EVALUATION KIT AVAILABLE 10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers TOP VIEW 19-3562; Rev 2; 1/6 EVALUATION KIT AVAILABLE 1-Bit, Dual, Nonvolatile, Linear-Taper General Description The 1-bit (124-tap), dual, nonvolatile, linear-taper, programmable voltage-dividers and variable

More information

EEPROM-Programmable TFT VCOM Calibrator

EEPROM-Programmable TFT VCOM Calibrator 19-2911 Rev 3; 8/6 EVALUATION KIT AVAILABLE EEPROM-Programmable TFT Calibrator General Description The is a programmable -adjustment solution for thin-film transistor (TFT) liquid-crystal displays (LCDs).

More information

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP 19-579; Rev ; 12/1 EVALUATION KIT AVAILABLE Rail-to-Rail, 2kHz Op Amp General Description The op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers EVALUATION KIT AVAILABLE MAX5391/MAX5393 General Description The MAX5391/MAX5393 dual 256-tap, volatile, lowvoltage linear taper digital potentiometers offer three end-to-end resistance values of 1kΩ,

More information

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23 19-195; Rev 1; 1/4 1-Bit, Low-Power, Rail-to-Rail General Description The is a small footprint, low-power, 1-bit digital-to-analog converter (DAC) that operates from a single +.7V to +5.5V supply. The

More information

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 19-1560; Rev 1; 7/05 +2.7V to +5.5V, Low-Power, Triple, Parallel General Description The parallel-input, voltage-output, triple 8-bit digital-to-analog converter (DAC) operates from a single +2.7V to +5.5V

More information

IF Digitally Controlled Variable-Gain Amplifier

IF Digitally Controlled Variable-Gain Amplifier 19-2601; Rev 1; 2/04 IF Digitally Controlled Variable-Gain Amplifier General Description The high-performance, digitally controlled variable-gain amplifier is designed for use from 0MHz to 400MHz. The

More information

EVALUATION KIT AVAILABLE Low-Noise 500mA LDO Regulators in a 2mm x 2mm TDFN Package MAX8902AATA+ INPUT 1.7V TO 5.5V LOGIC SUPPLY. R3 100kΩ.

EVALUATION KIT AVAILABLE Low-Noise 500mA LDO Regulators in a 2mm x 2mm TDFN Package MAX8902AATA+ INPUT 1.7V TO 5.5V LOGIC SUPPLY. R3 100kΩ. 19-0990; Rev 4; 4/11 EVALUATION KIT AVAILABLE Low-Noise 500mA LDO Regulators General Description The low-noise linear regulators deliver up to 500mA of output current with only 16µV RMS of output noise

More information

76V, APD, Dual Output Current Monitor

76V, APD, Dual Output Current Monitor 9-4994; Rev ; 9/ EVALUATION KIT AVAILABLE 76V, APD, Dual Output Current Monitor General Description The integrates the discrete high-voltage components necessary for avalanche photodiode (APD) bias and

More information

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz 19-3530; Rev 0; 1/05 Low-Jitter, 8kHz Reference General Description The low-cost, high-performance clock synthesizer with an 8kHz input reference clock provides six buffered LVTTL clock outputs at 35.328MHz.

More information

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers 9-7; Rev ; /7 EVAUATION KIT AVAIABE Dual, 56-Tap, Nonvolatile, SPI-Interface, General Description The dual, linear-taper, digital potentiometers function as mechanical potentiometers with a simple -wire

More information

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References 19-38; Rev 3; 6/7 Low-Power, Low-Drift, +2.5V/+5V/+1V General Description The precision 2.5V, 5V, and 1V references offer excellent accuracy and very low power consumption. Extremely low temperature drift

More information

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART 9-346; Rev 2; / 2kHz, 4µA, Rail-to-Rail General Description The single MAX99/MAX99 and dual MAX992/ MAX993 operational amplifiers (op amps) feature a maximized ratio of gain bandwidth (GBW) to supply current

More information

60V High-Speed Precision Current-Sense Amplifier

60V High-Speed Precision Current-Sense Amplifier EVALUATION KIT AVAILABLE MAX9643 General Description The MAX9643 is a high-speed 6V precision unidirectional current-sense amplifier ideal for a wide variety of power-supply control applications. Its high

More information

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23 General Description The MAX5712 is a small footprint, low-power, 12-bit digitalto-analog converter (DAC) that operates from a single +2.7V to +5.5V supply. The MAX5712 on-chip precision output amplifier

More information

High-Voltage, Low-Power Linear Regulators for

High-Voltage, Low-Power Linear Regulators for 19-3495; Rev ; 11/4 High-oltage, Low-Power Linear Regulators for General Description The are micropower, 8-pin TDFN linear regulators that supply always-on, keep-alive power to CMOS RAM, real-time clocks

More information

CAT5126. One time Digital 32 tap Potentiometer (POT)

CAT5126. One time Digital 32 tap Potentiometer (POT) One time Digital 32 tap Potentiometer (POT) Description The CAT5126 is a digital POT. The wiper position is controlled with a simple 2-wire digital interface. This digital potentiometer is unique in that

More information

High-Precision Voltage References with Temperature Sensor

High-Precision Voltage References with Temperature Sensor General Description The MAX6173 MAX6177 are low-noise, high-precision voltage references. The devices feature a proprietary temperature-coefficient curvature-correction circuit and laser-trimmed thin-film

More information

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1 19-2575; Rev 0; 10/02 One-to-Four LVCMOS-to-LVPECL General Description The low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS inputs to four differential LVPECL outputs.

More information

10-Bit, Nonvolatile, Linear-Taper Digital Potentiometers

10-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 19-378; Rev 3; 4/7 1-Bit, Nonvolatile, inear-taper Digital General Description The 1-bit (124-tap) nonvolatile, linear-taper, programmable voltage-dividers and variable resistors perform the function of

More information

Dual, Audio, Log Taper Digital Potentiometers

Dual, Audio, Log Taper Digital Potentiometers 19-2049; Rev 3; 1/05 Dual, Audio, Log Taper Digital Potentiometers General Description The dual, logarithmic taper digital potentiometers, with 32-tap points each, replace mechanical potentiometers in

More information

Precision, Micropower, Low-Dropout Voltage References MAX6190 MAX6195/MAX6198

Precision, Micropower, Low-Dropout Voltage References MAX6190 MAX6195/MAX6198 19-108; Rev 3; /10 Precision, Micropower, General Description The precision, micropower, low-dropout voltage references offer high initial accuracy and very low temperature coefficient through a proprietary

More information

V CC OUT MAX9945 IN+ V EE

V CC OUT MAX9945 IN+ V EE 19-4398; Rev 1; 12/ 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs

More information

High-Voltage, 350mA, Adjustable Linear High-Brightness LED (HB LED) Driver

High-Voltage, 350mA, Adjustable Linear High-Brightness LED (HB LED) Driver 19-383; Rev 1; 4/9 High-Voltage, 35mA, Adjustable Linear General Description The current regulator operates from a 6.5V to 4V input voltage range and delivers up to a total of 35mA to one or more strings

More information

Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps

Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 9-; Rev 4; 7/ Single/Dual/Quad, +.8V/75nA, SC7, General Description The MAX4464/MAX447/MAX447/MAX447/MAX4474 family of micropower op amps operate from a single +.8V to +5.5V supply and draw only 75nA of

More information

V CC OUT MAX9945 IN+ V EE

V CC OUT MAX9945 IN+ V EE 19-4398; Rev ; 2/9 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs

More information

Spread-Spectrum Clock Generators

Spread-Spectrum Clock Generators 19-5214; Rev 0; 4/10 Spread-Spectrum Clock Generators General Description The are spread-spectrum clock generators that contain a phase-locked loop (PLL) that generates a 2MHz to 134MHz clock from an input

More information

I/O Op Amps with Shutdown

I/O Op Amps with Shutdown MHz, μa, Rail-to-Rail General Description The single MAX994/MAX995 and dual MAX996/ MAX997 operational amplifiers feature maximized ratio of gain bandwidth to supply current and are ideal for battery-powered

More information

nanopower Op Amp in a Tiny 6-Bump WLP

nanopower Op Amp in a Tiny 6-Bump WLP EVALUATION KIT AVAILABLE MAX4464 General Description The MAX4464 is an ultra-small (6-bump WLP) op amp that draws only 75nA of supply current. It operates from a single +.8V to +5.5V supply and features

More information

Receiver for Optical Distance Measurement

Receiver for Optical Distance Measurement 19-47; Rev ; 7/9 EVALUATION KIT AVAILABLE Receiver for Optical Distance Measurement General Description The is a high-gain linear preamplifier for distance measurement applications using a laser beam.

More information

Precision, High-Bandwidth Op Amp

Precision, High-Bandwidth Op Amp EVALUATION KIT AVAILABLE MAX9622 General Description The MAX9622 op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage

More information

MAX6126 Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

MAX6126 Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference General Description The MAX6126 is an ultra-low-noise, high-precision, lowdropout voltage reference. This family of voltage references feature curvature-correction circuitry and high-stability, laser-trimmed,

More information

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs General Description The MAX965/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX965/MAX9651 can drive up to 13mA of peak current per channel and operate

More information

High-Efficiency, 26V Step-Up Converters for Two to Six White LEDs

High-Efficiency, 26V Step-Up Converters for Two to Six White LEDs 19-2731; Rev 1; 10/03 EVALUATION KIT AVAILABLE High-Efficiency, 26V Step-Up Converters General Description The step-up converters drive up to six white LEDs with a constant current to provide backlight

More information

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H 19-13; Rev 5; /11 Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier

EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier 19-521; Rev 2; 8/1 EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, General Description The high-side current-sense amplifier offers precision accuracy specifications of V OS less than 25µV (max) and gain

More information

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp 19-227; Rev ; 9/1 EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp General Description The op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device

More information

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197 General Description The is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail single-supply operation, outstanding precision specifications, and a high gain bandwidth. This

More information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References 19-2457; Rev 2; 11/03 Precision, Low-Power, 6-Pin SOT23 General Description The are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications

More information

V CC 1, 4. 7dB. 7dB 6 GND

V CC 1, 4. 7dB. 7dB 6 GND 9-998; Rev ; /7 EVALUATION KIT AVAILABLE.GHz to GHz, 75dB Logarithmic General Description The MAX5 complete multistage logarithmic amplifier is designed to accurately convert radio-frequency (RF) signal

More information

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN 19-3869; Rev 1; 1/11 Low-oltage, High-Accuracy, Quad Window General Description The are adjustable quad window voltage detectors in a small thin QFN package. These devices are designed to provide a higher

More information

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable 99 Rev ; /99 EVALUATION KIT AVAILABLE 65V/µs, Wideband, High-Output-Current, Single- General Description The // single-ended-todifferential line drivers are designed for high-speed communications. Using

More information

Precision, Micropower, Low-Dropout, SC70 Series Voltage Reference

Precision, Micropower, Low-Dropout, SC70 Series Voltage Reference 19-2428; Rev ; 4/2 Precision, Micropower, Low-Dropout, SC7 General Description The family of precision, low-dropout, micropower voltage references are available in the miniature 3-pin SC7 surface-mount

More information

Dual-Output Step-Down and LCD Step-Up Power Supply for PDAs

Dual-Output Step-Down and LCD Step-Up Power Supply for PDAs 19-2248; Rev 2; 5/11 EVALUATI KIT AVAILABLE Dual-Output Step-Down and LCD Step-Up General Description The dual power supply contains a step-down and step-up DC-DC converter in a small 12-pin TQFN package

More information

SCLK 4 CS 1. Maxim Integrated Products 1

SCLK 4 CS 1. Maxim Integrated Products 1 19-172; Rev ; 4/ Dual, 8-Bit, Voltage-Output General Description The contains two 8-bit, buffered, voltage-output digital-to-analog converters (DAC A and DAC B) in a small 8-pin SOT23 package. Both DAC

More information

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference 19-2211; Rev 2; 12/2 Precision, Micropower, 1.8V Supply, General Description The is a precision, low-voltage, low-dropout, micropower voltage reference in a SOT23 package. This three-terminal reference

More information

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1 19-2584; Rev ; 1/2 Low-Noise, Low-Dropout, 2mA General Description The low-noise, low-dropout linear regulator operates from a 2.5V to 6.5V input and delivers up to 2mA. Typical output noise is 3µV RMS,

More information

Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps 9-; Rev ; /8 Single-Supply, 5MHz, 6-Bit Accurate, General Description The MAX4434/MAX4435 single and MAX4436/MAX4437 dual operational amplifiers feature wide bandwidth, 6- bit settling time in 3ns, and

More information

DOCSIS 3.0 Upstream Amplifier

DOCSIS 3.0 Upstream Amplifier Click here for production status of specific part numbers. MAX3521 General Description The MAX3521 is an integrated CATV upstream amplifier IC designed to exceed the DOCSIS 3. requirements. It provides

More information

Low-Cost, Remote Temperature Switch

Low-Cost, Remote Temperature Switch 19-1819; Rev 3; 2/11 Low-Cost, Remote Temperature Switch General Description The is a fully integrated, remote temperature switch that uses an external P-N junction (typically a diode-connected transistor)

More information

Low-Power, Precision, 4-Bump WLP, Current-Sense Amplifier

Low-Power, Precision, 4-Bump WLP, Current-Sense Amplifier EVALUATION KIT AVAILABLE General Description The is a zero-drift, high-side current-sense amplifier family that offers precision, low supply current and is available in a tiny 4-bump ultra-thin WLP of

More information

Low-Voltage, 1.8kHz PWM Output Temperature Sensors

Low-Voltage, 1.8kHz PWM Output Temperature Sensors 19-266; Rev 1; 1/3 Low-Voltage, 1.8kHz PWM Output Temperature General Description The are high-accuracy, low-power temperature sensors with a single-wire output. The convert the ambient temperature into

More information

TOP VIEW REFERENCE VOLTAGE ADJ V OUT

TOP VIEW REFERENCE VOLTAGE ADJ V OUT Rev 1; 8/6 EVALUATION KIT AVAILABLE Electronically Programmable General Description The is a nonvolatile (NV) electronically programmable voltage reference. The reference voltage is programmed in-circuit

More information

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier EVALUATION KIT AVAILABLE MAX44285 General Description The MAX44285 dual-channel high-side current-sense amplifier has precision accuracy specifications of V OS less than 12μV (max) and gain error less

More information

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface 19-2124; Rev 2; 7/3 12-Bit, Low-Power, Dual, Voltage-Output General Description The dual,12-bit, low-power, buffered voltageoutput, digital-to-analog converter (DAC) is packaged in a space-saving 8-pin

More information

EVALUATION KIT AVAILABLE White LED 1x/1.5x Charge Pump for Main and Sub-Displays. Maxim Integrated Products 1

EVALUATION KIT AVAILABLE White LED 1x/1.5x Charge Pump for Main and Sub-Displays. Maxim Integrated Products 1 19-397; Rev 2; 8/5 EVALUATION KIT AVAILABLE White LED 1x/1.5x Charge Pump General Description The charge pump drives up to four white LEDs in the main display and up to two white LEDs in the sub-display

More information

Precision, Low-Power and Low-Noise Op Amp with RRIO

Precision, Low-Power and Low-Noise Op Amp with RRIO MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and

More information

Two-/Four-Channel, I 2 C, 7-Bit Sink/Source Current DAC

Two-/Four-Channel, I 2 C, 7-Bit Sink/Source Current DAC 19-4744; Rev 1; 7/9 Two-/Four-Channel, I 2 C, 7-Bit Sink/Source General Description The DS4422 and DS4424 contain two or four I 2 C programmable current DACs that are each capable of sinking and sourcing

More information

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1 19-2141; Rev ; 8/1 75Ω/Ω/Ω Switchable Termination General Description The MAX346/MAX347/MAX348 are general-purpose line-terminating networks designed to change the termination value of a line, depending

More information

EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifier. Pin Configuration/Functional Diagram/Typical Application Circuit MAX2659 BIAS

EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifier. Pin Configuration/Functional Diagram/Typical Application Circuit MAX2659 BIAS 19-797; Rev 4; 8/11 EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifier General Description The high-gain, low-noise amplifier (LNA) is designed for GPS, Galileo, and GLONASS applications. Designed in

More information

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages EVALUATION KIT AVAILABLE MAX47 General Description The MAX47 is a single operational amplifier that provides a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1 9-3697; Rev 0; 4/05 3-Pin Silicon Oscillator General Description The is a silicon oscillator intended as a low-cost improvement to ceramic resonators, crystals, and crystal oscillator modules as the clock

More information

MAX14777 Quad Beyond-the-Rails -15V to +35V Analog Switch

MAX14777 Quad Beyond-the-Rails -15V to +35V Analog Switch General Description The quad SPST switch supports analog signals above and below the rails with a single 3.0V to 5.5V supply. The device features a selectable -15V/+35V or -15V/+15V analog signal range

More information

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1 19-2804; Rev 2; 12/05 5-Pin Watchdog Timer Circuit General Description The is a low-power watchdog circuit in a tiny 5- pin SC70 package. This device improves system reliability by monitoring the system

More information

500mA Low-Dropout Linear Regulator in UCSP

500mA Low-Dropout Linear Regulator in UCSP 19-272; Rev ; 1/2 5mA Low-Dropout Linear Regulator in UCSP General Description The low-dropout linear regulator operates from a 2.5V to 5.5V supply and delivers a guaranteed 5mA load current with low 12mV

More information

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface 9-232; Rev 0; 8/0 Low-Power, Low-Glitch, Octal 2-Bit Voltage- Output s with Serial Interface General Description The are 2-bit, eight channel, lowpower, voltage-output, digital-to-analog converters (s)

More information

High-Efficiency LCD Boost with True Shutdown MAX8570 MAX8575

High-Efficiency LCD Boost with True Shutdown MAX8570 MAX8575 19-3329; Rev 3; 3/1 EVALUATION KIT AVAILABLE High-Efficiency LCD Boost General Description The family of LCD step-up converters uses an internal n-channel switch and an internal p-channel output isolation

More information

Four-Channel Thermistor Temperature-to-Pulse- Width Converter

Four-Channel Thermistor Temperature-to-Pulse- Width Converter 9-234; Rev ; 2/7 Four-Channel Thermistor Temperature-to-Pulse- General Description The four-channel thermistor temperature-topulse-width converter measures the temperatures of up to four thermistors and

More information

Transimpedance Amplifier with 100mA Input Current Clamp for LiDAR Applications

Transimpedance Amplifier with 100mA Input Current Clamp for LiDAR Applications EVALUATION KIT AVAILABLE MAX4658/MAX4659 Transimpedance Amplifier with 1mA Input General Description The MAX4658 and MAX4659 are transimpedance amplifiers for optical distance measurement receivers for

More information

MAX4173. Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier

MAX4173. Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier AVAILABLE MAX173 General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output that eliminates the need for gain-setting

More information

PART TEMP RANGE PIN-PACKAGE

PART TEMP RANGE PIN-PACKAGE General Description The MAX6922/MAX6932/ multi-output, 76V, vacuum-fluorescent display (VFD) tube drivers that interface a VFD tube to a microcontroller or a VFD controller, such as the MAX6850 MAX6853.

More information

Dual-Rate Fibre Channel Repeaters

Dual-Rate Fibre Channel Repeaters 9-292; Rev ; 7/04 Dual-Rate Fibre Channel Repeaters General Description The are dual-rate (.0625Gbps and 2.25Gbps) fibre channel repeaters. They are optimized for use in fibre channel arbitrated loop applications

More information

S 500µA (typ) Supply Current S TSSOP 16-Pin Package S -40 C to +85 C Ambient Temperature Range S Functionally Compatible to DG411, DG412, and DG413

S 500µA (typ) Supply Current S TSSOP 16-Pin Package S -40 C to +85 C Ambient Temperature Range S Functionally Compatible to DG411, DG412, and DG413 19-572; Rev ; 12/1 Quad SPST +7V Analog Switches General Description The are analog switches with a low on-resistance of 1I (max) that conduct equally well in both directions. All devices have a rail-to-rail

More information

PART MAX1658C/D MAX1659C/D TOP VIEW

PART MAX1658C/D MAX1659C/D TOP VIEW 19-1263; Rev 0; 7/97 350mA, 16.5V Input, General Description The linear regulators maximize battery life by combining ultra-low supply currents and low dropout voltages. They feature Dual Mode operation,

More information

Low-Cost, High-Reliability, 0.5V to 3.3V ORing MOSFET Controllers

Low-Cost, High-Reliability, 0.5V to 3.3V ORing MOSFET Controllers 3-3087; Rev 0; /04 EVALUATION KIT AVAILABLE Low-Cost, High-Reliability, 0.5V to 3.3V ORing General Description Critical loads often employ parallel-connected power supplies with redundancy to enhance system

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-295; Rev ; 8/1 High-Current VCOM Drive Buffer General Description The is a high-current operational transconductance amplifier. The is ideal for driving the backplane of an active matrix, dot inversion

More information

1.2A White LED Regulating Charge Pump for Camera Flashes and Movie Lights

1.2A White LED Regulating Charge Pump for Camera Flashes and Movie Lights 19-3461; Rev ; 11/4 EVALUATION KIT AVAILABLE 1.2A White LED Regulating Charge Pump for General Description The charge pumps drive white LEDs, including camera strobes, with regulated current up to 1.2A

More information

1.0V Micropower, SOT23, Operational Amplifier

1.0V Micropower, SOT23, Operational Amplifier 19-3; Rev ; 1/ 1.V Micropower, SOT3, Operational Amplifier General Description The micropower, operational amplifier is optimized for ultra-low supply voltage operation. The amplifier consumes only 9µA

More information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1 19-1422; Rev 2; 1/1 Low-Dropout, 3mA General Description The MAX886 low-noise, low-dropout linear regulator operates from a 2.5 to 6.5 input and is guaranteed to deliver 3mA. Typical output noise for this

More information

LNAs with Step Attenuator and VGA

LNAs with Step Attenuator and VGA 19-231; Rev 1; 1/6 EVALUATION KIT AVAILABLE LNAs with Step Attenuator and VGA General Description The wideband low-noise amplifier (LNA) ICs are designed for direct conversion receiver (DCR) or very low

More information

PART MPEG DECODER 10-BIT DAC 10-BIT DAC 10-BIT DAC. Maxim Integrated Products 1

PART MPEG DECODER 10-BIT DAC 10-BIT DAC 10-BIT DAC. Maxim Integrated Products 1 19-3779; Rev 4; 1/7 EVALUATION KIT AVAILABLE Triple-Channel HDTV Filters General Description The are fully integrated solutions for filtering and buffering HDTV signals. The MAX95 operates from a single

More information

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 9-565; Rev ; /99 +.7 to +5.5, Low-Power, Dual, Parallel General Description The MAX5 parallel-input, voltage-output, dual 8-bit digital-to-analog converter (DAC) operates from a single +.7 to +5.5 supply

More information

Ultra-Low-Power, 12-Bit, Voltage-Output DACs MAX5530/MAX5531

Ultra-Low-Power, 12-Bit, Voltage-Output DACs MAX5530/MAX5531 19-363; Rev ; 1/4 General Description The are single, 12-bit, ultra-lowpower, voltage-output, digital-to-analog converters (s) offering Rail-to-Rail buffered voltage outputs. The s operate from a 1.8V

More information