MIMO-Aware Routing in Wireless Mesh Networks

Size: px
Start display at page:

Download "MIMO-Aware Routing in Wireless Mesh Networks"

Transcription

1 MIMO-Aware Routing in Wireless Mesh Networks Shan Chu and Xin Wang Department o Electrical and Computer Engineering Stony Brook University, Stony Brook, New York {schu, xwang}@ece.sunysb.edu Abstract Multiple-input and multiple-output (MIMO) technique is considered as one o the most promising emerging wireless technologies that can signiicantly improve transmission capacity and reliability in wireless mesh networks. While MIMO has been widely studied or single link transmission scenarios in physical layer as well as rom MAC perspective, its impact on network layer, especially its interaction with routing has not drawn enough research attention. In this paper, we investigate the problem o routing in MIMO-based wireless mesh networks. We mathematically ormulate the MIMO-enabled multi-source multidestination multi-hop routing problem into a multi-commodity low problem by identiying the speciic opportunities and constraints brought by MIMO transmissions, in order to provide the undamental basis or MIMO-aware routing design. We then use this ormulation to develop a polynomial time approximation solution that maximizes the scaling actor or the concurrent lows in the network. Moreover, we also consider a more practical case where controllers are distributed, and propose a distributed algorithm to minimize the congestion in the network links based on steepest descent ramework, which is proved to provide a ixed approximation ratio. The perormance o the algorithms is evaluated through simulations and demonstrated to outperorm the counterpart strategies without considering MIMO eatures. I. INTRODUCTION In recent years, uncoordinated multi-hop wireless networks, such as ad hoc and mesh networks have been gaining increased research interest and application. On one hand, these networks are known to provide a number o desirable eatures, such as easy deployment and maintenance, robustness to node ailures and extended coverage. On the other hand, they are expected to serve an increased amount o data traic with various demands rom dierent users. However, due to the lack o a central controller and the multi-hop, intererence limited nature o the network, it is extremely diicult and challenging to meet the higher data traic requirements. Thereore, it is critical to introduce some new technology that can enable larger network capacity and higher reliability. Multiple-input multiple-output (MIMO) system has been proven to be able to provide high spectral eiciency and increase channel capacity substantially through multiple spatial channels without need o additional spectrum. With multiple antennas at the transmitter and/or receiver, a MIMO system takes advantage o multiplexing to simultaneously transmit multiple data streams to increase wireless data rate and diversity to optimally combine signals rom dierent transmission streams to increase transmission reliability and range. To meet the high data rate requirements, more and more wireless devices are equipped with multiple antennas. MIMO is prominently regarded as a technology o choice or next generation wireless systems such as IEEE 80.6, IEEE 80.n, and the third and ourth generation cellular systems. It is also being considered or supporting peer to peer applications over an inrastructure ree wireless mesh network. Most existing studies on applying MIMO technique in ad hoc and mesh networks ocus on the physical and MAC layers [] [5]. In wireless ad hoc and mesh networks, routing is an important actor that aects the system perormance. From a network layer s perspective, MIMO nodes provide dierent transmission/receiving capabilities rom conventional single-antenna nodes. A node equipped with multiple antennas could possibly transmit/receive more downlink/uplink streams, which can signiicantly impact the determination o optimal routes or traic transmission. Moreover, the option o dierent MIMO strategies, i.e. spatial multiplexing or diversity with dierent levels o degree o reedom, could urther increase the lexibility o routing decisions in a network with MIMO nodes. Thereore, it is o paramount importance to have the routing scheme to be MIMO-aware in order to ully leverage the beneits brought by MIMO into wireless networks. Some earlier work, i.e. [6], has made an eort in designing heuristic routing algorithms and protocols. However, to the best o our knowledge, there is very limited work that has studied the problem o routing in MIMO-enabled networks rom an optimization perspective and it is still not clear theoretically how much beneit can be achieved by taking advantage o the opportunities and addressing the constraints resulting rom the incorporation o MIMO. In this paper, we study the problem o MIMO-aware routing in wireless mesh networks to leverage the beneits brought by MIMO. Dierent rom previous work, we ormally ormulate the multi-source multi-destination multi-hop routing problem in MIMO-based wireless mesh networks as a multi-commodity low problem to model the end-to-end traic, subject to constraints that model the speciic eatures o MIMO transmissions. We allow more lexible cooperation among nodes. Speciically, nodes in the network can perorm many-to-many transmissions, in which a transmitter node can simultaneously transmit to multiple downstream nodes and a receiver node can simultaneously receive rom multiple upstream nodes, and a transmission path can be established in reerence to dierent MIMO channel modes based on the statistics o the channel conditions and dierent traic demands. With a solid ormulation, we provide a sound theoretical upper bound to serves as the reerence or a practical system design through an approximated centralized algorithm with polynomial time

2 complexity, and we also propose a distributed algorithm with provable eiciency to balance the traic over the network and control the network congestion. The rest o the paper is organized as ollows. Section II discusses the related work and we introduce the system model in Section III. We deine the constraints or MIMO-aware routing and ormally ormulate the problem in Section IV. Section V presents an alternative ormulation o the problem to acilitate a centralized polynomial time approximation solution. Then in Section VI, we propose a distributed approximated solution to solve the joint routing and MIMO channel assignment problem. Finally, we provide the simulation results in Section VII and conclude the paper in Section VIII. II. RELATED WORK The application o MIMO technique in wireless mesh and ad hoc networks has gained increased attention in recent years. Although a number o eorts have been made in developing eicient MAC schemes to enable MIMO communications in ad hoc networks [] [5], there is very limited research on designing routing algorithms and protocols to speciically consider the MIMO eatures. The authors in [6] propose a routing protocol or ad hoc networks that leverages the various characteristics o MIMO links. A routing algorithm with QoS provisioning is presented in [7] to exploit the multiplexing gain and intererence cancelation properties o MIMO antennas. The studies in [6], [7], however, are purely heuristic. In [8], the authors consider the problem o jointly optimizing power and bandwidth allocation at each node and multi-hop/multi-path routing in a MIMO-based ad hoc network. Routing is modeled as a simpliied constraint there and the speciic eatures o MIMO transmissions have not been taken into account in establishing routing path. Meanwhile, multi-channel multiradio ad hoc networks have also drawn great research interest [9], [0], []. As MIMO system shares some similarity as multi-channel multi-radio system, those works provide a good reerence or our design. However, dierent rom ixed requency channels, MIMO transmission has more modes and there are more complicated constraints to be considered. III. SYSTEM MODEL We consider a ixed wireless mesh network where nodes are peers to each other. Nodes in the network are equipped with antenna arrays to acilitate MIMO communications. With multiple antennas at the transmitter and/or receiver, spatial multiplexing can be used to transmit multiple independent data streams between a node pair. At the receiver, each antenna receives a superposition o all o the data streams. In a rich scattering environment where the transmission channels or dierent streams are dierentiable and independent, i.e., orthogonal, an intended receiver node can separate and decode its received data streams based on their unique spatial signatures. This achieves the multiplexing gain that can provide a linear increase (in the number o antenna elements) in the asymptotic link capacity. As the transmission quality could be very dierent or multiple spatial paths, r =3 r =3 Fig.. s S 3/4 3/4 v d d r =3 r =3 s S 3/3 3/3 v 3/3 3/3 Illustration o routing in a MIMO-based network. spatial diversity may be exploited to improve transmission reliability. There are dierent types o diversity techniques. When channel inormation is unavailable, dependent streams can be transmitted on dierent antenna elements over multiple time slots and improve transmission quality through space time coding. With adequate channel inormation, a subset o antennas that can transmit signals at better quality can be selected or transmissions through selection diversity, which is shown to outperorm space-time coding []. Although some recent studies have been perormed at the physical and MAC layer to address the challenges o leveraging MIMO advantages in networking, we believe that it is very important or the network layer to be aware o the speciic characteristics o MIMO nodes and make more intelligent routing decisions. Based on the eatures o MIMO strategies, the array o antennas in each node can be grouped to orm dierent MIMO channels, with dierent number o antennas and dierent achievable channel capacity. Figure illustrates the advantage o using MIMO-aware routing. In a network o ive nodes, node s and s have 3 units o traic demand or d and d respectively. The end-to-end paths o the two traic lows both have to go via node v. As each node is equipped with two antennas in this network, we assume that the channel using two antennas has the capacity 4 and the channel using one antenna has the capacity 3 or each link. As node v can receive two independent data streams at most, a conventional routing strategy can route at most 3 units o traic or either s or s as shown in Figure, using the -antenna channel. As a better alternative, MIMO-aware routing can adaptively select the set o MIMO-channels to route the traic, so that all the 6 units o traic demand can be satisied as in Figure, by having each link use the -antenna channel. Due to the speciic eatures o MIMO-based network, we have the ollowing issues to consider in the design. Link capacity. Although in conventional networks the link capacity generally depends on network topology and channel conditions, in MIMO-based networks, it also depends on the size o the antenna arrays o nodes. For a transmission link between a node pair, the link capacity can be chosen rom a set o varied capacities o dierent antenna combinations and strategies. Moreover, more than one combination may be used simultaneously to orm several MIMO channels. The actual capacity o each MIMO channel can be estimated on a periodic basis and the statistics is used in routing decision. Link channel assignment. As an antenna array has limited size, the number o simultaneously used antenna combinations should not exceed the available number o d d

3 antennas o the node, which is known as transmitter degree constraint in scheduling. Meanwhile, or simultaneous transmissions rom multiple spatial channels, the set o antennas used by dierent spatial channels should not overlap, which we name it as antenna compatibility constraint. Also, as dierent antenna combinations have dierent capacities, it is important to determine which antenna combination to use when a route is determined. Intererence consideration. With multiple antennas, a node can receive data streams while canceling intererence streams concurrently, and the total number o received streams depends on the antenna size, which is described as receiver degree constraint in scheduling. From the perspective o routing, the antenna size can be also regarded as a measure o a node s capability o concurrent data receiving and intererence cancellation. Multi-path routing. As nodes are endowed with manyto-many transmission capability by multiple antennas, it is beneicial to incorporate multi-path routing or end-toend lows in order to better exploit multi-path diversity and maximize throughput. While using multi-path may lead to the problems regarding packet re-ordering and loss recovery, these issues have been studied in literature work on multi-path routing and are beyond the scope o this paper. In this paper, we ocus on routing traic between dierent source/destination pairs and corresponding MIMO mode selection. The problem o scheduling the low in a speciic time slot is beyond the scope o this paper. IV. PROBLEM FORMULATION Based on the system model described in Section III, we ormally ormulate the MIMO-aware routing problem in wireless mesh networks as an optimization problem. In order to model end-to-end traic, we use a multi-commodity low model or the routing o data packets across the network. That is, source nodes may send dierent data to their intended destination nodes through multi-path and multi-hop routing. A. Graph representation We represent the multi-hop wireless network via node topology graph G =(V,E E I,F), where V is the set o nodes in the network, F is the set o data lows to be routed, E is the set o directed edges between nodes that can transmit data rom one to the other and E I is the set o directed edges which indicate the intererence rom a transmitter to nodes within its intererence range during data transmission. To be more speciic, given a data link e E, t(e)/h(e) is used to represent the transmission/receiving end o the link e, and there is a directed edge rom t(e) to h(e). In the network, there is a set o sources s, which send data to a set o destinations d, with the end-to-end rate demand vector r. Assume the rate vector has F< V ( V ) components. Each source-destination pair between which there is a traic request is termed as a commodity. Let s()/d() represent the source/destination node or commodity, and r() represent the low that has to be routed rom s() to d(). B. Channel and low constraints Deine the concept MIMO channel (MC) as the MIMO spatial channel over a link that uses a designated set o antennas and corresponds to a speciic MIMO operation mode. Denote the set o MIMO channels over link e as MC(e), and each element MC i (e) MC(e) has a size, denoted as m t i (e) or the transmitter node and m h i (e) or the receiver node, which is the number o antennas used or constructing this MIMO channel at the two ends o the link e. By using dierent sizes, a set o MIMO channels can be constructed to take advantage o spatial multiplexing and/or spatial diversity. Note that, with the calculation o antenna weights at transmitters and transmit over eigen-modes o the channel, MIMO channels can be considered orthogonal [3]. Suppose node v V has antennas. Each MIMO channel (e, i) is associated with a set o antennas o node t(e), which is indicated using the parameter u i,a,e (a =,...,Nt(e) ant). u i,a,e =i and only i the MIMO channel i over link e uses antenna a o node t(e) or transmission. For example, as in Figure, node v has two antennas a 0 and a, which can be used to compose dierent MIMO channels or the link e = v d. Channels 0 and, i.e. (e, 0) and (e, ), both use one antenna, so m t 0(e) = m t (e) =m h 0(e) =m h (e) =, and thus u 0,0,e = u,,e = and u 0,,e = u,0,e =0. Channel and 3, i.e. (e, ) and (e, 3), are constructed by transmitting simultaneously over antennas a 0 and a,sou,0,e = u,,e = u 3,0,e = u 3,,e = and m t (e) =m t 3(e) =. I the MIMO transmission strategy used or channel is spatial multiplexing, i.e., independent data streams are transmitted simultaneously rom the two antennas, the receiver has to use at least two antennas or successul decoding, thereore m h (e) =. Alternatively, i space-time coding, i.e. Alamouti code [4], is used or the transmission over channel 3, the receiver only needs one antenna or decoding so m h 3(e) =. Note that the values o m h i (e), mt i (e) and u i,a,e are easy to obtain o-line and are static or each node. N ant v Each data link e has capacity c i (e) on MIMO channel i, and there is an estimated capacity or a given MIMO channel over a link or an estimation period. The set o MCs and the values o c i (e) can be saved as a look-up table and updated in each estimation period according to the topology/channel condition variations. The length o the period should be properly determined so that the value o c i (e) can correctly relect the actual link condition. We use x i (e) to denote the low on channel i over data link e that carries the data o the end-to-end low session, and deine g i (e) = x i (e)/c i(e) as the utilization o MIMO channel i over link e or all lows. A necessary condition or rate vector r to be achievable is the existence o link low x i (e) that satisies the ollowing low conservation constraints:

4 e E in (v) i MC(e) e:t(e)=s() i MC(e) e:h(e)=d() i MC(e) x i (e) = x i (e) =r(), ; () x i (e) =r(), ; () x i (e),, v s(),d(); (3) where E in (v) and E out (v) are incoming and outgoing edges o node v in the set E. Asthelow capacity constraint, each link should satisy: x i (e) ci(e), e, i MC(e), (4) which can be simpliied as g i (e), e, i MC(e). While constraints ()-(4) are conventional or low problems, the use o MIMO technique imposes new constraints. Even though the degree constraints introduced in Section III are generally ormulated in MAC layer, they actually have a signiicant impact over routing in the network layer. In order to address these constraints, we irst present them with linklow variables in each time slot, and then translate them into end-to-end rate variables or routing purpose. Let I e,i,τ be the indicator variable that has value i and only i channel i is active over link e at time slot τ. Note that the channels over outgoing edges o v in E are considered active i there are data transmissions rom node v, and the channels over incoming edges o v in the set E and E I are considered active i there are data transmissions and intererence transmissions to v respectively. To satisy the degree constraint at the transmitter side, the number o antennas used by the active outgoing edges o a node v must be no larger than its number o antennas Nv ant in each time slot τ: m t i(e)i e,i,τ N ant v, v. (5) Similarly, corresponding to the receiver s degree constraint, the total number o antennas that is required to decode the receiving transmissions, including data and intererence transmissions, should not exceed the receiving capability o the node. Thereore, we have: e E in (v) E in I (v) i MC(e) m h i (e)i e,i,τ N ant v, v. (6) Suppose routing is perormed or each T time slots. Adding these sets o equations or all the T time slots and dividing by T results in the constraints: e E in (v) E in I (v) i MC(e) m t i(e)g i(e) N ant v, v; (7) m h i (e)g i(e) N ant v, v; (8) where g i (e) is the ractional link utilization or channel i over link e. Speciically, g i (e) = x i (e) c = i(e) T τ T I e,i,τ or all e and i. In addition, each node only has a limited number o antennas, and an antenna cannot be used or transmission over dierent MIMO channels simultaneously. To address this antenna compatibility constraint, we use the indicator variable u i,a,e introduced earlier to represent the constraint as ollows: u i,a,e I e,i,τ, τ,v,a. (9) e E out(v) i MC(e) Similarly as in (7)(8), adding these sets o equations or all the T time slots and dividing by T,wehave: u i,a,eg i(e), v, a. (0) C. Optimization ormulation So ar, we have derived the set o constraints or a easible low or routing data packets in a MIMO-based mesh network. There are many dierent objectives o interest that can be solved using an optimization ramework. Based on the constraints, we ormulate the routing problem in the orm o a concurrent low problem, where the desired rate vector is scaled and the objective is to determine the maximum scaling actor λ that satisies the necessary conditions. In this way, the airness in the resource allocation over lows can be ensured. The resulting linear program (LP) is given below: Subject to: e:t(e)=s() i MC(e) e E in (v) i MC(e) max λ, () e:h(e)=d() i MC(e) x i (e) = e E in (v) E in I (v) i MC(e) x i (e) =λr(), ; () x i (e) =λr(), ; (3) x i (e),, v s(),d(); (4) m t i(e)g i(e) N ant v, v; (5) m h i (e)g i(e) N ant v, v; (6) u i,a,eg i(e), v, a; (7) 0 g i(e),x i (e) 0, e, i MC(e); (8) where equations ()-(4) are low conservation constraints, equations (5)-(6) stand or the routing constraints as the result o using MIMO antenna arrays, and equation (7) is used to meet the antenna compatibility constraint. So ar, we have presented a straightorward ormulation with low variables.

5 V. THE CENTRALIZED ALGORITHM The optimization problem ormulated in section IV is linear and can generally be solved by linear optimization algorithms, i.e. simplex method. However, the complexity is still an important concern. In this section, we ollow the work in [5] and [9], and develop a ully polynomial time approximation algorithm using primal-dual algorithm, which is simple to implement and thereore can be potentially applied in a practical wireless network. In order to acilitate the solution, we irst reormulate the problem using edge-path ormulation and generalize the constraints, which is amenable to the development o the algorithm, then we describe the primal-dual algorithm to solve the optimization problem and obtain the maximum scaling actor λ. A. Edge-path reormulation First, note that the set o constraints (5)-(7) share a similar ormat in that each o them concerns a speciic set o link/mimo-channel pairs, so it is possible to generalize them into a simpler orm or easier reormulation. Suppose there are L sets {Q j } composed o link/mimo-channel pairs that are as deined in constraints (5)-(7), then each o these constraints can be stated in the orm as ollows: α i(e)g i(e) β(q j),j =,,...,L, (9) (e,i) Q j where α i (e) and β(q j ) are constants associated with the above constraints. For example, or a node v, constraint (5) concerns the set Q j = {(e, i) e E out (v )&i MC(e)}, the corresponding constants are then α i (e) = {m t i (e) e E out (v )&i MC(e)} and β(q j ) = Nv ant. In this way, although the number o constraints as described in (5)-(7) remains the same, they are generalized into a single ormula (9). In order to have an approximate solution, we irst reormulate the problem into an edge-path ormulation, so that the multi-commodity lows are represented as positive LPs. Let P represents the set o all possible simple paths composed o link/mimo-channel pairs or the commodity. For a path P P that is rom s() to d(), letx(p ) be the amount o low on this path, constraints ()-(4) are then translated to: x(p )=λr(),. (0) P P Furthermore, x i (e), the total amount o low on channel i over link e is given by: x i(e) = x(p ), (e, i). () P P,(e,i) P As g i (e) =x i (e)/c i (e), equation (9) becomes: P P,(e,i) P α x(p ) i(e) β(q j),j =,...,L. c (e,i) Q i(e) j () In this constraint, link/mimo-channel pairs that are both on path P and in set Q j, i.e. (e, i) P Q j, are examined. Consider a single path x(p ) P, rom (), we have (e,i) P Q j c i(e)/α i(e) P P (e,i) Q j α i (e),(e,i) P x(p ) c i(e) β(q j ). Thereore, x(p, j) =β(q j )( (e,i) P Q j c i(e)/α i(e) ) is the maximum amount o low on path P allowed by Q(j). In summary, the edge-path ormulation o the constraints in the original optimization problem is restated as ollows: P P,(e,i) P x(p ), β(q (e,i) Q j)c i(e)/α i(e) j j =,,...,L; (3) x(p )=λr(), ; (4) P P x(p ) 0, P P,. (5) B. Primal-dual solution According to the weak duality property, the objective value o any easible solution o the minimization problem gives an upper bound on the optimal objective o the dual maximization problem. Following [5] and [9], we ormulate the dual o the LP problem and develop a ully polynomial time approximation algorithm using a primal-dual algorithm. Let y(j) be the dual variables or each set Q j, and z() be the dual variable or the rate scaling constraints in (5). The dual o the LP problem is then as ollows: min y(j), (6) j Subject to: (e,i) P j:(e,i) Q j α i (e)y(j) β(q j ) c i(e) z(), P P, ; (7) r()z() ; (8) y(j) 0,j =,...,L. (9) The dual problem is essentially an assignment o lengths to link/mimo-channel pairs, such that j y(j) is minimized. The proposed primal-dual algorithm is given in algorithm. The algorithm initially assigns a weight o δ to all sets Q j, and then proceeds in phases. In each phase we route r() units o low rom s() to d() or each commodity, and a phase ends when all the F commodities are routed. For each commodity, Ther() units o low rom s() to d() are sent via multiple iterations, as in lines 5-3. In each iteration, j:(e,i) Q y(j)/β(q each pair (e, i) is assigned with a length j j) c i(e)/α i(e), and a corresponding shortest path path P rom s() to d() that minimizes the sum o the length is determined by a shortest path algorithm, i.e., the Dijkstra s algorithm. Among the sets in {Q j } that have the intersection with P, we compare their values o maximum allowable low x(p,j), and the one with the minimum value u = min j:(e,i) P &(e,i) Q j x(p,j) is the amount o the low that can be sent on P in this iteration. Moreover, since r() units o low have to be sent or commodity in each phase, the actual amount o low sent is the lesser o u and the remaining amount o low r to

6 Algorithm Centralized Routing 0: Initialize: : y(j) =δ, j {,...,L} and b =0 : while j y(j) < do 3: or =,,...,F do 4: r = r() 5: while r>0 do 6: Assign each pair (e, i) with length l i(e) = j:(e,i) Q j α i (e)y(j)/β(q j ) 7: Find the c i (e) shortest length or each edge: l(e) = min i MC(e) l i(e) 8: Compute the shortest path P rom s() to d() based on {l(e)} 9: Find the bottleneck capacity u =min j:(e,i) P &(e,i) Q j x(p,j) 0: δ =min{r, u}, r r δ : x i(e) x i(e)+δ, (e, i) P : y(j) y(j)(+ δ x(p,j) i) P &(e, i) Q j 3: end while 4: end or 5: b b + 6: end while x 7: ρ =max i (e) j (e,i) Q j c i (e) 8: Output λ = b ρ make up r() in this phase. Once a low is sent via a path, the weights o the sets {Q j } associated with the link/mimochannel pairs that carry the low is updated, as in line. The algorithm then alternates between sending low along shortest paths and adjusting the length o the link/mimo-channel pairs along which low has been sent until an optimal solution is reached. The complexity o the primal dual algorithm mainly lies in solving a sequence o shortest path problems. Following [5], it can be shown that by choosing δ and appropriately, the solution can get as close to the optimum solution as desired at the expense o increasing running time, as in the ollowing remark. Remark I: The algorithm computes a ( ) 3 optimal solution to the scaling actor o the maximum concurrent low problem in time polynomial in F, L, V and /, where F is the number o commodities, L is the number o constraining sets, and V is the number o nodes. VI. THE DISTRIBUTED ALGORITHM The primal-dual algorithm in the previous section gives an upper bound on the achievable maximum concurrent throughput. In many practical wireless mesh networks, it is important to develop a distributed algorithm, where the computing o routes is perormed in a distributed manner to approach a global optimization objective. It is thereore more practical to use an alternative objective unction, i.e. to optimally distribute the end-to-end traic into dierent paths and link/channel pairs thus balance the load and control the congestion o the network. In this section, we ollow [6] and derive a distributed version o the MIMO-aware routing algorithm in wireless mesh networks that can achieve ast convergence to the near-optimum solution. We assume that each commodity is associated with an agent. The multiple agents make parallel routing decisions without coordination with each other. The only accessible global inormation or each agent is a common clock and the utilization level o the network edges. The objective is to route r() amount o low or low rom s() to d() or all F, possibly along several paths, such that the maximum ratio o the total low routed along an link/mimo-channel pair (e, i) to its capacity is minimized. In other words, we aim to distribute the traic evenly in the network and hopeully no (e, i) would be congested or overloaded. Recall that the utilization o a MIMO-channel over an edge e is previously deined as g i (e) = x i (e) c, and i(e) the objective is to minimize max (e,i) g i (e). The distributed scheduling scheme is described in Algorithm. Throughout the algorithm, x i (e) and l i (e) are the current low value and length o (e, i) or the agent o commodity respectively, and x is the amount o low that has been routed in the current phase or commodity. Algorithm Distributed Routing 0: Initialize: : Set x i (e) ci(e)/f, x = c i(e)/f and l i (e) = c i (e) k x i (e)/(ci(e)) or each link/mimo-channel pair (e, i) and commodity : or N p =(logk)/ phases do 3: For each commodity, doinparallel: 4: while x <r()/n p do 5:. subroutine: PRE-CHECK 6:. Deine the capacities c i (e) = x i (e)/ log k i the channel pair (e, i) is not yet tagged 7: 3. Find the shortest path P rom s() to d() under the current length unction {l i (e)} 8: 4. Compute a blocking low x(p ) under capacities {c i (e)} along the shortest path P 9: 5. Δx =min{x(p ),r()/n p x } 0: 6. x i (e) x i (e)+δx and l i (e) = c i (e) k x i (e)/(ci(e)), (e, i) P, x x +Δx : end while : x =0, 3: end or Similar to the centralized algorithm, the distributed algorithm is also based on the steepest descent ramework as in [5]. Let k be the number o (e, i) pairs in the network, obviously k O( E ). The algorithm goes though N p = (log k)/ phases. A low o amount r()/n p is routed or each commodity in each phase and a easible solution is derived at the end. For each phase, the process is urther divided into steps, as in the while loop in line 4-. In each step, each commodity perorms in parallel to route a raction o its own low. Dierent rom the case in the centralized algorithm, we have the additional problem o how to eiciently perorm concurrent routing in a distributed scenario, as concurrent attempts to route on a shortest path may lead the path to be no longer shortest and result in

7 Algorithm 3 Subroutine: PRE-CHECK : or Nodes v {v} do : i Constraint (5) is not satisied then 3: Tag (e, i) {(e, i) e E out(v ), i MC(e)} 4: end i 5: i Constraint (6) is not satisied then 6: Tag (e, i) {(e, i) e E in(v ) E I in(v ), i MC(e)} 7: end i 8: i Constraint (7) is not satisied or antenna(s) {a} o node v then 9: Tag (e, i) {(e, i) a {a},u i,a,e =} 0: end i : end or : or Nodes v that is connected to any node in {v} by any edge e E E I do 3: i Constraint (6) is not satisied then 4: Tag (e, i) {(e, i) e E in(v ) E I in(v ), i MC(e)} 5: end i 6: end or unpredictable oscillations. To handle this problem, a special approach is to guarantee the so-called step-size constraint, that the length increase o any link/channel pair (e, i) can be no larger than an raction. Throughout the algorithm, we initially route a tiny amount o low o all commodities on all link/mimo-channel pairs, and later increase the low multiplicatively. Although the initial pre-low may not even satisy the low conservation constraints, as its total capacity is o the actual capacities, it has eect on the optimality only to the extent. In each step, the algorithm computes the shortest path based on the current length unction, and determines the blocking low along the path, which is the maximum amount o low that can be routed in the path under the capacity constraint c i (e) or each (e, i). By computing the blocking low, it saturates at least one edge on the path, which eectively reduces the number o steps. In order to make the solution easible, especially or MIMObased networks, we revisited the constraints in equations (5)- (7). Denote {v} as the set o nodes that are in the augmenting paths o the previous step. Recall that g i (e) = x i (e) c can i(e) be regarded as a measure o congestion o channel i over link e. Thereore, a PRE-CHECK step is added at the beginning o each step, as in algorithm 3, so that each node that is included in the augmenting paths o the last step examines i it still satisies constraints (5)-(7). I either (5) or (6) is not satisied, the node can no longer accept extra load, so its incident edges are set to have capacity 0 or all the possible MIMO channels. I (7) is not satisied, it indicates that some o the antennas, say a, o the node is ully-loaded, so MIMO channels that have u i,a,e =are set to have capacity 0. We also check the nodes that are connected to nodes in the augmenting paths by edges in E E I, in order to account or the intererence rom the lows in the augmenting paths. We irst prove that the algorithm can achieve a ( + O()) approximation. The analysis proceeds as in [6], but is slightly dierent since a link can be associated with several MIMO channels in our algorithm. Denote Φ as the potential o the network: Φ= (e,i)(k / ) gi(e). (30) Assume the optimum value o max (e,i) g i (e) is, so the optimum value o Φ satisies Φ k /. Consider phase p and step t,letl (t) and l (t) be the length o the shortest path at the beginning and the end o the step or commodity. In each step, each commodity simultaneously augments its low along certain paths. Suppose commodity augments low Δx i (e) along (e, i), the total additional low is Δx i (e) = Δx i (e). We irst calculate the overall increase in Φ due to the augmentation along (e, i): ΔΦ(e) =k xi(e)/ci(e) (k Δxi(e)/ci(e) ) (3) k x i (e)+δx i (e) c i (e) Δx i(e) log k c i (e) (3) = Δx i (e)log k k gi(e) /, (33) c i (e) where g i (e) is the utilization actor ater the augmentation step. The inequation (3) is derived rom the inequality e a ae a by letting a = Δxi(e)logk c i(e). Note that c i(e) kgi(e) / is the length o (e, i) in the next step, denoted as l i (e). Based on the above inequation, the total increase in Φ at the end o this step is: ΔΦ (e,i) P log k Δx i = log k log k (e) l i (e) (34) Δx l (t) (35) Δx ( + )l (t), (36) where P is the shortest path ound on line 7 o Algorithm, Inequation (34) is derived directly rom (33), equation (35) is derived rom the act that the blocking low values on all edges o the path P are the same and equal to Δx, and l (t) = (e,i) P l i (e) is the length o the shortest path. Inequation (36) is rom the step-size constraint which ensures that the length increase o each edge can be at most an raction o the original length, i.e. l i (e) ( + )l i (e). Note that l (t) l (p) where l (p) is the length o the shortest path at the end o phase p. As we route r()/n p = r()/ log k amount o low or each commodity in each phase, we can estimate the change in the potential during phase p as ollows: Φ(p) Φ(p ) log k Δx (t)( + )l (t) (37) t ( + ) r()l (p). (38) Denote the optimum solution to the problem as {x i (e) }.Note that l i (e) or all is the same at the end o phase p, denoted as l i (e) p. For each (e, i), since x i (e) c i (e),wehave:

8 Traic demand Traic demand Number o MIMO Channels Number o MIMO Channels Fig.. Grid topology: impact o traic demand. Fig. 4. Grid topology: impact o the number o MIMO channels Number o Flows Number o Flows Traic demand Traic demand Fig. 3. Grid topology: impact o the number o lows. Fig. 5. Random topology: impact o traic demand. Φ(p) = (e,i) c i(e)l i(e) p (e,i) x i (e) l i(e) p r()l (p), (39) as l (p) is the shortest path length rom s() to d() and the total low amount is r(). Combining (38) and (39), we have Φ(p) Φ(p )/( ( + )). Initially, g i (e) =0 or all (e, i), so Φ(0) = k. As N p = log k/, we have log k/ Φ(N p ) k( + ) k O() k / k O() Φ. It can be proved that an k O() -approximation o Φ yields a ( + O()) approximation o max (e,i) g i (e). Once the algorithm runs to the end, we can get the solution with {x i (e)}, which actually includes the end-to-end routes and the corresponding link/mimo-channel pairs or each low commodity. From [6], it can be shown that the convergence time o the proposed algorithm is bounded and essentially linear in the maximum path length o the network. We then arrive at the ollowing remark. Remark II: The distributed algorithm achieves an +O()- approximation to the optimum solution. The while loop can ends in O(L(log k log(f/))/ 4 ) steps, where L is the largest number o edges in a path. VII. PERFORMANCE EVALUATION In this section, the perormance o our proposed algorithms is evaluated through simulations. Our goal is to veriy that by adaptively selecting a set o MIMO channels or each link subject to MIMO constraints, the MIMO-aware routing can achieve better perormance under dierent network settings, compared with the reerence non-mimo-aware routing strategy which does not have the lexibility to switch between channels and always uses the MIMO-channel with the highest capacity or each link. The evaluated perormance metrics are the objectives o the proposed algorithms, namely the scaling actor λ (which is also a measure o achievable throughput) or the centralized algorithm and the maximum utilization actor g = max (e,i) g i (e) or the distributed algorithm. We generate both grid and random topologies, and run simulations with dierent parameter settings. In each evaluated network, a node is equipped with an array o antennas to acilitate MIMO transmission. For a link with Nt ant /Nh ant antennas at transmitter/receiver ends, we consider up to Ñ = min{nt ant,nh ant } MIMO channels are available to the link, with each MIMO channel corresponding to one MIMO operation mode and having the degree-o-reedom value ranging rom to Ñ. The channel capacity value is estimated by averaging over a sequence o ading coeicients and set as an empirical parameter or each topology setting. We generally assume all the nodes have the same number o antennas N ant to show the perormance improvement by MIMO-aware routing, and we also present the perormance under dierent values o N ant. The traic in the network is modeled by two parameters: the number o lows F and the demand o each low r(). For simplicity, all lows are assumed to have the same demand, whose value is normalized to the capacity o MIMO-channel with the degree-o-reedom. The constants δ and used in the algorithms are set as empirically derived values. The deault values o N ant, F and r() are 4, 5 and 0.5 respectively, and the network has 30 nodes i not otherwise speciied. For the clarity o comparison, results are normalized with regard to the minimum value in each igure. We irst study the perormance in a grid topology. Consider a 5 6 grid topology with 30 nodes and each node has at most 4 neighbors. Dividing the grid into our quadrants and the our nodes centered in each quadrant are set as sinks or lows. The destination o a node is the sink node that is closest to it. As traic demand increases in igure, MIMO-aware routing consistently obtains a larger value o scaling actor λ (up to 5% higher) and a smaller maximum utilization actor g (up to 55% lower) than that or non-mimo-aware routing. With an increased number o lows, MIMO-aware routing improves

9 Number o Flows 0 Fig. 7. Fig Number o Flows Random topology: impact o the number o lows. 3 4 Number o MIMO Channels Number o MIMO Channels Random topology: impact o the number o MIMO channels. λ up to 5% and reduces g up to 50% as in igure 3. The results show that by being aware o the MIMO constraints and adaptively selecting MIMO channels, the traic demand in the network can be better served. We can urther observe rom igure 4 that the advantage o MIMO-aware routing is even more signiicant with the increase o the number o MIMOchannels, as the improvement o λ and g increases rom 0% to % and 3% to 45% respectively, when the number o MIMO channels in each link increases rom to 4. With more MIMO channels, there are more options or perorming more lexible routing. Figures 5-7 show the perormance o our routing algorithms in random topologies. A random topology is generated by populating nodes randomly in a grid. The transmission range is set as 00, and each topology generated is ensured to be connected. For each low, the source and destination are randomly selected rom the set o nodes in the network. Each data point is obtained by averaging over 0 dierent random topologies. In igure 5, a 33% increase in λ and a 45% decrease in g are achieved with increasing traic demand. As the number o lows in the network increases in igure 6, MIMO-aware routing outperorms its counterpart by up to 45% higher λ and 3% lower g. The results in random topologies are consistent with that in the grid topology and demonstrate that being MIMO-aware is an eective way to leverage MIMO beneits and improve routing perormance. The better perormance also exists or dierent number o MIMO-channels, as in igure 7. VIII. CONCLUSIONS As a promising technology to improve transmission capacity and reliability in wireless mesh networks, MIMO has been studied extensively in physical and MAC layers, but has not drawn much attention rom network layer s perspective. In this paper, we propose the concept o MIMO-aware routing and investigate how it can urther leverage the advantages brought by MIMO. We irst present constraints that capture the characteristics o MIMO transmissions, and mathematically ormulate the MIMO-enabled multi-source multi-destination multi-hop routing problem into a multi-commodity low problem. We then propose a centralized algorithm to provide an approximated solution to achieve maximum concurrent low in the network, as well as a distributed algorithm that minimizes the maximum congestion o link/mimo-channels. The perormance o our algorithms is evaluated through simulations with varied traic demands, number o lows, and available MIMO channels. The results demonstrate that our MIMOaware routing algorithms signiicantly outperorm the routing scheme that does not consider MIMO transmission eatures and constraints in all the test scenarios. The results in this paper provide a basis or our uture work on practical MIMOaware routing protocol design. REFERENCES [] M. Hu and J. Zhang. MIMO ad hoc networks: Medium access control, saturation throughput, and optimal hop distance. Journal o Communications and Networks, Special Issue on Mobile Ad Hoc Networks, pages , 004. [] M Zorzi, J Zeidler, A. Anderson, B. Rao, J. Proakis, A.L. Swindlehurst, M. Jensen, and S. Krishnamurthy. Cross-layer issues in MAC protocol design or MIMO ad hoc networks. IEEE Wireless Communication Magzine, (4):6 76, August 006. [3] K. Sundaresan, R. Sivakumar, M. Ingram, and T-Y. Chang. A air medium access control protocol or ad-hoc networks with MIMO links. In Proc. IEEE INFOCOM 004, June 004. [4] S. Chu and X. Wang. Opportunistic and cooperative spatial multiplexing in MIMO ad hoc networks. In Proc. ACM MobiHoc 008, pages 63 7, May 008. [5] S. Chu and X. Wang. Adaptive and distributed scheduling in heterogeneous MIMO-based ad hoc networks. In Proc. IEEE MASS 009, pages 7 6, Oct 009. [6] K. Sundaresan and R. Sivakumar. Routing in ad-hoc networks with MIMO links. In Proc. IEEE ICNP 005, pages 85 98, 005. [7] A. Gkelias, F. Boccardi, C.H. Liu, and K.K. Leung. MIMO routing with QoS provisioning. In Proc. ISWPC 008. [8] J. Liu, Y.T. Hou, Y. Shi, and H. Sherali. Cross-layer optimization or mimo-based wireless ad hoc networks: Routing, power allocation, and bandwidth allocation. IEEE J. Select. Areas o Commun., (6):93 96, August 008. [9] M. Kodialam and N. Thyaga. Characterizing the capacity region in multi-radio multi-channel wireless mesh networks. In Proc. ACM Mobicom 05, pages 73 87, May 005. [0] M. Alicherry, R. Bhatia, and L. Li. Joint channel assignment and routing or throughput optimization in multi-radio wireless mesh networks. In Proc. ACM Mobicom 05, pages 58 7, May 005. [] X. Lin and S. Rasool. A distributed joint channel-assignment, scheduling and routing algorithm or multi-channel ad-hoc wireless networks. In Proc. IEEE Inocom 07, pages 58 7, May 007. [] Y. Pan and S. Aissa. Perormance analysis o selective space-time coding and selection diversity under perect and imperect CSI. In Proc. PIMRC 005, pages , September 005. [3] D. Tse and P. Viswanath. Fundamentals o Wireless Communication. Cambridge University Press, May 005. [4] S. M. Alamouti. A simple transmit diversity technique or wireless communications. IEEE J. Select. Areas Commun., pages , October 998. [5] N. Garg and J. Koenemann. Faster and simpler algorithms or multicommodity low and other ractional packing problems. In Proc. FOCS 98. [6] B. Awerbuch, R. Khandekar, and S. Rao. Distributed algorithms or multicommodity low problems via approximate steepest descent ramework. In Proc. SODA 07.

Traffic Assignment Over Licensed and Unlicensed Bands for Dual-Band Femtocells

Traffic Assignment Over Licensed and Unlicensed Bands for Dual-Band Femtocells Traic Assignment Over Licensed and Unlicensed Bands or Dual-Band Femtocells Feilu Liu, Erdem Bala, Elza Erkip and Rui Yang ECE Department, Polytechnic Institute o NYU, Brooklyn, NY 11201 InterDigital Communications,

More information

Distributed Resource Allocation Based on Queue Balancing in Multi-hop Cognitive Radio Networks

Distributed Resource Allocation Based on Queue Balancing in Multi-hop Cognitive Radio Networks Distributed Resource Allocation Based on Queue Balancing in Multi-hop Cognitive Radio Networks Wei Wang, Kang G. Shin and Wenbo Wang Wireless Signal Processing and Network Lab (WSPN) Key Lab o Universal

More information

On the Performance of Cooperative Routing in Wireless Networks

On the Performance of Cooperative Routing in Wireless Networks 1 On the Performance of Cooperative Routing in Wireless Networks Mostafa Dehghan, Majid Ghaderi, and Dennis L. Goeckel Department of Computer Science, University of Calgary, Emails: {mdehghan, mghaderi}@ucalgary.ca

More information

Signal Strength Coordination for Cooperative Mapping

Signal Strength Coordination for Cooperative Mapping Signal Strength Coordination or Cooperative Mapping Bryan J. Thibodeau Andrew H. Fagg Brian N. Levine Department o Computer Science University o Massachusetts Amherst {thibodea,agg,brian}@cs.umass.edu

More information

DRaMA: Device-specific Repetition-aided Multiple Access for Ultra-Reliable and Low-Latency Communication

DRaMA: Device-specific Repetition-aided Multiple Access for Ultra-Reliable and Low-Latency Communication DRaMA: Device-speciic Repetition-aided Multiple Access or Ultra-Reliable and Low-Latency Communication itaek Lee, Sundo im, Junseok im, and Sunghyun Choi Department o ECE and INMC, Seoul National University,

More information

Maximum Achievable Throughput in Multi-Band Multi-Antenna Wireless Mesh Networks

Maximum Achievable Throughput in Multi-Band Multi-Antenna Wireless Mesh Networks Maximum Achievable Throughput in Multi-Band Multi-Antenna Wireless Mesh Networks Bechir Hamdaoui and Kang G. Shin Abstract We have recently witnessed a rapidly-increasing demand for, and hence a shortage

More information

Efficient Recovery Algorithms for Wireless Mesh Networks with Cognitive Radios

Efficient Recovery Algorithms for Wireless Mesh Networks with Cognitive Radios Efficient Recovery Algorithms for Wireless Mesh Networks with Cognitive Radios Roberto Hincapie, Li Zhang, Jian Tang, Guoliang Xue, Richard S. Wolff and Roberto Bustamante Abstract Cognitive radios allow

More information

Coding aware routing in wireless networks with bandwidth guarantees. IEEEVTS Vehicular Technology Conference Proceedings. Copyright IEEE.

Coding aware routing in wireless networks with bandwidth guarantees. IEEEVTS Vehicular Technology Conference Proceedings. Copyright IEEE. Title Coding aware routing in wireless networks with bandwidth guarantees Author(s) Hou, R; Lui, KS; Li, J Citation The IEEE 73rd Vehicular Technology Conference (VTC Spring 2011), Budapest, Hungary, 15-18

More information

Multiband Joint Detection with Correlated Spectral Occupancy in Wideband Cognitive Radios

Multiband Joint Detection with Correlated Spectral Occupancy in Wideband Cognitive Radios Multiband Joint Detection with Correlated Spectral Occupancy in Wideband Cognitive Radios Khalid Hossain, Ayman Assra, and Benoît Champagne, Senior Member, IEEE Department o Electrical and Computer Engineering,

More information

Practical Routing and Channel Assignment Scheme for Mesh Networks with Directional Antennas

Practical Routing and Channel Assignment Scheme for Mesh Networks with Directional Antennas This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 28 proceedings. Practical Routing and Channel Assignment Scheme

More information

PLANNING AND DESIGN OF FRONT-END FILTERS

PLANNING AND DESIGN OF FRONT-END FILTERS PLANNING AND DESIGN OF FRONT-END FILTERS AND DIPLEXERS FOR RADIO LINK APPLICATIONS Kjetil Folgerø and Jan Kocba Nera Networks AS, N-52 Bergen, NORWAY. Email: ko@nera.no, jko@nera.no Abstract High capacity

More information

Worst Case Modelling of Wireless Sensor Networks

Worst Case Modelling of Wireless Sensor Networks Worst Case Modelling o Wireless Sensor Networks Jens B. Schmitt disco Distributed Computer Systems Lab, University o Kaiserslautern, Germany jschmitt@inormatik.uni-kl.de 1 Abstract At the current state

More information

Spectrum allocation with beamforming antenna in heterogeneous overlaying networks

Spectrum allocation with beamforming antenna in heterogeneous overlaying networks 2st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Spectrum allocation with beamorming antenna in heterogeneous overlaying networks Sunheui Ryoo, Changhee Joo and

More information

Power Optimization in Stratix IV FPGAs

Power Optimization in Stratix IV FPGAs Power Optimization in Stratix IV FPGAs May 2008, ver.1.0 Application Note 514 Introduction The Stratix IV amily o devices rom Altera is based on 0.9 V, 40 nm Process technology. Stratix IV FPGAs deliver

More information

Cooperative Diversity Routing in Wireless Networks

Cooperative Diversity Routing in Wireless Networks Cooperative Diversity Routing in Wireless Networks Mostafa Dehghan, Majid Ghaderi, and Dennis L. Goeckel Department of Computer Science, University of Calgary, Emails: {mdehghan, mghaderi}@ucalgary.ca

More information

An Advanced Wireless System with MIMO Spatial Scheduling

An Advanced Wireless System with MIMO Spatial Scheduling An Advanced Wireless System with MIMO Spatial Scheduling Jan., 00 What is the key actor or G mobile? ) Coverage High requency band has small diraction & large propagation loss ) s transmit power Higher

More information

Generalized Frequency Division Multiplexing: Analysis of an Alternative Multi-Carrier Technique for Next Generation Cellular Systems

Generalized Frequency Division Multiplexing: Analysis of an Alternative Multi-Carrier Technique for Next Generation Cellular Systems Generalized Frequency Division Multiplexing: Analysis o an Alternative Multi-Carrier Technique or Next Generation Cellular Systems Nicola Michailow, Ivan Gaspar, Stean Krone, Michael Lentmaier, Gerhard

More information

Chapter 12. Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks

Chapter 12. Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks Chapter 12 Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks 1 Outline CR network (CRN) properties Mathematical models at multiple layers Case study 2 Traditional Radio vs CR Traditional

More information

Multi-Dimensional Conflict Graph Based Computing for Optimal Capacity in MR-MC Wireless Networks

Multi-Dimensional Conflict Graph Based Computing for Optimal Capacity in MR-MC Wireless Networks Multi-Dimensional Conflict Graph Based Computing for Optimal Capacity in MR-MC Wireless Networks Hongkun Li, Yu Cheng, Chi Zhou Dept. Electrical & Computer Engineering Illinois Institute of Technology

More information

Opportunism vs. Cooperation: Analysis of Forwarding Strategies in Multihop Wireless Networks with Random Fading

Opportunism vs. Cooperation: Analysis of Forwarding Strategies in Multihop Wireless Networks with Random Fading 1 Opportunism vs. Cooperation: Analysis o Forwarding Strategies in Multihop Wireless Networks with Random Fading Chi-Kin Chau, Anand Seetharam, Jim Kurose, Don Towsley Masdar Institute o Science and Technology,

More information

Lousy Processing Increases Energy Efficiency in Massive MIMO Systems

Lousy Processing Increases Energy Efficiency in Massive MIMO Systems 1 Lousy Processing Increases Energy Eiciency in Massive MIMO Systems Sara Gunnarsson, Micaela Bortas, Yanxiang Huang, Cheng-Ming Chen, Liesbet Van der Perre and Ove Edors Department o EIT, Lund University,

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

Design of Multidimensional Space Motion Simulation System For Spacecraft Attitude and Orbit Guidance and Control Based on Radar RF Environment

Design of Multidimensional Space Motion Simulation System For Spacecraft Attitude and Orbit Guidance and Control Based on Radar RF Environment 2016 Sixth International Conerence on Instrumentation & Measurement, Computer, Communication and Control Design o Multidimensional Space Motion Simulation System For Spacecrat Attitude and Orbit Guidance

More information

How (Information Theoretically) Optimal Are Distributed Decisions?

How (Information Theoretically) Optimal Are Distributed Decisions? How (Information Theoretically) Optimal Are Distributed Decisions? Vaneet Aggarwal Department of Electrical Engineering, Princeton University, Princeton, NJ 08544. vaggarwa@princeton.edu Salman Avestimehr

More information

Cyclostationarity-Based Spectrum Sensing for Wideband Cognitive Radio

Cyclostationarity-Based Spectrum Sensing for Wideband Cognitive Radio 9 International Conerence on Communications and Mobile Computing Cyclostationarity-Based Spectrum Sensing or Wideband Cognitive Radio Qi Yuan, Peng Tao, Wang Wenbo, Qian Rongrong Wireless Signal Processing

More information

On the Impact of Fading and Inter-piconet Interference on Bluetooth Performance

On the Impact of Fading and Inter-piconet Interference on Bluetooth Performance On the Impact o Fading and Inter-piconet Intererence on Bluetooth Perormance Andrea Zanella Dept. o Inormation Engineering University o Padova, Padova, Italy zanella@dei.unipd.it Andrea Tonello Bell Labs,

More information

Generalized Frequency Division Multiplexing: Analysis of An Alternative Multi-Carrier Technique for Next Generation Cellular Systems

Generalized Frequency Division Multiplexing: Analysis of An Alternative Multi-Carrier Technique for Next Generation Cellular Systems Generalized Frequency Division Multiplexing: Analysis o An Alternative Multi-Carrier Technique or Next Generation Cellular Systems Michailow, Nicola; Gaspar, Ivan; Krone, Stean; Lentmaier, Michael; Fettweis,

More information

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm IOSR Journal o Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 01 (January. 2015), V1 PP 44-57 www.iosrjen.org Optimizing Reception Perormance o new UWB Pulse shape over Multipath

More information

Performance of LTE Linear MIMO Detectors: Achievable Data Rates and Complexity

Performance of LTE Linear MIMO Detectors: Achievable Data Rates and Complexity Perormance o LTE Linear MIMO Detectors: Achievable Data Rates and Complexity Dragan Samardzija, Milos Pilipovic, Dusica Marijan, Jaroslav Farkas, Miodrag Temerinac University o Novi Sad Novi Sad, Serbia

More information

Efficient Monitoring of Dynamic Tag Populations in RFID Systems

Efficient Monitoring of Dynamic Tag Populations in RFID Systems 2 2 Ninth IFIP IEEE/IFIP Ninth International Conerence on on Embedded and and Ubiquitous Computing Eicient Monitoring o Dynamic Tag Populations in RFID Systems Qingjun Xiao, Kai Bu, Bin Xiao Department

More information

Software Defined Radio Forum Contribution

Software Defined Radio Forum Contribution Committee: Technical Sotware Deined Radio Forum Contribution Title: VITA-49 Drat Speciication Appendices Source Lee Pucker SDR Forum 604-828-9846 Lee.Pucker@sdrorum.org Date: 7 March 2007 Distribution:

More information

Multiple-Accessing over Frequency-Selective Fading Channels

Multiple-Accessing over Frequency-Selective Fading Channels Multiple-ccessing over Frequency-elective Fading Channels bstract-this work considers the transmission o inormation rom many independent sources to a common receiver over a channel impaired by multipath

More information

3.6 Intersymbol interference. 1 Your site here

3.6 Intersymbol interference. 1 Your site here 3.6 Intersymbol intererence 1 3.6 Intersymbol intererence what is intersymbol intererence and what cause ISI 1. The absolute bandwidth o rectangular multilevel pulses is ininite. The channels bandwidth

More information

Analysis of Bottleneck Delay and Throughput in Wireless Mesh Networks

Analysis of Bottleneck Delay and Throughput in Wireless Mesh Networks Analysis of Bottleneck Delay and Throughput in Wireless Mesh Networks Xiaobing Wu 1, Jiangchuan Liu 2, Guihai Chen 1 1 State Key Laboratory for Novel Software Technology, Nanjing University, China wuxb@dislab.nju.edu.cn,

More information

AFEMTOCELL base station abbreviated as femto BS or. Load Balancing in Two-Tier Cellular Networks with Open and Hybrid Access Femtocells

AFEMTOCELL base station abbreviated as femto BS or. Load Balancing in Two-Tier Cellular Networks with Open and Hybrid Access Femtocells THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION. COPYRIGHT MAY BE TRANSFERRED WITHOUT NOTICE, AFTER WHICH THIS VERSION MAY NO LONGER BE ACCESSIBLE 1 Load Balancing in Two-Tier Cellular

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

Joint Relaying and Network Coding in Wireless Networks

Joint Relaying and Network Coding in Wireless Networks Joint Relaying and Network Coding in Wireless Networks Sachin Katti Ivana Marić Andrea Goldsmith Dina Katabi Muriel Médard MIT Stanford Stanford MIT MIT Abstract Relaying is a fundamental building block

More information

Analysis of Power Consumption of H.264/AVC-based Video Sensor Networks through Modeling the Encoding Complexity and Bitrate

Analysis of Power Consumption of H.264/AVC-based Video Sensor Networks through Modeling the Encoding Complexity and Bitrate Analysis o Power Consumption o H.264/AVC-based Video Sensor Networks through Modeling the Encoding Complexity and Bitrate Bambang A.B. Sari, Panos Nasiopoulos and Victor C.M. eung Department o Electrical

More information

On the Unicast Capacity of Stationary Multi-channel Multi-radio Wireless Networks: Separability and Multi-channel Routing

On the Unicast Capacity of Stationary Multi-channel Multi-radio Wireless Networks: Separability and Multi-channel Routing 1 On the Unicast Capacity of Stationary Multi-channel Multi-radio Wireless Networks: Separability and Multi-channel Routing Liangping Ma arxiv:0809.4325v2 [cs.it] 26 Dec 2009 Abstract The first result

More information

Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks

Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks M. KIRAN KUMAR 1, M. KANCHANA 2, I. SAPTHAMI 3, B. KRISHNA MURTHY 4 1, 2, M. Tech Student, 3 Asst. Prof 1, 4, Siddharth Institute

More information

Performance Analysis of Optimal Scheduling Based Firefly algorithm in MIMO system

Performance Analysis of Optimal Scheduling Based Firefly algorithm in MIMO system Performance Analysis of Optimal Scheduling Based Firefly algorithm in MIMO system Nidhi Sindhwani Department of ECE, ASET, GGSIPU, Delhi, India Abstract: In MIMO system, there are several number of users

More information

Power Efficiency in IEEE a WLAN with Cross-Layer Adaptation

Power Efficiency in IEEE a WLAN with Cross-Layer Adaptation Power Eiciency in IEEE 802.11a WLA with Cross-Layer Adaptation Jun Zhao, Zihua Guo, and Wenwu Zhu Microsot Research Asia 3/F, Beijing Sigma Center, o.49, Zhichun Road, Haidian District Beijing 100080,

More information

Dynamic Channel Bonding in Multicarrier Wireless Networks

Dynamic Channel Bonding in Multicarrier Wireless Networks Dynamic Channel Bonding in Multicarrier Wireless Networks Pei Huang, Xi Yang, and Li Xiao Department o Computer Science and Engineering Michigan State University Email: {huangpe3, yangxi, lxiao}@cse.msu.edu

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Hybrid spectrum arrangement and interference mitigation for coexistence between LTE macrocellular and femtocell networks

Hybrid spectrum arrangement and interference mitigation for coexistence between LTE macrocellular and femtocell networks Bai and Chen EURASIP Journal on Wireless Communications and Networking 2013, 2013:56 RESEARCH Open Access Hybrid spectrum arrangement and intererence mitigation or coexistence between LTE macrocellular

More information

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa ICT 5305 Mobile Communications Lecture - 3 April 2016 Dr. Hossen Asiul Mustaa Advanced Phase Shit Keying Q BPSK (Binary Phase Shit Keying): bit value 0: sine wave bit value 1: inverted sine wave very simple

More information

RADIO Frequency Identification (RFID) devices are widely. A Multiple Hashing Approach to Complete Identification of Missing RFID Tags

RADIO Frequency Identification (RFID) devices are widely. A Multiple Hashing Approach to Complete Identification of Missing RFID Tags A Multiple Hashing Approach to Complete Identiication o Missing RFID ags Xiulong Liu, Keqiu Li*, Geyong Min, Yanming Shen, Alex X. Liu, Wenyu Qu Abstract Owing to its superior properties, such as ast identiication

More information

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt.

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt. Wireless Networks (PHY): Design or Diversity Admin and recap Design or diversity Y. Richard Yang 9/2/212 2 Admin Assignment 1 questions Assignment 1 oice hours Thursday 3-4 @ AKW 37A Channel characteristics

More information

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale Wireless ad hoc networks Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale Infrastructure-based v.s. ad hoc Infrastructure-based networks Cellular network 802.11, access points Ad hoc networks

More information

Partial overlapping channels are not damaging

Partial overlapping channels are not damaging Journal of Networking and Telecomunications (2018) Original Research Article Partial overlapping channels are not damaging Jing Fu,Dongsheng Chen,Jiafeng Gong Electronic Information Engineering College,

More information

A Novel Off-chip Capacitor-less CMOS LDO with Fast Transient Response

A Novel Off-chip Capacitor-less CMOS LDO with Fast Transient Response IOSR Journal o Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 11 (November. 2013), V3 PP 01-05 A Novel O-chip Capacitor-less CMOS LDO with Fast Transient Response Bo Yang 1, Shulin

More information

Further developments on gear transmission monitoring

Further developments on gear transmission monitoring Further developments on gear transmission monitoring Niola V., Quaremba G., Avagliano V. Department o Mechanical Engineering or Energetics University o Naples Federico II Via Claudio 21, 80125, Napoli,

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title IEEE 80.16 Broadband Wireless Access Working Group Channel and intererence model or 80.16b Physical Layer Date Submitted Source(s) Re: 000-31-09 Tal Kaitz BreezeCOM

More information

Optimum Power Allocation in Cooperative Networks

Optimum Power Allocation in Cooperative Networks Optimum Power Allocation in Cooperative Networks Jaime Adeane, Miguel R.D. Rodrigues, and Ian J. Wassell Laboratory for Communication Engineering Department of Engineering University of Cambridge 5 JJ

More information

A Comparative Study of Quality of Service Routing Schemes That Tolerate Imprecise State Information

A Comparative Study of Quality of Service Routing Schemes That Tolerate Imprecise State Information A Comparative Study of Quality of Service Routing Schemes That Tolerate Imprecise State Information Xin Yuan Wei Zheng Department of Computer Science, Florida State University, Tallahassee, FL 330 {xyuan,zheng}@cs.fsu.edu

More information

A MATLAB Model of Hybrid Active Filter Based on SVPWM Technique

A MATLAB Model of Hybrid Active Filter Based on SVPWM Technique International Journal o Electrical Engineering. ISSN 0974-2158 olume 5, Number 5 (2012), pp. 557-569 International Research Publication House http://www.irphouse.com A MATLAB Model o Hybrid Active Filter

More information

Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks

Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks Ying Dai and Jie Wu Department of Computer and Information Sciences Temple University, Philadelphia, PA 19122 Email: {ying.dai,

More information

End-to-End Known-Interference Cancellation (E2E-KIC) with Multi-Hop Interference

End-to-End Known-Interference Cancellation (E2E-KIC) with Multi-Hop Interference End-to-End Known-Interference Cancellation (EE-KIC) with Multi-Hop Interference Shiqiang Wang, Qingyang Song, Kailai Wu, Fanzhao Wang, Lei Guo School of Computer Science and Engnineering, Northeastern

More information

From Theory to Practice: Evaluating Static Channel Assignments on a Wireless Mesh Network

From Theory to Practice: Evaluating Static Channel Assignments on a Wireless Mesh Network From Theory to Practice: Evaluating Static Channel Assignments on a Wireless Mesh Network Daniel Wu and Prasant Mohapatra Department of Computer Science, University of California, Davis 9566 Email:{danwu,pmohapatra}@ucdavis.edu

More information

Optimal Placement of Phasor Measurement Units for State Estimation

Optimal Placement of Phasor Measurement Units for State Estimation PSERC Optimal Placement o Phasor Measurement Units or State Estimation Final Project Report Power Systems Engineering Research Center A National Science Foundation Industry/University Cooperative Research

More information

Gateways Placement in Backbone Wireless Mesh Networks

Gateways Placement in Backbone Wireless Mesh Networks I. J. Communications, Network and System Sciences, 2009, 1, 1-89 Published Online February 2009 in SciRes (http://www.scirp.org/journal/ijcns/). Gateways Placement in Backbone Wireless Mesh Networks Abstract

More information

Opportunistic Communication in Wireless Networks

Opportunistic Communication in Wireless Networks Opportunistic Communication in Wireless Networks David Tse Department of EECS, U.C. Berkeley October 10, 2001 Networking, Communications and DSP Seminar Communication over Wireless Channels Fundamental

More information

A Backlog-Based CSMA Mechanism to Achieve Fairness and Throughput-Optimality in Multihop Wireless Networks

A Backlog-Based CSMA Mechanism to Achieve Fairness and Throughput-Optimality in Multihop Wireless Networks A Backlog-Based CSMA Mechanism to Achieve Fairness and Throughput-Optimality in Multihop Wireless Networks Peter Marbach, and Atilla Eryilmaz Dept. of Computer Science, University of Toronto Email: marbach@cs.toronto.edu

More information

AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION

AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION J-P. Kauppi, K.S. Martikainen Patria Aviation Oy, Naulakatu 3, 33100 Tampere, Finland, ax +358204692696 jukka-pekka.kauppi@patria.i,

More information

Energy-Balanced Cooperative Routing in Multihop Wireless Ad Hoc Networks

Energy-Balanced Cooperative Routing in Multihop Wireless Ad Hoc Networks Energy-Balanced Cooperative Routing in Multihop Wireless Ad Hoc Networs Siyuan Chen Minsu Huang Yang Li Ying Zhu Yu Wang Department of Computer Science, University of North Carolina at Charlotte, Charlotte,

More information

Max Covering Phasor Measurement Units Placement for Partial Power System Observability

Max Covering Phasor Measurement Units Placement for Partial Power System Observability Engineering Management Research; Vol. 2, No. 1; 2013 ISSN 1927-7318 E-ISSN 1927-7326 Published by Canadian Center o Science and Education Max Covering Phasor Measurement Units Placement or Partial Power

More information

D3.2 MAC layer mechanisms and adaptations for Hybrid Terrestrial-Satellite Backhauling

D3.2 MAC layer mechanisms and adaptations for Hybrid Terrestrial-Satellite Backhauling MAC layer mechanisms and adaptations for Hybrid Terrestrial-Satellite Backhauling Grant Agreement nº: 645047 Project Acronym: SANSA Project Title: Shared Access Terrestrial-Satellite Backhaul Network enabled

More information

Color of Interference and Joint Encoding and Medium Access in Large Wireless Networks

Color of Interference and Joint Encoding and Medium Access in Large Wireless Networks Color of Interference and Joint Encoding and Medium Access in Large Wireless Networks Nithin Sugavanam, C. Emre Koksal, Atilla Eryilmaz Department of Electrical and Computer Engineering The Ohio State

More information

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers Complex RF Mixers, Zero-F Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers By Frank Kearney and Dave Frizelle Share on ntroduction There is an interesting interaction

More information

PAPER Joint Maximum Likelihood Detection in Far User of Non-Orthogonal Multiple Access

PAPER Joint Maximum Likelihood Detection in Far User of Non-Orthogonal Multiple Access IEICE TRANS. COMMUN., VOL.E100 B, NO.1 JANUARY 2017 177 PAPER Joint Maximum Likelihood Detection in Far User o Non-Orthogonal Multiple Access Kenji ANDO a), Student Member, Yukitoshi SANADA b), and Takahiko

More information

1. Introduction. Kenichi Higuchi, Noriyuki Maeda, Hiroyuki Kawai and Mamoru Sawahashi

1. Introduction. Kenichi Higuchi, Noriyuki Maeda, Hiroyuki Kawai and Mamoru Sawahashi Special Articles on 1-Gbit/s Packet Signal Transmission Experiments toward Broadband Packet Radio Access Experimental Equipment and Technology Overview Kenichi Higuchi, Noriyuki Maeda, Hiroyuki Kawai and

More information

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Truman Ng, Wei Yu Electrical and Computer Engineering Department University of Toronto Jianzhong (Charlie)

More information

Enhancement of Transmission Reliability in Multi Input Multi Output(MIMO) Antenna System for Improved Performance

Enhancement of Transmission Reliability in Multi Input Multi Output(MIMO) Antenna System for Improved Performance Advances in Wireless and Mobile Communications. ISSN 0973-6972 Volume 10, Number 4 (2017), pp. 593-601 Research India Publications http://www.ripublication.com Enhancement of Transmission Reliability in

More information

Joint Transmitter-Receiver Adaptive Forward-Link DS-CDMA System

Joint Transmitter-Receiver Adaptive Forward-Link DS-CDMA System # - Joint Transmitter-Receiver Adaptive orward-link D-CDMA ystem Li Gao and Tan. Wong Department of Electrical & Computer Engineering University of lorida Gainesville lorida 3-3 Abstract A joint transmitter-receiver

More information

Predicting the performance of a photodetector

Predicting the performance of a photodetector Page 1 Predicting the perormance o a photodetector by Fred Perry, Boston Electronics Corporation, 91 Boylston Street, Brookline, MA 02445 USA. Comments and corrections and questions are welcome. The perormance

More information

Consumers are looking to wireless

Consumers are looking to wireless Phase Noise Eects on OFDM Wireless LAN Perormance This article quantiies the eects o phase noise on bit-error rate and oers guidelines or noise reduction By John R. Pelliccio, Heinz Bachmann and Bruce

More information

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks Eiman Alotaibi, Sumit Roy Dept. of Electrical Engineering U. Washington Box 352500 Seattle, WA 98195 eman76,roy@ee.washington.edu

More information

Multiple access techniques

Multiple access techniques Multiple access techniques Narrowband and wideband systems FDMA TDMA CDMA /FHMA SDMA Random-access techniques Summary Wireless Systems 2015 Narrowband and wideband systems Coherence BW B coh 1/σ τ σ τ

More information

Cooperative Spectrum Sharing in Cognitive Radio Networks: A Game-Theoretic Approach

Cooperative Spectrum Sharing in Cognitive Radio Networks: A Game-Theoretic Approach Cooperative Spectrum Sharing in Cognitive Radio Networks: A Game-Theoretic Approach Haobing Wang, Lin Gao, Xiaoying Gan, Xinbing Wang, Ekram Hossain 2. Department of Electronic Engineering, Shanghai Jiao

More information

A technique for noise measurement optimization with spectrum analyzers

A technique for noise measurement optimization with spectrum analyzers Preprint typeset in JINST style - HYPER VERSION A technique or noise measurement optimization with spectrum analyzers P. Carniti a,b, L. Cassina a,b, C. Gotti a,b, M. Maino a,b and G. Pessina a,b a INFN

More information

Sequence-based Rendezvous for Dynamic Spectrum Access

Sequence-based Rendezvous for Dynamic Spectrum Access Sequence-based endezvous or Dynamic Spectrum Access Luiz A. DaSilva Bradley Dept. o Electrical and Computer Engineering Virginia Tech Arlington, VA, USA ldasilva@vt.edu Igor Guerreiro Wireless Telecommunications

More information

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Vijay Raman, ECE, UIUC 1 Why power control? Interference in communication systems restrains system capacity In cellular

More information

Frequency Hopped Spread Spectrum

Frequency Hopped Spread Spectrum FH- 5. Frequency Hopped pread pectrum ntroduction n the next ew lessons we will be examining spread spectrum communications. This idea was originally developed or military communication systems. However,

More information

Joint Spectrum Allocation and Scheduling for Fair Spectrum Sharing in Cognitive Radio Wireless Networks

Joint Spectrum Allocation and Scheduling for Fair Spectrum Sharing in Cognitive Radio Wireless Networks Joint Spectrum Allocation and Scheduling for Fair Spectrum Sharing in Cognitive Radio Wireless Networks Jian Tang, a Satyajayant Misra b and Guoliang Xue b a Department of Computer Science, Montana State

More information

OSCILLATORS. Introduction

OSCILLATORS. Introduction OSILLATOS Introduction Oscillators are essential components in nearly all branches o electrical engineering. Usually, it is desirable that they be tunable over a speciied requency range, one example being

More information

Chapter 4. Radio Resource Allocation using Resource Scheduling in LTE: Fourth Generation (4G) 4.1 Introduction

Chapter 4. Radio Resource Allocation using Resource Scheduling in LTE: Fourth Generation (4G) 4.1 Introduction Chapter 4 Radio Resource Allocation using Resource Scheduling in LTE: Fourth Generation (4G) 4.1 Introduction LTE is popularly called a 4G technology. It is an all-ip technology based on orthogonal requency-division

More information

Optimal Control Motion Planning

Optimal Control Motion Planning Optimal Control Motion Planning O. Hachour Abstract Motion planning is one o the important tasks in intelligent control o an autonomous mobile robot. An optimal ree path without collision is solicited

More information

Information Theory at the Extremes

Information Theory at the Extremes Information Theory at the Extremes David Tse Department of EECS, U.C. Berkeley September 5, 2002 Wireless Networks Workshop at Cornell Information Theory in Wireless Wireless communication is an old subject.

More information

A Synthesizable IP Core for DVB-S2 LDPC Code Decoding

A Synthesizable IP Core for DVB-S2 LDPC Code Decoding A Synthesizable IP Core or DVB-S2 LDPC Code Decoding Frank Kienle, Torben Brack, Norbert Wehn To cite this version: Frank Kienle, Torben Brack, Norbert Wehn. A Synthesizable IP Core or DVB-S2 LDPC Code

More information

Routing, spectrum access, and scheduling in multi-hop multi-channel wireless networks with MIMO links

Routing, spectrum access, and scheduling in multi-hop multi-channel wireless networks with MIMO links Liu et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:65 DOI 10.1186/s13638-015-0252-2 RESEARCH Open Access Routing, spectrum access, and scheduling in multi-hop multi-channel

More information

REVIEW OF COOPERATIVE SCHEMES BASED ON DISTRIBUTED CODING STRATEGY

REVIEW OF COOPERATIVE SCHEMES BASED ON DISTRIBUTED CODING STRATEGY INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 REVIEW OF COOPERATIVE SCHEMES BASED ON DISTRIBUTED CODING STRATEGY P. Suresh Kumar 1, A. Deepika 2 1 Assistant Professor,

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

MIMO III: Channel Capacity, Interference Alignment

MIMO III: Channel Capacity, Interference Alignment MIMO III: Channel Capacity, Interference Alignment COS 463: Wireless Networks Lecture 18 Kyle Jamieson [Parts adapted from D. Tse] Today 1. MIMO Channel Degrees of Freedom 2. MIMO Channel Capacity 3. Interference

More information

Context-Aware Resource Allocation in Cellular Networks

Context-Aware Resource Allocation in Cellular Networks Context-Aware Resource Allocation in Cellular Networks Ahmed Abdelhadi and Charles Clancy Hume Center, Virginia Tech {aabdelhadi, tcc}@vt.edu 1 arxiv:1406.1910v2 [cs.ni] 18 Oct 2015 Abstract We define

More information

3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007 3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 53, NO 10, OCTOBER 2007 Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution Yingbin Liang, Member, IEEE, Venugopal V Veeravalli, Fellow,

More information

On the Optimality of Single-Carrier Transmission in Large-Scale Antenna Systems

On the Optimality of Single-Carrier Transmission in Large-Scale Antenna Systems On the Optimality o Single-Carrier Transmission in Large-Scale Antenna Systems Antonios Pitarokoilis, Sai han Mohammed and Erik G. Larsson Linköping University Post Print N.B.: When citing this work, cite

More information

A survey on broadcast protocols in multihop cognitive radio ad hoc network

A survey on broadcast protocols in multihop cognitive radio ad hoc network A survey on broadcast protocols in multihop cognitive radio ad hoc network Sureshkumar A, Rajeswari M Abstract In the traditional ad hoc network, common channel is present to broadcast control channels

More information

All Digital Phase-Locked Loops, its Advantages and Performance Limitations

All Digital Phase-Locked Loops, its Advantages and Performance Limitations All Digital Phase-Locked Loops, its Advantages and Perormance Limitations Win Chaivipas, Philips Oh, and Akira Matsuawa Matsuawa Laboratory, Department o Physical Electronics, Tokyo Institute o Technology

More information

Efficient Multihop Broadcast for Wideband Systems

Efficient Multihop Broadcast for Wideband Systems Efficient Multihop Broadcast for Wideband Systems Ivana Maric WINLAB, Rutgers University ivanam@winlab.rutgers.edu Roy Yates WINLAB, Rutgers University ryates@winlab.rutgers.edu Abstract In this paper

More information

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes 7th Mediterranean Conference on Control & Automation Makedonia Palace, Thessaloniki, Greece June 4-6, 009 Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes Theofanis

More information