Low Voltage High Current Controlled Rectifier with IGBT A.C Controller on Primary Side of the Transformer

Size: px
Start display at page:

Download "Low Voltage High Current Controlled Rectifier with IGBT A.C Controller on Primary Side of the Transformer"

Transcription

1 AU J.T. 6(4): (Apr. 2003) ow Voltage High Current Controlled Rectifier with IGBT A.C Controller on Primary Side of the Transformer Seshanna Panthala Faculty of Engineering, Assumption University Bangkok, Thailand Abstract This paper deals with the steady state performance of a novel controlled rectifier, using an IGBT A.C controller on the primary side of the input transformer, while a center tapped secondary and normal diodes are used for rectification. Such a rectifier is suitable for low voltage high current applications. The IGBTs are controlled such that this type of controlled rectifier has a better displacement power factor because the line current drawn is symmetrical in relation to the peak of the a.c input voltage. Thus the fundamental component of the line current drawn will be in phase with the line voltage. Theoretically expected and experimentally obtained waveforms of currents and voltages are presented. Keywords: IGBT a.c controller, symmetrical triggering, controlled rectifier displacement power factor, harmonic distortion. Introduction Many industrial applications need lowvoltage, high-current d.c for their operation. Examples of such industrial applications are electroplating, extraction of metals by electrolysis, etc. Most often voltage/current is to be varied and controlled. Since the standard electrical supply available is a.c, controlled rectifiers are used to obtain the variable d.c from an a.c source. ormally a transformer is used to step down the a.c to the required level and also provide isolation. There are two options to obtaining the controlled d.c voltage: R (a) use silicon controlled rectifiers on the secondary side to rectify a.c and produce d.c, or (b) use a.c controller (two back-to-back connected SCRs) on the primary side of the transformer and then rectify the secondary voltage with power diodes. Such schemes are shown in Fig.1 using a single-phase supply. In practice, the scheme shown in Fig.1(b) is used as the current commutation takes place on low current side. The principles of operation of such a scheme are well understood and discussed widely in textbooks in power electronics (Sen 1988).. In this paper, a novel controlled rectifier using Insulated Gate Bipolar Transistor (IGBT) a.c controller (IR 2002) instead of SCR-based a.c controller to achieve R (a) Fig.1. Conventional low-voltage controlled rectification (b) 193

2 In this paper a novel controlled rectifier using insulator gate bipolar transistor (IGBT) a.c controller instead of SCR based a.c controller to achieve the same function is described. The scheme is shown in Fig. 2. The IGBT a.c controller is on the primary side of the step down transformer, while the secondary side is a full wave rectifier with a center tapped secondary. It will be shown that this arrangement will have better performance from a power factor point of view, compared to the scheme in Fig 1(b). during the negative half cycle. The conduction period is made symmetric about the peak of the The signal waveforms at different points in the circuit are shown in Fig. 3 under ideal conditions of operation. In order to maintain high displacement power factor, the gate drive signals have to be displaced by 180 o and symmetric with respect to the peak of a.c wave. Out put current control is obtained by varying the pulse width of the gate drive signal. o special commutation circuits are required even though an R-C snubber is required across the primary winding in practice to absorb the energy in the magnetizing inductance when both IGBTs go into off state. ν S G1 G2 Description of IGBT a.c Controller based Controlled Rectifier Fig.2. Controlled rectification with IGBT a.c controller Working Principles The basic schematic circuit is shown in Fig. 2. Two IGBTs (MOSFETs can also be used) are connected in series opposition and the combination itself is in series with the incoming a.c line. The IGBTs must have in built diodes otherwise external diodes are to be connected across each IGBT. The IGBT1 is switched on and off during the positive half cycle while the IGBT2 is switched on and half R ν g1 ν g2 ν p ν o i i S a.c wave using appropriate gate control strategy. The secondary side consists of an ordinary full wave rectifier with a large smoothing inductor to maintain load current ripple free. Fig. 3. Ideal waveforms of voltages and currents at different points (v s =a.c supply voltage, v p = voltage applied to the primary of the transformer, v g1, vg 2 =gate drive signals, vo = rectified secondary output, I = load current and I s = a.c supply current drawn ) 194

3 From the voltage waveforms, the average output voltage equation is given by: V od.c = 1 p π α α V om sin?d? experimentation. Again when an IGBT is given gate drive, corresponding diode takes over the full current and the other diode commutates off. 2 = Vom cosα p for α varying from 0-90 o i s = 0 i /2 R Assuming a large smoothing inductance in series with the load, the load current can be regarded as constant d.c. In such a case the a.c supply current I S will be square pulses as shown in the Fig. 3. The Fourier series for this type of current is given by: I s 4 4 = Is cosα sin? t - Is cos 3α sin 3? t p 3p 4 + Is cos5a sin5? t p The fundamental component of the supply current drawn from the line is in phase with the supply voltage. Hence, the displacement power factor (also called fundamental power factor) is unity and there is no fundamental reactive power transport to and from the load. This feature is in contrast with the controlled rectifier scheme shown in Fig. 1(b). However, there is some reactive power transport due to harmonic components of current. It is interesting to analyze what happens during the blanking period when both IGBTs are in off condition, thus making primary current zero. This means that the primary can not have equivalent balancing ampere-turns corresponding to secondary ampere-turns. Also the load current on secondary side continues to flow due to the presence of large inductance in series with the load. In order to produce zero secondary ampere-turns and keep the load current constant, the load current splits equally into the two halves of the secondary as shown in Fig. 4 during this period. Both diodes conduct simultaneously and equally. This phenomenon takes places naturally twice in each cycle of the input a.c wave when IGBTs go off. This fact has been verified during Fig. 4. oad current flow path during blanking period i /2 Experimental Results Description of Experimental Set Up In order to verify the working principles and waveforms, the schematic circuit shown in Fig. 5 is constructed and tested. The microcontroller AT 89c51 is programmed to develop the required gate drive signals and two Darlington photo isolators are used to isolate high power circuits from micro-controller and other electronic circuits. Briefly the operation of the circuit is as follows: Sharp pulses from zero crossing detector (not shown) interrupt the microcontroller at 10 millisecond intervals at port pin 3.2 which is the interrupt IT0. Upon receipt of this interrupt, the controller will start Timer0 after loading it with a number derived from the output of the ADC connected to port1. This number can be changed by changing the analog control voltage V C. The run time of timer0 is the initial delay α. When timer0 overflows it generates an interrupt when it will be stopped and timer1 is started after loading it with a number corresponding to (π - 2α) and simultaneously either P2.3 or P2.4 is made high depending on whether the a.c wave is going through the positive or negative half cycle. This positive or negative half cycle information is made available to the controller i 195

4 at port pin P2.1 in the form of a square wave derived from the a.c line using a zero crossing detector (not shown). Corresponding IGBT will be made on by driving its gate high using the transistor and photo Darlington 433. When timer1 overflows, it is stopped and also the IGBT, which was on, is made off by making its gate drive zero. ow, the controller is waiting for the next interruption at IT0 after receipt of which the procedure described above is repeated. The R-C circuit across the primary of the transformer is required in order to provide a path for the magnetizing current of the transformer when IGBT a.c controller goes into off state. The design of these components is difficult as the waveform of the voltage applied to the primary varies depending on the pulse width of the gate drive signals applied to the IGBTs. However, the reactance of the capacitor X C is made equal to the magnetizing reactance Xm of the transformer referred to as primary. This is only a guideline. The series resistance R is there to limit the initial capacitor charging the current at the instant of application of the voltage to the primary by the a.c controller. The initial capacitor current is to be limited to be well within the rating of the IGBT used. 5V 15V 433 P V 15V R G R C R i R G 89C51 P P2.1 P3.2 P1 D0-D7 ADC V C 5V Fig. 5. Circuit diagram of the experimental set up 196

5 Experimental Waveforms The set up is started and load current is adjusted to have a value of about 5 amp. The waveforms of signals at different points in the set up are recorded and shown in Fig. 6. It is interesting to compare these practical waveforms with the expected ideal waveforms shown in Fig. 3. Fig. 6. Experimentally obtained waveforms of currents and voltages 197

6 Conclusions A novel IGBT a.c controller based, controlled rectifier, has been constructed and tested in the laboratory. The experimentally obtained voltage and current waveforms at different points in the circuit agree closely with the theoretically expected waveforms. At medium voltage and power levels this type of controlled rectifier can replace the conventional SCR based controlled rectifier with an added advantage of having unity fundamental power factor. The controlled rectifier has been tested in a steady state and under open loop (manual) control. Control circuits are being developed in the department of electrical engineering to maintain output d.c voltage/current constant under varying load conditions by incorporating closed loop control on the rectifier. These will be reported in a future paper. Acknowledgements The author acknowledges the help rendered by his colleagues, Mr. Wuttikorn Threevithayanon and Mr. Chairat Kumrueng, of the Faculty of Engineering, AU, in recording the test waveforms and in the preparation of this manuscript. References Sen, P.C Power Electronics. Tata McGraw-Hill, ew Delhi, India. IR Application ote A-1017a. International Rectifier, El Segundo, CA, USA. 198

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979. Problems 179 [22] [23] [24] [25] [26] [27] [28] [29] [30] J. N. PARK and T. R. ZALOUM, A Dual Mode Forward/Flyback Converter, IEEE Power Electronics Specialists Conference, 1982 Record, pp. 3-13, June

More information

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG3336: Power Electronics Systems Objective To Realize and Design arious Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

Design and Simulation of Three Phase Controlled Rectifier Using IGBT

Design and Simulation of Three Phase Controlled Rectifier Using IGBT Design and Simulation of Three Phase Controlled Rectifier Using IGBT Tanmay Sharma 1, Dhruvi Dave 2, Ruchit Soni 3 1 Student, Electrical Engineering Department, Indus University, Ahmedabad, Gujarat. 2

More information

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection

More information

Introduction to HVDC VSC HVDC

Introduction to HVDC VSC HVDC Introduction to HVDC VSC HVDC Dr Radnya A Mukhedkar Group Leader, Senior Principal Engineer System Design GRID August 2010 The Voltage Sourced Converter Single Phase Alternating Voltage Output Steady DC

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-000 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name : POWER ELECTRONICS Course Code : AEE0

More information

Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers

Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers Dhruv Shah Naman Jadhav Keyur Mehta Setu Pankhaniya Abstract Fixed DC voltage is one of the very basic requirements of the electronics

More information

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics Calhoon MEBA Engineering School Study Guide for Proficiency Testing Industrial Electronics January 0. Which factors affect the end-to-end resistance of a metallic conductor?. A waveform shows three complete

More information

SINGLE-PHASE, TWO-PULSE ELECTRONIC FIRING CIRCUIT FOR AC TO AC OR AC TO DC CONVERTER CIRCUITS APPLICATIONS

SINGLE-PHASE, TWO-PULSE ELECTRONIC FIRING CIRCUIT FOR AC TO AC OR AC TO DC CONVERTER CIRCUITS APPLICATIONS SINGLE-PHASE, TWO-PULSE ELECTRONIC FIRING CIRCUIT FOR AC TO AC OR AC TO DC CONVERTER CIRCUITS APPLICATIONS Ramzi A. Abdul-Halem, Sultan Salim Al Shekaili Initial Campus, Birkat Al Mouz. P.O.Box: 33, PC

More information

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form JOHANN MINIBÖCK power electronics consultant Purgstall 5 A-3752 Walkenstein AUSTRIA Phone: +43-2913-411

More information

Introduction to Rectifiers and their Performance Parameters

Introduction to Rectifiers and their Performance Parameters Electrical Engineering Division Page 1 of 10 Rectification is the process of conversion of alternating input voltage to direct output voltage. Rectifier is a circuit that convert AC voltage to a DC voltage

More information

DESIGN AND DEVELOPMENT OF CONTROLLED RECTIFIER FOR A PMDC MOTOR

DESIGN AND DEVELOPMENT OF CONTROLLED RECTIFIER FOR A PMDC MOTOR DESIGN AND DEVELOPMENT OF CONTROLLED RECTIFIER FOR A PMDC MOTOR Swagata Sharma 1, Satabdi Kalita 1, Himakshi Mishra 1, Santanu Sharma 2 UG Student, Dept. of ECE, Tezpur University, Napaam, Tezpur, India

More information

THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER

THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER Ewaldo L. M. Mehl Ivo Barbi Universidade Federal do Paraná Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

Unit-II----Analysis of HVDC Converters

Unit-II----Analysis of HVDC Converters Unit-II----Analysis of HVDC Converters Introduction: HVDC converters converts AC to DC and transfer the DC power, then DC is again converted to AC by using inverter station. HVDC system mainly consists

More information

Voltage Source Converter Modelling

Voltage Source Converter Modelling Voltage Source Converter Modelling Introduction The AC/DC converters in Ipsa represent either voltage source converters (VSC) or line commutated converters (LCC). A single converter component is used to

More information

3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE

3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE 3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE Mahendra G. Mathukiya 1 1 Electrical Department, C.U. Shah College of Engineering & Technology Abstract Today most of the appliances and machine works

More information

IGBT based Multiport Bidirectional DC-DC Converter with Renewable Energy Source

IGBT based Multiport Bidirectional DC-DC Converter with Renewable Energy Source IGBT based Multiport Bidirectional DC-DC Converter with Renewable Energy Source S.Gautham Final Year, UG student, Department of Electrical and Electronics Engineering, P. B. College of Engineering, Chennai

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 3, Issue 1, January -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Design

More information

Improvement of Power Quality by Using 28-Pulse AC-DC Converter

Improvement of Power Quality by Using 28-Pulse AC-DC Converter Improvement of Power Quality by Using 28-Pulse AC-DC Converter 1 T. Suvarthan Rao, 2 A. Tejasri 1,2 Dept. of EEE, Godavari Institute of Engineering & Technology, Rajahmundry, AP, India Abstract With the

More information

IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION

IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION 1 SARBARI DAS, 2 MANISH BHARAT 1 M.E., Assistant Professor, Sri Venkateshwara College of Engg., Bengaluru 2 Sri Venkateshwara

More information

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances IEEE PEDS 2011, Singapore, 5-8 December 2011 A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances N. Sanajit* and A. Jangwanitlert ** * Department of Electrical Power Engineering, Faculty

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Lecture - 6 Full Wave Rectifier and Peak Detector In

More information

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle International Journal of Current Engineering and Technology E-ISSN 77 4106, P-ISSN 347 5161 017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Designing

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter Smart Grid and Renewable Energy, 2011, 2, 56-62 doi:10.4236/sgre.2011.21007 Published Online February 2011 (http://www.scirp.org/journal/sgre) Simulation and Analysis of a Multilevel Converter Topology

More information

ELEC387 Power electronics

ELEC387 Power electronics ELEC387 Power electronics Jonathan Goldwasser 1 Power electronics systems pp.3 15 Main task: process and control flow of electric energy by supplying voltage and current in a form that is optimally suited

More information

Modeling and Simulation of STATCOM

Modeling and Simulation of STATCOM Modeling and Simulation of STATCOM Parimal Borse, India Dr. A. G. Thosar Associate Professor, India Samruddhi Shaha, India Abstract:- This paper attempts to model and simulate Flexible Alternating Current

More information

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source M.M. A. Rahman, Kurt Hammons, Phillip Beemer, Marcia Isserstedt, and Matt Trommater School of Engineering Padnos

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

Control of buck-boost chopper type AC voltage regulator

Control of buck-boost chopper type AC voltage regulator International Journal of Research in Advanced Engineering and Technology ISSN: 2455-0876; Impact Factor: RJIF 5.44 www.engineeringresearchjournal.com Volume 2; Issue 3; May 2016; Page No. 52-56 Control

More information

Power Factor Improvement Using Thyristor Switched Capacitor Using Microcontroller Kacholiya Saurabh 1, Phapale Sudhir 2, Satpute Yuvraj 3, Kale.S.

Power Factor Improvement Using Thyristor Switched Capacitor Using Microcontroller Kacholiya Saurabh 1, Phapale Sudhir 2, Satpute Yuvraj 3, Kale.S. Power Factor Improvement Using Thyristor Switched Capacitor Using Microcontroller Kacholiya Saurabh 1, Phapale Sudhir 2, Satpute Yuvraj 3, Kale.S.R 4 1.Student, Electronic department, PREC Loni, Maharashtra,

More information

Power Factor Improvement Using Static VAR Compensator

Power Factor Improvement Using Static VAR Compensator Power Factor Improvement Using Static VAR Compensator Akshata V Sawant 1 and Rashmi S Halalee 2 Department of Electrical and Electronics, B. V. Bhoomaraddi College of Engineering and Technology, Hubballi,

More information

Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619 Control of Multi-Level Converter Using By-Pass Switches Rasha G. Shahin

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply Spiros Cofinas Department of Electrotechnics and Computer Science Hellenic Naval Academy Terma Hatzikyriakou, Piraeus GREECE

More information

ELEC4240/ELEC9240 POWER ELECTRONICS

ELEC4240/ELEC9240 POWER ELECTRONICS THE UNIVERSITY OF NEW SOUTH WALES FINAL EXAMINATION JUNE/JULY, 2003 ELEC4240/ELEC9240 POWER ELECTRONICS 1. Time allowed: 3 (three) hours 2. This paper has six questions. Answer any four. 3. All questions

More information

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE S M SHOWYBUL ISLAM SHAKIB ELECTRICAL ENGINEERING UNIVERSITI OF MALAYA KUALA LUMPUR,

More information

DC-DC Resonant converters with APWM control

DC-DC Resonant converters with APWM control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 43-49 DC-DC Resonant converters with APWM control Preeta John 1 Electronics Department,

More information

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1 Module 3 DC to DC Converters Version 2 EE IIT, Kharagpur 1 Lesson 2 Commutation of Thyristor-Based Circuits Part-II Version 2 EE IIT, Kharagpur 2 This lesson provides the reader the following: (i) (ii)

More information

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Lakshmi M Shankreppagol 1 1 Department of EEE, SDMCET,Dharwad, India Abstract: The power requirements for the microprocessor

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY (Approved by A.I.C.T.E & Affiliated to JNTU,Kakinada) Jonnada (Village), Denkada (Mandal), Vizianagaram Dist 535 005 Phone No. 08922-241111, 241112 E-Mail: lendi_2008@yahoo.com

More information

DESIGN ANALYSIS AND REALIZATION OF MICROCONTROLLER BASED OVER CURRENT RELAY WITH IDMT CHARACTERISTICS: A PROTEUS SIMULATION

DESIGN ANALYSIS AND REALIZATION OF MICROCONTROLLER BASED OVER CURRENT RELAY WITH IDMT CHARACTERISTICS: A PROTEUS SIMULATION DESIGN ANALYSIS AND REALIZATION OF MICROCONTROLLER BASED OVER CURRENT RELAY WITH IDMT CHARACTERISTICS: A PROTEUS SIMULATION HARSH DHIMAN Department of Electrical Engineering, The M. S. University, Vadodara,

More information

Power Electronics in PV Systems

Power Electronics in PV Systems Introduction to Power Electronics in PV Systems EEN 2060 References: EEN4797/5797 Intro to Power Electronics ece.colorado.edu/~ecen5797 Textbook: R.W.Erickson, D.Maksimovic, Fundamentals of Power Electronics,

More information

CHAPTER 4 FULL WAVE RECTIFIER. AC DC Conversion

CHAPTER 4 FULL WAVE RECTIFIER. AC DC Conversion CHAPTER 4 FULL WAVE RECTIFIER AC DC Conversion SINGLE PHASE FULL-WAVE RECTIFIER The objective of a full wave rectifier is to produce a voltage or current which is purely dc or has some specified dc component.

More information

Development of a Single-Phase PWM AC Controller

Development of a Single-Phase PWM AC Controller Pertanika J. Sci. & Technol. 16 (2): 119-127 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Development of a Single-Phase PWM AC Controller S.M. Bashi*, N.F. Mailah and W.B. Cheng Department of

More information

DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER

DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER PROF. A. N. WADEKAR, abhijitwadekar69@gmai.com J B BANDGAR, bandgarjayshri3@gmail.com S V JADHAV swapnalij1996@gmail.com U.S MANE, ulkamane@gmail.com

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER EE6503 - POWER ELECTRONICS Regulation 2013

More information

e base generators Tim 1

e base generators Tim 1 Time base generators 1 LINEAR TIME BASE GENERATORS Circuits thatprovide An Output Waveform Which Exhibits Linear Variation Of Voltage or current With Time. Linear variation of Voltage :Voltage time base

More information

A Half Bridge Inverter with Ultra-Fast IGBT Module Modeling and Experimentation

A Half Bridge Inverter with Ultra-Fast IGBT Module Modeling and Experimentation ELECTRONICS, VOL. 13, NO. 2, DECEMBER 29 51 A Half Bridge Inverter with Ultra-Fast IGBT Module Modeling and Experimentation Dinko Vukadinović, Ljubomir Kulišić, and Mateo Bašić Abstract This paper presents

More information

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated Rev. D CE Series Power Amplifier Service Manual 3 Circuit Theory 3.0 Overview This section of the manual explains the general operation of the CE power amplifier. Topics covered include Front End Operation,

More information

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION Queensland University of Technology From the SelectedWorks of Lasantha Bernard Perera Spring September 26, 2004 PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

More information

11. Define the term pinch off voltage of MOSFET. (May/June 2012)

11. Define the term pinch off voltage of MOSFET. (May/June 2012) Subject Code : EE6503 Branch : EEE Subject Name : Power Electronics Year/Sem. : III /V Unit - I PART-A 1. State the advantages of IGBT over MOSFET. (Nov/Dec 2008) 2. What is the function of snubber circuit?

More information

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K. POWER ELECTRONICS S.C. Tripathy Alpha Science International Ltd. Oxford, U.K. Contents Preface vii 1. SEMICONDUCTOR DIODE THEORY 1.1 1.1 Introduction 1.1 1.2 Charge Densities in a Doped Semiconductor 1.1

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter

A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter Snehal Balaji Gatkine 1 PG Scholar, 1 Department of Electrical Engineering, 1 Tulsiramji Gaikwad - Patil College

More information

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16]

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16] Code No: 07A50204 R07 Set No. 2 1. A single phase fully controlled bridge converter is operated from 230 v, 50 Hz source. The load consists of 10Ω and a large inductance so as to reach the load current

More information

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line To Study The MATLAB Simulation Of A Single Phase And Transmission Line Mr. Nileshkumar J. Kumbhar Abstract-As an important member of FACTS family, (Static Synchronous Compensator) has got more and more

More information

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 17 CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 2.1 GENERAL Designing an efficient DC to DC buck-boost converter is very much important for many real-time

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I Commutation of Thyristor-Based Circuits Part-I ١ This lesson provides the reader the following: (i) (ii) (iii) (iv) Requirements to be satisfied for the successful turn-off of a SCR The turn-off groups

More information

POWER ELECTRONICS LAB MANUAL

POWER ELECTRONICS LAB MANUAL JIS College of Engineering (An Autonomous Institution) Department of Electrical Engineering POWER ELECTRONICS LAB MANUAL Exp-1. Study of characteristics of an SCR AIM: To obtain the V-I characteristics

More information

Lesson 1 of Chapter Three Single Phase Half and Fully Controlled Rectifier

Lesson 1 of Chapter Three Single Phase Half and Fully Controlled Rectifier Lesson of Chapter hree Single Phase Half and Fully Controlled Rectifier. Single phase fully controlled half wave rectifier. Resistive load Fig. :Single phase fully controlled half wave rectifier supplying

More information

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER 2001 603 A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

More information

Modified Resonant Transition Switching for Buck Converter

Modified Resonant Transition Switching for Buck Converter Modified Resonant Transition Switching for Buck Converter Derick Mathew*, Mohanraj M*, Midhun Raju** *Power Electronics and Drives, Karunya University, Coimbatore, India **Renewable Energy Technologies,

More information

Unit-3-A. AC to AC Voltage Converters

Unit-3-A. AC to AC Voltage Converters Unit-3-A AC to AC Voltage Converters AC to AC Voltage Converters This lesson provides the reader the following: AC-AC power conversion topologies at fixed frequency Power converter options available for

More information

Lecture Note. Uncontrolled and Controlled Rectifiers

Lecture Note. Uncontrolled and Controlled Rectifiers Lecture Note 7 Uncontrolled and Controlled Rectifiers Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR single-phase diode and SCR rectifiers

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation 638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Operation and Analysis of the Three Phase Fully Controlled Bridge Converter

Dr.Arkan A.Hussein Power Electronics Fourth Class. Operation and Analysis of the Three Phase Fully Controlled Bridge Converter Operation and Analysis of the Three Phase Fully Controlled Bridge Converter ١ Instructional Objectives On completion the student will be able to Draw the circuit diagram and waveforms associated with a

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

Switched Mode Power Supply(SMPS) Circuit Design. Drive. Control. circuit. circuit. Converter. circuit. Fig. 1. Block diagram of a SMPS

Switched Mode Power Supply(SMPS) Circuit Design. Drive. Control. circuit. circuit. Converter. circuit. Fig. 1. Block diagram of a SMPS The basic arrangement of a SMPS is shown in Fig. 1. Drive Control Rectifier Converter Fig. 1. Block diagram of a SMPS In this configuration, the power input is rectified and a switch at a high frequency

More information

Implementing Re-Active Power Compensation Technique in Long Transmission System (750 Km) By Using Shunt Facts Control Device with Mat Lab Simlink Tool

Implementing Re-Active Power Compensation Technique in Long Transmission System (750 Km) By Using Shunt Facts Control Device with Mat Lab Simlink Tool Implementing Re-Active Power Compensation Technique in Long Transmission System (75 Km) By Using Shunt Facts Control Device with Mat Lab Simlink Tool Dabberu.Venkateswara Rao, 1 Bodi.Srikanth 2 1, 2(Department

More information

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١ POWER ELECTRONICS POST GRADUATE 2010 AC Chopper Prepared by: Dr. Gamal SOwilam 11 December 2016 ١ 1. Introduction AC Chopper is An AC to AC Converter employs to vary the rms voltage across the load at

More information

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 64 CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 4.1 INTRODUCTION Power electronic devices contribute an important part of harmonics in all kind of applications, such as power rectifiers, thyristor converters

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Thornwood Drive Operating Manual: Two-SCR General Purpose Gate Firing Board FCRO2100 Revision H

Thornwood Drive Operating Manual: Two-SCR General Purpose Gate Firing Board FCRO2100 Revision H http://www.enerpro-inc.com info@enerpro-inc.com 5780 Thornwood Drive Report R188 Goleta, California 93117 February 2011 Operating Manual: Two-SCR General Purpose Gate Firing Board FCRO2100 Revision H Introduction

More information

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware).

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware). (Scheme-2013) List of Experiments 1. Steady state characteristics of SCR, IGBT and MOSFET 2. nalog and digital firing methods for SCR (Single phase half wave rectifier). (Simulation and hardware). 3. Full

More information

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme Akanksha Mishra, Anamika Upadhyay Akanksha Mishra is a lecturer ABIT, Cuttack, India (Email: misakanksha@gmail.com) Anamika Upadhyay

More information

Conventional transistor overview and special transistors

Conventional transistor overview and special transistors Conventional transistor overview and special transistors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version EE IIT, Kharagpur 1 Lesson 9 Introduction to Cycloconverters Version EE IIT, Kharagpur Instructional Objectives Study of the following: The cyclo-converter

More information

Effect of Carrier Frequency on the Performance of Three Phase SPWM Inverter

Effect of Carrier Frequency on the Performance of Three Phase SPWM Inverter Effect of Carrier Frequency on the Performance of Three Phase SPWM Inverter Prof. SuryakantH.Pawar 1, Miss. ApurvaS.Kulkarni 2, Mr. Chetan A. Jambhulkar 3 Associate Professor 1,P.G. Scholer 23 Electrical

More information

Design and Hardware Implementation of L-Type Resonant Step Down DC-DC Converter using Zero Current Switching Technique

Design and Hardware Implementation of L-Type Resonant Step Down DC-DC Converter using Zero Current Switching Technique Design and Hardware Implementation of L-Type Resonant Step Down DC-DC Converter using Zero Current Switching Technique Mouliswara Rao. R Assistant Professor, Department of EEE, AITAM, Tekkali, Andhra Pradesh,

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits Chapter 6. Converter Circuits 6.1. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

PULSE WIDTH MODULATION (P.W.M), A PANACEA TO PHASE CONTROL PROBLEMS IN AC TO DC CONVERTERS

PULSE WIDTH MODULATION (P.W.M), A PANACEA TO PHASE CONTROL PROBLEMS IN AC TO DC CONVERTERS PULSE WIDTH MODULATION (P.W.M), A PANACEA TO PHASE CONTROL PROBLEMS IN AC TO DC CONVERTERS Ibekwe, B.E., Department of Electrical and Electronic Engineering, Faculty of Engineering, Enugu State University

More information

Power Electronics (Sample Questions) Module-1

Power Electronics (Sample Questions) Module-1 Module-1 Short Questions (Previous Years BPUT Questions 1 to 18) 1. What are the conditions for a thyristor to conduct? di 2. What is the common method used for protection? dt 3. What is the importance

More information

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL Saravanan.R 1, Hariharan.M 2 1 PG Scholar, Department OF ECE, 2 PG Scholar, Department of ECE 1, 2 Sri Krishna College

More information

A μc Controlled Power Factor Corrected AC-to-DC Boost Converter with DCM Operation. Abstract

A μc Controlled Power Factor Corrected AC-to-DC Boost Converter with DCM Operation. Abstract μc Controlled Power Factor Corrected C-to-DC Boost Converter with DCM Operation M.M.. Rahman, Bradley Boersma, and Bryan Schierbeek School of Engineering Padnos College of Engineering and Computing Grand

More information

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Suroso* (Nagaoka University of Technology), and Toshihiko Noguchi (Shizuoka University) Abstract The paper proposes

More information

SIMULATION OF SINGLE PHASE H- BRIDGE INVERTER TO AVOID COMPLEX BEHAVIOUR

SIMULATION OF SINGLE PHASE H- BRIDGE INVERTER TO AVOID COMPLEX BEHAVIOUR SIMULATION OF SINGLE PHASE H- BRIDGE INVERTER TO AVOID COMPLEX BEHAVIOUR Sanjeev kumar, Rajesh Gangwar Electrical and Electronics Department SRMSCET Bareilly,INDIA veejnas51@gmail.com, Rajeshgangwar.eee@gmail.com

More information

13. DC to AC Converters

13. DC to AC Converters 13. DC to AC Converters Inverters Inverter is a device which converts DC voltages (or current) to AC voltages (or current).inverter converting voltage is called VOLTAGE SOURCE INVERTER (VSI), while inverter

More information

Switching and Semiconductor Switches

Switching and Semiconductor Switches 1 Switching and Semiconductor Switches 1.1 POWER FLOW CONTROL BY SWITCHES The flow of electrical energy between a fixed voltage supply and a load is often controlled by interposing a controller, as shown

More information

Speed Control Of Transformer Cooler Control By Using PWM

Speed Control Of Transformer Cooler Control By Using PWM Speed Control Of Transformer Cooler Control By Using PWM Bhushan Rakhonde 1, Santosh V. Shinde 2, Swapnil R. Unhone 3 1 (assistant professor,department Electrical Egg.(E&P), Des s Coet / S.G.B.A.University,

More information