The Surplus 10 MHz Rubidium Frequency Standard LPRO 101 by DATUM/EFRATOM in the ham shack

Size: px
Start display at page:

Download "The Surplus 10 MHz Rubidium Frequency Standard LPRO 101 by DATUM/EFRATOM in the ham shack"

Transcription

1 The Surplus 10 MHz Rubidium Frequency Standard LPRO 101 by DATUM/EFRATOM in the ham shack Hans, DL2MDQ and Juergen, DD6UJS, Introduction: The compact 10 MHz Rb atomic clock module LPRO 101 from Datum/Efratom which is chaeply available on the surplus market has been integrated into an aluminium cabinet together with the necessary 24 V power supply, a converter stage to TTL and a subsequent fast driver. The system built up has a sine wave output delivering 6 dbm in maximum into 50 Ohm for frequency calibration purposes and has also a 50 Ohm TTL output which can be used as a reference for a frequency counter system. Figures 1 and 2 give an impression of the size of the unit and how it has been integrated. Purchase of the unit was stimulated by the QEX article by John, K0IZ, (7), and the effort to condense our experience in a paper by the recent QEX article by Bob, KE6F (8). Our system differs by those described in the QEX articles only by the TTL converter added. Fig.1: The closed aluminium cabinet with the Rubidium frequency standard LPRO 101, a 24V switching power supply and a sine to TTL converter built in.

2 Mechanics and electronics: Figs.2: The upper photo shows the cabinet with its upper part containing the power supply removed showing the LPRO unit with its metal shielding. All connections are via the small connector on the right side in the middle. The lower photo shows in more detail the small printboard developed providing the power connection to the LPRO unit carrying also the TTL converter; Sine and TTL output signals are available on the BNC connectors left and right. The circuit is given in Fig.3 and described in the text below.

3 RF-Out (+7,8dBm) +24VGND J1 BNC LO2 C5 47u/35V 2 1 GND 1 C2 100n +24VRTN +24V U2 MC78M05CDT VIN GND 4 J3 VOUT VCC 2 1 RFOut 4 3 RFGND 6 5 LampVolts 8 7 extcfield 10 9 Quarz 3 C3 100n C6 R7 820R C4 43R2 VCC 100n R4 47p R10 1k0 On DI V R2 51k R3 51k LED 14 1 C1 2 47u/10V C n U4A 74AC04 R5 33R2 U3A F3037 VCC J2 BNC TTL-Out (50Ohm) +24V LO1 CON10Bu90 R9 1k0 JP1 JUMPER U3D BITE R8 1k F R6 680R 1 DI1 LED 2 VCC VCC Title Juergen, DD6UJS Sinus/TTL-Converter, low phase noise Size Document Number Rev A sinttlconv.dsn 1.1 Date: Monday, June 29, 2009 Sheet 1 of 1 Fig.3: The figure gives the circuit added to supply the LPRO 101 unit with 24 V via the connector J3 and to drive LED D11 via U3D to show the lock situation of the unit. The other components are used as a sine to TTL converter, ICs U4A and U3A, and the corresponding regulator U2. The circuit is similar to what is proposed in the LPRO 101 Manual (6). Fig.4: The small printboard carrying the circuit given in Fig.3.

4 Physics background: Before test measurements are being described, the physics background should briefly be outlined. We refer to the old articles from the late fifties and sixties, the time when the atomic standards have been developed (1, 2, 3, 4, 5) and describe the physics mechanisms as discussed in these papers as well as the overall realization in the LPRO 101. In Rubidium (Rb) as in other atomic clock systems using Hydrogen or Caesium, the hyperfine transition of the atomic ground state, typically in the GHz range of frequencies, is being used to phase lock a quartz oscillator delivering the output signal. In the LPRO system a method called optical pumping is being applied rather than measuring directly the absorption of Rb vapour in a gas cell at the transition frequency between the two hyperfine energy levels of the Rb ground state at GHz. The optical pumping method has the advantage that a kind of internal energy amplification is then present clearly improving the signal to noise ratio (see below). E 5 5 P P 3/2 1/2 D C arbitrary units 5 2 S 1/2 B A F=2 F=1 f=6, GHz E=hf Fig.5: Atoms have discrete energy states which are usually given in a form as shown in this figure. The vertical scale is the energy scale. Upward transitions between states occur after absorption of electromagnetic radiation, correspondingly downward transitions are connected with the emission of radiation. The frequency of absorbed or emitted radiation is proportional to the energy difference of the energy levels involved. The figure gives the energy level diagram of the Rubidium atom. Only those levels important for the understanding of the physical processes are given. They are not given to scale, in particular the energy difference of the hyperfine levels F=1 and F=2 is largely increased. On the left the physics labelling of the energy levels of the Rb atom are given. The principal quantum number is 5. P and S characterrize the total angular momentum of the n=5 electron, while ½ and 3/2 at the lower right give their total angular momentum including the electron spin. The number F results from considering in addition the nuclear spin. To avoid physics details, we count the various energy levels involved just by A, B, C, and D for simplicity. Figure 5 gives the energy level diagram of Rubidium (see figure caption for more details). The hyperfine transition mentioned is the transition between the F=2 and the F=1 levels of the Rb atom ground state, in physicist s nomenclature called a 5 2 S 1/2 state. These two levels correspond to the combination of the electron and the nuclear spins being parallel in the F=2 and anti parallel in the F=1 state.

5 The transition is being called a spin flip transition. It can be induced by the application of an rf field at proper frequency f= GHz, so that the product hf corresponds to the energy difference ΔE=hf of the two states, the constant h being Planck s constant, h=6.626*10 34 Js. In case Rb atoms are brought into a radio frequency field of exactly this frequency, the magnetic component of the rf field induces transitions both upward and downward i.e. from the lowest state F=1 to the next higher state F=2 meaning upwards and vice versa downwards. In case there is no difference in the number of atoms in the two states no net absorption of the rf field will take place. This means that under the influence of the rf field equal numbers of atoms are changing their state per second by going upwards (absorption) or by going downwards (stimulated emission). At room temperature and higher there is almost no difference in the numbers of atoms in the two states (Boltzmann factor =1). So no net effect is expected under these conditions, this means the mere application of a radio frequency field is not enough to allow the observation of any effect unless there is an inequality in the populations of the levels involved. An unbalance in the number of atoms in states F=1 and F=2 is established, however, by the process called optical pumping. In this process line radiation in the near infrared (IR) at wavelengths and nm respectively from a Rb lamp and properly filtered by a gaseous filter cell filled with the Rb isotope 85 Rb causes transitions mainly from the F=1 ground state of the 87 Rb vapour in the resonance cell (1). These transitions are given in green in the level diagram in figure 5 with arrows indicating the absorptive upward transition into the higher energy levels C and D of the Rb atom. Atoms raised from the F=1 state (A) into the so called P states (labelled C and D in figure 5)will emit IRradiation after a very short time when the Rb atoms excited in this way relax by going back with equal probability into the atomic ground states F=1 and F=2 (A and B in figure 5). Theses transitions are marked in red in Fig.5. 6, f [GHz] Fig.6: The sketch gives the photocell signal as function of frequency applied to the Rb gas cell. In case the frequency f exactly corresponds to the hyperfine transition the absorption increases as explained in the text. An electronic control loop keeps the frequency locked to the dip (Fig.7). The dip is not deeper than about 1%. Since due to the proper preparation of the lamp radiation, pumping into higher states takes place mainly from the lower F=1 state (A), the occupation number of the F=1 state as physicists say i.e. the number of atoms in that state, becomes smaller under steady state conditions during the illumination by the Rb lamp compared to the F=2 state (B). If now the microwave rf field at the transition frequency GHz is being applied, more microwave transitions from F=2 to F=1 than vice versa are induced since more atoms are present in the upper F=2 state and less in the lower F=1 state due to the optical pumping process. The application of the rf field then increases the number of atoms in the lower F=1 state. As a result the absorption of the light from the Rb lamp increases but only if the frequency of the rffield applied exactly corresponds to the transition between the two hyperfine energy levels,

6 f= GHz. The absorbed IR light is measured by a photo detector. In case the right frequency is applied, the photo detector signal drops slightly as sketched in Fig.6. LPRO set up: In the LPRO101 Rb frequency standard the frequency f is deduced in a complicated multiplier and mixing scheme from a 20 MHz voltage controlled quartz oscillator VCXO. This occurs in the block SYNTH. in figure 7. The 20 MHz signal is split into two paths. In the first the signal is multiplied by a factor of 3 then by a factor of 114 resulting in f VCXO x 3 x114 = GHz. In the second path it is multiplied by 17 and divided by 64 resulting in f VCXO x 17/64 = MHz. The two signals are then mixed to give the difference frequency 6.84 GHz MHz = GHz. To overcome the still existing small difference to the Rb resonance frequency, a weak magnetic field is applied to the Rb gas cell shifting the energy levels of the F=1 and F=2 states such that their difference equals Planck s constat h times the synthesized frequency, ΔE = h GHz. The VCXO is controlled such that a maximum of absorption of the IR line from the Rb lamp radiation occurs. The oscillator is locked to this absorption maximum corresponding to the dip shown in Fig.6. Rb RESONANCE CELL PHOTO CELL Rb LAMP FILTER 6, GHz SYNTH. VCXO SERVO 20MHz 1/2 10MHz Fig.7: The figure gives the block diagram of the overall arrangement. The Rb gas cell is illuminated by the filtered light from a 85 Rb lamp. A photo cell measures the light passing the gas cell filled with 87 Rb atoms (green horizontal arrow). Simultaneously the microwave signal is applied (red vertical arrow). At the frequency of the hyperfine transition the light absorption in the cell increases. A servo loop controls the frequency of the microwave signal at maximum absorption making use of the high accuracy of this transition frequency in the Rb atom. The frequency f= GHz is derived in a complicated multiplier and mixing scheme from a 20 MHz VCXO at 20 MHz. Its frequency is kept constant at an accuracy determined by the transition frequency of the Rb atom. For details of the synthesizer scheme see the LPRO 101 Manual (6). The manual says: The dip in the photo detector current is used to generate a control signal with phase and amplitude information, which permits continuous regulation of the VCXO frequency. The servo section converts the photo detector current into a voltage, then amplifies, demodulates, and integrates it for high dc servo loop gain (6). Qualitatively it is accomplished by frequency modulating the synthesized microwave signal irradiating the gas cell by some 10 8 relative frequency sweep. This has the consequence that the absorption dip is periodically cycled resulting in a modulated photo detector signal with an AC component at the modulation frequency. Together with the modulating signal it is forming the input of a phase locked loop locking the VCXO to the zero crossing of the AC photodetector signal.

7 The absorption in the near IR region as generated by the Rb lamp can be measured with a photo cell with much higher significance than the very small energy absorption out of the rf field due to the higher quantum energies involved (factor more than 5000). This is what was called before the internal energy amplification process causing much improved S/N in the measurement of the absorption dip, and this is the reason why the optical pumping process is introduced. Test measurements: Tests of the frequency accuracy of the surplus LPRO unit have been conducted by measuring the beat frequency respectively the beat period with a signal supplied by a modern commercial 10 MHz Rb frequency standard locked to GPS. Both output signals of the units to be compared are applied to an oscilloscope. Figure 8 gives the overall set up while figure 9 gives a closer look to the oscilloscope s screen. The TTL signal from the surplus unit is used (yellow) while the sine output of the reference standard (blue) is fed to a second input channel of the oscilloscope and is used as well to trigger the scope. Fig.8: Test set up comparing the 10 MHz signal from a GPS locked Rb standard (left) with the signal delivered by the surplus unit described before (centre). Both signals are applied to an oscilloscope to compare frequencies by measuring their beat period.

8 Fig.9: The two signals from the reference 10 MHz standard (blue) and the LPRO unit (yellow) are applied to an oscilloscope. The horizontal scale is 20ns per division. The sine wave is used to trigger the scope. The frequency deviation between the two signals is causing a time dependent phase shift between the two. By measuring the time for a 360 degrees phase shift the frequency deviation can be quantified. Typically almost 1000 seconds are measured for 360 degrees. Since frequencies of the two devices to be compared are not exactly the same, the rectangular signal is drifting against the sine reference on the screen. The time necessary to shift by one period can be used as a measure of the frequency accuracy. It is found that after a warm up period of about 20 minutes the time necessary for one period shift is almost 1000 seconds (Fig.10). This means that the deviation of the surplus unit is only about 10 3 Hz at a frequency of 10 MHz. Assuming the GPS locked reference generator accurate to the order of 10 12, the LPRO unit has a relative accuracy of almost For a more thorough analysis of the accuracy, see reference (8). This accuracy provided is by far good enough to check the accuracy of other ham shack equipment.

9 Fig.10: To quantify the frequency accuracy of the LPRO surplus standard, its frequency has been compared with the frequency supplied by a modern commercial GPS locked Rb standard. The comparison has been conducted by measuring the time needed for a 360 degrees phase shift between the two signals (see text for more details). The longer the time, the smaller the frequency deviation. A number of measurements have been done after switching on the LPRO unit given as red dots in the figure. After about 20 minutes the time needed approaches almost 1000 seconds, corresponding to a deviation of about 1/1000 Hz at 10 MHz. One first application was the comparison with an OCXO oscillator used as the clock source in a hpsdr system consisting of Mercury, Penelope, Ozymandias, and Atlas provided by TAPR (9). Instead of using the internal 10 MHz sources on the Mercury or the Penelope boards an external OCXO source has been built up using an OCXO purchased by the German Axtal company (figure 11). Another external accurate source will soon be provided by TAPR called Excalibur (10). The PowerSDR software used to run the hpsdr system can easily be used to check the frequency deviation by applying the LPRO signal to the receiver and watching the phase difference in DSB reception mode (figure 12). Again the time was measured for a 360 degrees phase shift. It was found that this time is about 100 seconds corresponding to a deviation of 1/100 Hz compared to the surplus Rb standard. At 10 MHz this corresponds to a relative accuracy of a few 10 9.

10 Fig.11: The photo shows the Axtal 10 MHz OCXO mounted on a small printboard connected to the Atlas board of the hpsdr transceiver (9). It is used as the clock source in this fully digital transceiver system and determines its frequency accuracy and stability. Fig.12: The frequency offset between the ham shack LPRO 10 MHz standard and the 10 MHz clock source used in the hpsdr transceiver can easily be measured applying basically the same method as described before, by measuring the time needed for a 360 degrees phase shift. The screen shot gives a polar presentation of the phase, the small green dot between the inner two circles showing the phase wandering around. About 100 seconds are measured for one turnaround corresponding to 1/100 Hz deviation at 10 MHz.

11 References 1 P.L. Bender et al, Phys. Rev. Lett. 1, 311 (1958) 2 M. Arditi, T.R. Carver, Phys. Rev. 124, 800 (1961) 3 V.B. Gerard, Brit. J. Appl. Phys. 13, 409 (1962) 4 M.E. Packard, B.E. Swartz, IRE Trans. Instrum. p. 215, Dec J.C.Camparo, R.P. Frueholz, J. Appl. Phys. 59, 3313 (1986) 6 radio.com/sbms/lpro 101.pdf 7 J.S. Raydo, QEX 245, 49 (2007) 8 B. Miller, QEX 256, 35 (2009)

Laser Locking with Doppler-free Saturated Absorption Spectroscopy

Laser Locking with Doppler-free Saturated Absorption Spectroscopy Laser Locking with Doppler-free Saturated Absorption Spectroscopy Paul L. Stubbs, Advisor: Irina Novikova W&M Quantum Optics Group May 12, 2010 Abstract The goal of this project was to lock the frequency

More information

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum frequency standard Priority: Filing: Grant: Publication: Description C Quantum frequency standard Inventors: A.K.Dmitriev, M.G.Gurov, S.M.Kobtsev, A.V.Ivanenko. Priority: 2010-01-11 Filing: 2010-01-11 Grant: 2011-08-10 Publication: 2011-08-10 Description The present invention

More information

TECHNICAL MANUAL TM0110-2

TECHNICAL MANUAL TM0110-2 TECHNICAL MANUAL TM0110-2 RUBIDIUM FREQUENCY STANDARD MODEL FE-5680A SERIES OPTION 2 OPERATION AND MAINTENANCE INSTRUCTIONS Rubidium Frequency Standard Model FE-5680A with Option 2 Frequency Electronics,

More information

OTHER FEI PRODUCTS. FE-102A - CRYSTAL OSCILLATOR MHz WITH LOW PHASE NOISE: -172 dbc

OTHER FEI PRODUCTS. FE-102A - CRYSTAL OSCILLATOR MHz WITH LOW PHASE NOISE: -172 dbc OTHER FEI PRODUCTS FE-102A - CRYSTAL OSCILLATOR OPERATION @100 MHz WITH LOW PHASE NOISE: -172 dbc FE-101A - CRYSTAL OSCILLATOR SUBMINIATURE OVEN CONTROLLED DESIGN, ONLY 1.27"X1.33"X1.33" WITH FAST WARM

More information

EXP 9 ESR (Electron Spin Resonance)

EXP 9 ESR (Electron Spin Resonance) EXP 9 ESR (Electron Spin Resonance) Introduction ESR in Theory The basic setup for electron spin resonance is shown in Fig 1. A test sample is placed in a uniform magnetic field. The sample is also wrapped

More information

Multi-photon Absorption in Optical Pumping of Rubidium

Multi-photon Absorption in Optical Pumping of Rubidium Multi-photon Absorption in Optical Pumping of Rubidium Xinyi Xu (ID PIN:A51481739) Department of Physics and Astronomy Michigan State University Abstract: In optical pumping of rubidium, a new kind of

More information

Optical Pumping Control Unit

Optical Pumping Control Unit (Advanced) Experimental Physics V85.0112/G85.2075 Optical Pumping Control Unit Fall, 2012 10/16/2012 Introduction This document is gives an overview of the optical pumping control unit. Magnetic Fields

More information

Doppler-Free Spetroscopy of Rubidium

Doppler-Free Spetroscopy of Rubidium Doppler-Free Spetroscopy of Rubidium Pranjal Vachaspati, Sabrina Pasterski MIT Department of Physics (Dated: April 17, 2013) We present a technique for spectroscopy of rubidium that eliminates doppler

More information

Magnetometer Based on a Pair of Symmetric Transitions in the 87 Rb Hyperfine Structure

Magnetometer Based on a Pair of Symmetric Transitions in the 87 Rb Hyperfine Structure ISSN 1063-7842, Technical Physics, 2006, Vol. 51, No. 7, pp. 919923. Pleiades Publishing, Inc., 2006. Original Russian Text E.B. Aleksandrov, A.K. Vershovskiœ, A.S. Pazgalev, 2006, published in Zhurnal

More information

DIODE LASER SPECTROSCOPY (160309)

DIODE LASER SPECTROSCOPY (160309) DIODE LASER SPECTROSCOPY (160309) Introduction The purpose of this laboratory exercise is to illustrate how we may investigate tiny energy splittings in an atomic system using laser spectroscopy. As an

More information

Model 305 Synchronous Countdown System

Model 305 Synchronous Countdown System Model 305 Synchronous Countdown System Introduction: The Model 305 pre-settable countdown electronics is a high-speed synchronous divider that generates an electronic trigger pulse, locked in time with

More information

Optical cesium beam clock for eprtc telecom applications

Optical cesium beam clock for eprtc telecom applications Optical cesium beam clock for eprtc telecom applications Michaud Alain, Director R&D and PLM Time & Frequency, Oscilloquartz Dr. Patrick Berthoud, Chief Scientist Time & Frequency, Oscilloquartz Workshop

More information

PACKET STATUS REGISTER

PACKET STATUS REGISTER TAPR PACKET STATUS REGISTER President s Corner By St e v e n Bi b l e, N7HPR, Pr e s i d e n t, TAPR President s Corner 01 DCC Proceedings Are Now Online 02 Six DVDs of DCC Released 02 ADS-WS1 Weather

More information

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance Introduction Electron spin resonance (ESR) (or electron paramagnetic resonance (EPR) as it is sometimes

More information

Microsemi Atomic Clock Technology

Microsemi Atomic Clock Technology Power Matters. Microsemi Atomic Clock Technology DCF China Clock Conference Bryan Owings and Ramki Ramakrishnan November 6 and 7, 2014 About Microsemi Corporation (Nasdaq: MSCC) Global provider of semiconductor

More information

A New Compact High-Stability Oscillator

A New Compact High-Stability Oscillator A New Compact High-Stability Oscillator ITSF 2015 November 4, 2015 Hiroyuki Yoshida R&D Engineer Seiko Epson Corporation Miniature Atomic Clock 1 OBJECTIVE Develop a new atomic oscillator that 1 is significantly

More information

Electron Spin Resonance v2.0

Electron Spin Resonance v2.0 Electron Spin Resonance v2.0 Background. This experiment measures the dimensionless g-factor (g s ) of an unpaired electron using the technique of Electron Spin Resonance, also known as Electron Paramagnetic

More information

A transportable optical frequency comb based on a mode-locked fibre laser

A transportable optical frequency comb based on a mode-locked fibre laser A transportable optical frequency comb based on a mode-locked fibre laser B. R. Walton, H. S. Margolis, V. Tsatourian and P. Gill National Physical Laboratory Joint meeting for Time and Frequency Club

More information

Technical Report M-TR91

Technical Report M-TR91 Technical Report M-TR91 CESIUM OPTICALLY PUMPED MAGNETOMETERS Basic Theory of Operation Kenneth Smith - Geometrics, Inc Introduction: The following description of the theory of operation of the Cesium

More information

EFRATOM LPRO-101 Repair reference guide By Fred de Vries, PE1FBO, Revision 2, August 2008, PE1FBO. LPRO repair reference guide 1

EFRATOM LPRO-101 Repair reference guide By Fred de Vries, PE1FBO, Revision 2, August 2008, PE1FBO. LPRO repair reference guide 1 EFRATOM LPRO-101 Repair reference guide By Fred de Vries, PE1FBO, 2008 Revision 2, August 2008, PE1FBO LPRO repair reference guide 1 Contents Brief specs...4 Rubidium lamp...4 Temperature controlled assemblies...5

More information

PN9000 PULSED CARRIER MEASUREMENTS

PN9000 PULSED CARRIER MEASUREMENTS The specialist of Phase noise Measurements PN9000 PULSED CARRIER MEASUREMENTS Carrier frequency: 2.7 GHz - PRF: 5 khz Duty cycle: 1% Page 1 / 12 Introduction When measuring a pulse modulated signal the

More information

EFRATOM LPRO 101 Repair reference guide By Fred de Vries, PE1FBO Revision 7, January LPRO repair reference guide 1

EFRATOM LPRO 101 Repair reference guide By Fred de Vries, PE1FBO Revision 7, January LPRO repair reference guide 1 EFRATOM LPRO 101 Repair reference guide By Fred de Vries, PE1FBO Revision 7, January 2011 1 Contents Contents... 2 Connections on unit... 3 Typical operating parameters... 4 Rubidium lamp... 4 Temperature

More information

FP-II / Master Laboratory. Optical Pumping

FP-II / Master Laboratory. Optical Pumping . Institut für Mathematik und Physik Albert-Ludwigs-Universität Freiburg im Breisgau Feb. 2016 I Contents 1 Introduction 1 2 Experimental Setup 1 3 Measurement Procedures 3 3.1 Characterisation of the

More information

DEVELOPMENT OF THE SPACE ACTIVE HYDROGEN MASER FOR THE ACES MISSION

DEVELOPMENT OF THE SPACE ACTIVE HYDROGEN MASER FOR THE ACES MISSION DEVELOPMENT OF THE SPACE ACTIVE HYDROGEN MASER FOR THE ACES MISSION D. Goujon (1), P. Rochat (1), P. Mosset (1), D. Boving (1), A. Perri (1), J. Rochat (1), N. Ramanan (1), D. Simonet (1), X. Vernez (1),

More information

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION Exercise 2-2 Antenna Driving System EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the mechanical aspects and control of a rotating or scanning radar antenna. DISCUSSION

More information

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6.

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6. 1 (a) Describe, in terms of vibrations, the difference between a longitudinal and a transverse wave. Give one example of each wave.................... [4] (b) Fig. 6.1 shows a loudspeaker fixed near the

More information

Rubidium Frequency Standard Model AR133A Ruggedized Low Profile

Rubidium Frequency Standard Model AR133A Ruggedized Low Profile Ruggedized Low Profile Key Features Long-term-stability: 5E-11/month 2E-12 frequency accuracy & 100nSec 1PPS accuracy relative to 1PPS input when disciplined Short term stability: 5E-12 @ 100s Phase noise:

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) 레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) Contents Frequency references Frequency locking methods Basic principle of loop filter Example of lock box circuits Quantifying frequency stability Applications

More information

BLACKBODY RADIATION PHYSICS 359E

BLACKBODY RADIATION PHYSICS 359E BLACKBODY RADIATION PHYSICS 359E INTRODUCTION In this laboratory, you will make measurements intended to illustrate the Stefan-Boltzmann Law for the total radiated power per unit area I tot (in W m 2 )

More information

EXPERIMENTAL STUDY OF THE LASER DIODE PUMPED RUBIDIUM MASER

EXPERIMENTAL STUDY OF THE LASER DIODE PUMPED RUBIDIUM MASER arxiv:physics/0508227v1 [physics.ins-det] 31 Aug 2005 EXPERIMENTAL STUDY OF THE LASER DIODE PUMPED RUBIDIUM MASER Alain Michaud, Pierre Tremblay and Michel Têtu Centre d optique, photonique et laser (COPL),

More information

Optical to Electrical Converter

Optical to Electrical Converter Optical to Electrical Converter By Dietrich Reimer Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo 2010 1 Table of Contents List of Tables and Figures...

More information

A SPACE RUBIDIUM PULSED OPTICAL PUMPED CLOCK CURRENT STATUS, RESULTS, AND FUTURE ACTIVITIES

A SPACE RUBIDIUM PULSED OPTICAL PUMPED CLOCK CURRENT STATUS, RESULTS, AND FUTURE ACTIVITIES A SPACE RUBIDIUM PULSED OPTICAL PUMPED CLOCK CURRENT STATUS, RESULTS, AND FUTURE ACTIVITIES Marco Belloni Selex Galileo, Italy E-mail: marco.belloni@selexgalileo.com A. Battisti, A. Cosentino, A. Sapia,

More information

FlexDDS-NG DUAL. Dual-Channel 400 MHz Agile Waveform Generator

FlexDDS-NG DUAL. Dual-Channel 400 MHz Agile Waveform Generator FlexDDS-NG DUAL Dual-Channel 400 MHz Agile Waveform Generator Excellent signal quality Rapid parameter changes Phase-continuous sweeps High speed analog modulation Wieserlabs UG www.wieserlabs.com FlexDDS-NG

More information

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers Optical phase-coherent link between an optical atomic clock and 1550 nm mode-locked lasers Kevin W. Holman, David J. Jones, Steven T. Cundiff, and Jun Ye* JILA, National Institute of Standards and Technology

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

Rubidium Frequency Standard Model AR133A Ruggedized Low Profile

Rubidium Frequency Standard Model AR133A Ruggedized Low Profile Rubidium Frequency Ruggedized Low Profile Key Features Long-term-stability: 5E-11/month Short term stability: 2E-12 @ 1000s (Typ.) Phase noise: -158 dbc/hz @10kHz Spurious: < -110 dbc Time Accuracy (1PPS):

More information

Period 3 Solutions: Electromagnetic Waves Radiant Energy II

Period 3 Solutions: Electromagnetic Waves Radiant Energy II Period 3 Solutions: Electromagnetic Waves Radiant Energy II 3.1 Applications of the Quantum Model of Radiant Energy 1) Photon Absorption and Emission 12/29/04 The diagrams below illustrate an atomic nucleus

More information

Model 1152-ALN Phase Locked Oscillator

Model 1152-ALN Phase Locked Oscillator Model 1152-ALN Phase Locked Oscillator The Model 1152-ALN is a single frequency, very low Phase Noise PLL unit that can be used to replace your unstable microwave crystal oscillator chain with a stable

More information

OBJECTIVES EQUIPMENT LIST

OBJECTIVES EQUIPMENT LIST 1 Reception of Amplitude Modulated Signals AM Demodulation OBJECTIVES The purpose of this experiment is to show how the amplitude-modulated signals are demodulated to obtain the original signal. Also,

More information

Description of options, upgrades and accessories for the laser beam stabilization system Compact

Description of options, upgrades and accessories for the laser beam stabilization system Compact Description of options, upgrades and accessories for the laser beam stabilization system Compact The basic configuration of the Compact laser beam stabilization system is fully equipped for stabilization

More information

Universal and compact laser stabilization electronics

Universal and compact laser stabilization electronics top-of-fringe LaseLock LaseLock Universal and compact laser stabilization electronics Compact, stand-alone locking electronics for diode lasers, dye lasers, Ti:Sa lasers, or optical resonators Side-of-fringe

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Signal Forge 2500M Frequency Expansion Module. 1.5 GHz to 2.6 GHz. User Manual

Signal Forge 2500M Frequency Expansion Module. 1.5 GHz to 2.6 GHz. User Manual TM TM Signal Forge 2500M Frequency Expansion Module 1.5 GHz to 2.6 GHz User Manual Technical Support Email: Support@signalforge.com Phone: 512.275.3733 x2 Contact Information Web: www.signalforge.com Sales

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10864 1. Supplementary Methods The three QW samples on which data are reported in the Letter (15 nm) 19 and supplementary materials (18 and 22 nm) 23 were grown

More information

ELEC 0017: ELECTROMAGNETIC COMPATIBILITY LABORATORY SESSIONS

ELEC 0017: ELECTROMAGNETIC COMPATIBILITY LABORATORY SESSIONS Academic Year 2015-2016 ELEC 0017: ELECTROMAGNETIC COMPATIBILITY LABORATORY SESSIONS V. BEAUVOIS P. BEERTEN C. GEUZAINE 1 CONTENTS: EMC laboratory session 1: EMC tests of a commercial Christmas LED light

More information

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics slide 1 Part 1: First order systems: RC low pass filter and Thermopile Goals: Understand the behavior and how to characterize first order measurement systems Learn how to operate: function generator, oscilloscope,

More information

First results of a high performance optically-pumped cesium beam clock

First results of a high performance optically-pumped cesium beam clock First results of a high performance optically-pumped cesium beam clock Berthoud Patrick, Chief Scientist Time & Frequency Workshop on Synchronization and Timing Systems, WSTS 2016, San Jose CA, USA, June

More information

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB FMT615C FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB1215-02 TABLE OF CONTENTS SECTION SUBJECT 1.0 Introduction 2.0 Installation & Operating Instructions 3.0 Specification 4.0 Functional Description

More information

THIS IS A NEW SPECIFICATION

THIS IS A NEW SPECIFICATION THIS IS A NEW SPECIFICATION ADVANCED SUBSIDIARY GCE PHYSICS A Electrons, Waves and Photons G482 *OCE/23017* Candidates answer on the Question Paper OCR Supplied Materials: Data, Formulae and Relationships

More information

87415A microwave system amplifier A microwave. system amplifier A microwave system amplifier A microwave.

87415A microwave system amplifier A microwave. system amplifier A microwave system amplifier A microwave. 20 Amplifiers 83020A microwave 875A microwave 8308A microwave 8307A microwave 83006A microwave 8705C preamplifier 8705B preamplifier 83050/5A microwave The Agilent 83006/07/08/020/050/05A test s offer

More information

LabMaster Series TECHNOLOGIES. Unistep LabMaster Series PLL LOOP MODULE USER MANUAL. Copyright Unistep Technologies

LabMaster Series TECHNOLOGIES. Unistep LabMaster Series PLL LOOP MODULE USER MANUAL. Copyright Unistep Technologies TECHNOLOGIES LabMaster Series Unistep LabMaster Series PLL PHASE-LOCK LOOP MODULE USER MANUAL Copyright 2010 - Unistep Technologies User Manual PLL Phase-Lock Loop Module 2 PLL ~~~ PHASE--LLOCK LLOOP MODULLE

More information

Ultraviolet Visible Infrared Instrumentation

Ultraviolet Visible Infrared Instrumentation Ultraviolet Visible Infrared Instrumentation Focus our attention on measurements in the UV-vis region of the EM spectrum Good instrumentation available Very widely used techniques Longstanding and proven

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Characteristics of absorption and dispersion for rubidium D 2 lines with the modulation transfer spectrum

Characteristics of absorption and dispersion for rubidium D 2 lines with the modulation transfer spectrum Characteristics of absorption and dispersion for rubidium D 2 lines with the modulation transfer spectrum Jing Zhang, Dong Wei, Changde Xie, and Kunchi Peng The State Key Laboratory of Quantum Optics and

More information

Spectrometer using a tunable diode laser

Spectrometer using a tunable diode laser Spectrometer using a tunable diode laser Ricardo Vasquez Department of Physics, Purdue University, West Lafayette, IN April, 2000 In the following paper the construction of a simple spectrometer using

More information

Lab #11 Rapid Relaxation Part I... RC and RL Circuits

Lab #11 Rapid Relaxation Part I... RC and RL Circuits Rev. D. Day 10/18/06; 7/15/10 HEFW PH262 Page 1 of 6 Lab #11 Rapid Relaxation Part I... RC and RL Circuits INTRODUCTION Exponential behavior in electrical circuits is frequently referred to as "relaxation",

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

SECOND HARMONIC GENERATION AND Q-SWITCHING

SECOND HARMONIC GENERATION AND Q-SWITCHING SECOND HARMONIC GENERATION AND Q-SWITCHING INTRODUCTION In this experiment, the following learning subjects will be worked out: 1) Characteristics of a semiconductor diode laser. 2) Optical pumping on

More information

SPACE-CLASS RUBIDIUM ATOMIC FREQUENCY STANDARD WITH IMPROVED PERFORMANCE FOR GNSS SYSTEMS

SPACE-CLASS RUBIDIUM ATOMIC FREQUENCY STANDARD WITH IMPROVED PERFORMANCE FOR GNSS SYSTEMS SPACE-CLASS RUBIDIUM ATOMIC FREQUENCY STANDARD WITH IMPROVED PERFORMANCE FOR GNSS SYSTEMS T. McClelland (tomm@freqelec.com), I. Pascaru, I. Shtaermann, C. Varuolo, C. Szekeley, J. Zacharski, and O. Bravo

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Biomedical Research 2017; Special Issue: ISSN X

Biomedical Research 2017; Special Issue: ISSN X Biomedical Research 2017; Special Issue: ISSN 0970-938X www.biomedres.info Research on the signal of 4 He pump magnetometer sensor using ECDL laser. Wang Chao 1,2, Zhou Zhijian 1,2*, Cheng Defu 1,2 1 College

More information

Experiment-4 Study of the characteristics of the Klystron tube

Experiment-4 Study of the characteristics of the Klystron tube Experiment-4 Study of the characteristics of the Klystron tube OBJECTIVE To study the characteristics of the reflex Klystron tube and to determine the its electronic tuning range EQUIPMENTS Klystron power

More information

USING LASER DIODE INSTABILITIES FOR CHIP- SCALE STABLE FREQUENCY REFERENCES

USING LASER DIODE INSTABILITIES FOR CHIP- SCALE STABLE FREQUENCY REFERENCES USING LASER DIODE INSTABILITIES FOR CHIP- SCALE STABLE FREQUENCY REFERENCES T. B. Simpson, F. Doft Titan/Jaycor, 3394 Carmel Mountain Road, San Diego, CA 92121, USA W. M. Golding Code 8151, Naval Research

More information

GFT1504 4/8/10 channel Delay Generator

GFT1504 4/8/10 channel Delay Generator Features 4 independent Delay Channels (10 in option) 100 ps resolution (1ps in option) 25 ps RMS jitter (channel to channel) 10 second range Channel Output pulse 6 V/50 Ω, 3 ns rise time Independent control

More information

Ph 3455 The Franck-Hertz Experiment

Ph 3455 The Franck-Hertz Experiment Ph 3455 The Franck-Hertz Experiment Required background reading Tipler, Llewellyn, section 4-5 Prelab Questions 1. In this experiment, we will be using neon rather than mercury as described in the textbook.

More information

A RUBIDIUM CLOCK FOR SEEK-TALK. William J. Riley EG&G, Inc., Frequency and Time Department Salem, Massachusetts ABSTRACT

A RUBIDIUM CLOCK FOR SEEK-TALK. William J. Riley EG&G, Inc., Frequency and Time Department Salem, Massachusetts ABSTRACT A RUBIDIUM CLOCK FOR SEEK-TALK William J. Riley EG&G, Inc., Frequency and Time Department Salem, Massachusetts ABSTRACT The work at EG&G, Inc., on a miniature rubidium frequency standard for the SEEK-TALK

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

Status Report on Time and Frequency Activities at NPL India

Status Report on Time and Frequency Activities at NPL India Status Report on Time and Frequency Activities at NPL India (APMP TCTF 2013) A. Sen Gupta, A. Chatterjee, A. K. Suri, A. Agarwal, S. Panja P. Arora, S. De, P. Thorat, S. Yadav, P. Kandpal, M. P. Olaniya

More information

WELCOME TO PHYC 307L Junior Lab II

WELCOME TO PHYC 307L Junior Lab II WELCOME TO PHYC 307L Junior Lab II Spring Semester 2019 Instructor: Dr Michael Hasselbeck Challenging Modern Physics experiments Require independent problem solving harder than intro physics labs 10 experiments

More information

Status Report on Time and Frequency Activities at National Physical Laboratory India

Status Report on Time and Frequency Activities at National Physical Laboratory India Status Report on Time and Frequency Activities at National Physical Laboratory India (TCTF 2015) Ashish Agarwal *, S. Panja. P. Arora, P. Thorat, S. De, S. Yadav, P. Kandpal, M. P. Olaniya, S S Rajput,

More information

INC. MICROWAVE. A Spectrum Control Business

INC. MICROWAVE. A Spectrum Control Business DRO Selection Guide DIELECTRIC RESONATOR OSCILLATORS Model Number Frequency Free Running, Mechanically Tuned Mechanical Tuning BW (MHz) +10 MDR2100 2.5-6.0 +10 6.0-21.0 +20 Free Running, Mechanically Tuned,

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect 1 The Photoelectric Effect Overview: The photoelectric effect is the light-induced emission of electrons from an object, in this case from a metal electrode inside a vacuum tube.

More information

Signal Forge 1800M Frequency Expansion Module. 1.0 GHz to 1.8 GHz. User Manual

Signal Forge 1800M Frequency Expansion Module. 1.0 GHz to 1.8 GHz. User Manual TM TM Signal Forge 1800M Frequency Expansion Module 1.0 GHz to 1.8 GHz User Manual Technical Support Email: Support@signalforge.com Phone: 512.275.3733 x2 Contact Information Web: www.signalforge.com

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

NORTHWESTERN UNIVERSITY MULTI-SPECTRAL RAMAN GAIN IN DUAL-ISOTOPE RUBIDIUM VAPOR A THESIS SUBMITTED TO THE GRADUATE SCHOOL

NORTHWESTERN UNIVERSITY MULTI-SPECTRAL RAMAN GAIN IN DUAL-ISOTOPE RUBIDIUM VAPOR A THESIS SUBMITTED TO THE GRADUATE SCHOOL NORTHWESTERN UNIVERSITY MULTI-SPECTRAL RAMAN GAIN IN DUAL-ISOTOPE RUBIDIUM VAPOR A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree MASTER OF SCIENCE Field

More information

EXPERIMENT 2: Frequency Shift Keying (FSK)

EXPERIMENT 2: Frequency Shift Keying (FSK) EXPERIMENT 2: Frequency Shift Keying (FSK) 1) OBJECTIVE Generation and demodulation of a frequency shift keyed (FSK) signal 2) PRELIMINARY DISCUSSION In FSK, the frequency of a carrier signal is modified

More information

PCS-150 / PCI-200 High Speed Boxcar Modules

PCS-150 / PCI-200 High Speed Boxcar Modules Becker & Hickl GmbH Kolonnenstr. 29 10829 Berlin Tel. 030 / 787 56 32 Fax. 030 / 787 57 34 email: info@becker-hickl.de http://www.becker-hickl.de PCSAPP.DOC PCS-150 / PCI-200 High Speed Boxcar Modules

More information

Magnetic field modulation spectroscopy of rubidium atoms

Magnetic field modulation spectroscopy of rubidium atoms PRAMANA c Indian Academy of Sciences Vol. 78, No. 4 journal of April 2012 physics pp. 585 594 Magnetic field modulation spectroscopy of rubidium atoms S PRADHAN, R BEHERA and A K DAS Laser and Plasma Technology

More information

Measuring Kinetics of Luminescence with TDS 744 oscilloscope

Measuring Kinetics of Luminescence with TDS 744 oscilloscope Measuring Kinetics of Luminescence with TDS 744 oscilloscope Eex Nex Luminescence Photon E 0 Disclaimer Safety the first!!! This presentation is not manual. It is just brief set of rule to remind procedure

More information

UNIT-3. Electronic Measurements & Instrumentation

UNIT-3.   Electronic Measurements & Instrumentation UNIT-3 1. Draw the Block Schematic of AF Wave analyzer and explain its principle and Working? ANS: The wave analyzer consists of a very narrow pass-band filter section which can Be tuned to a particular

More information

Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology

Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology John D. Prestage- 1 Next Generation Space Atomic Clock!! Hg Ion Clock Technology was selected as NASA OCT TDM!!

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Frequency-Modulated CW Radar EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with FM ranging using frequency-modulated continuous-wave (FM-CW) radar. DISCUSSION

More information

WESTREX RA-1712 PHOTOGRAPHIC SOUND RECORD ELECTRONICS

WESTREX RA-1712 PHOTOGRAPHIC SOUND RECORD ELECTRONICS INTRODUCTION The RA-1712 solid state Record Electronics is an integrated system for recording photographic sound tracks on a Westrex photographic sound recorder. It accepts a 600Ω input signal level from

More information

SIGNAL GENERATORS. MG3633A 10 khz to 2700 MHz SYNTHESIZED SIGNAL GENERATOR GPIB

SIGNAL GENERATORS. MG3633A 10 khz to 2700 MHz SYNTHESIZED SIGNAL GENERATOR GPIB SYNTHESIZED SIGNAL GENERATOR MG3633A GPIB For Evaluating of Quasi-Microwaves and Measuring High-Performance Receivers The MG3633A has excellent resolution, switching speed, signal purity, and a high output

More information

Interaction of magnetic-dipolar modes with microwave-cavity. electromagnetic fields

Interaction of magnetic-dipolar modes with microwave-cavity. electromagnetic fields Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields E.O. Kamenetskii 1 *, A.K. Saha 2, and I. Awai 3 1 Department of Electrical and Computer Engineering, Ben Gurion University

More information

FREQUENCY SYNTHESIZERS, SIGNAL GENERATORS

FREQUENCY SYNTHESIZERS, SIGNAL GENERATORS SYNTHESIZED SIGNAL GENERATOR MG3641A/MG3642A 12 khz to 1040/2080 MHz NEW New Anritsu synthesizer technology permits frequency to be set with a resolution of 0.01 Hz across the full frequency range. And

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

Short Term Stability Measurements of Several 10MHz Reference Sources

Short Term Stability Measurements of Several 10MHz Reference Sources Short Term Stability Measurements of Several 10MHz Reference Sources Andy Talbot G4JNT November 2013 Introduction I am fortunate in having an HP5061A Caesium Beam frequency standard that can generate a

More information

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc. SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter Datasheet Rev 1.2 2017 SignalCore, Inc. support@signalcore.com P R O D U C T S P E C I F I C A T I O N S Definition of Terms The following terms are used

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

COMPONENTS OF OPTICAL INSTRUMENTS. Chapter 7 UV, Visible and IR Instruments

COMPONENTS OF OPTICAL INSTRUMENTS. Chapter 7 UV, Visible and IR Instruments COMPONENTS OF OPTICAL INSTRUMENTS Chapter 7 UV, Visible and IR Instruments 1 Topics A. GENERAL DESIGNS B. SOURCES C. WAVELENGTH SELECTORS D. SAMPLE CONTAINERS E. RADIATION TRANSDUCERS F. SIGNAL PROCESSORS

More information

COMPONENTS OF OPTICAL INSTRUMENTS. Topics

COMPONENTS OF OPTICAL INSTRUMENTS. Topics COMPONENTS OF OPTICAL INSTRUMENTS Chapter 7 UV, Visible and IR Instruments Topics A. GENERAL DESIGNS B. SOURCES C. WAVELENGTH SELECTORS D. SAMPLE CONTAINERS E. RADIATION TRANSDUCERS F. SIGNAL PROCESSORS

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone +49 30 772051-0 Fax +49 30 7531078 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 78120 D Synthesized

More information

IZT R3600. Product Brochure. Version 1.1

IZT R3600. Product Brochure. Version 1.1 Version 1.1 Copyright Innovationszentrum Telekommunikationstechnik GmbH IZT The information contained in this document is proprietary to IZT and shall not be disclosed by the recipient to third persons

More information

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich LECTURE 20 ELECTROMAGNETIC WAVES Instructor: Kazumi Tolich Lecture 20 2 25.6 The photon model of electromagnetic waves 25.7 The electromagnetic spectrum Radio waves and microwaves Infrared, visible light,

More information

Agilent 81133A/81134A

Agilent 81133A/81134A Agilent 81133A/81134A Performance Verification Rev. 2.3, Dec. 2009 Agilent Technologies Introduction Use these tests if you want to check that the Agilent 81133A / 81134A Pulse / Pattern Generator is

More information

MFJ-249B HF/VHF SWR ANALYZER

MFJ-249B HF/VHF SWR ANALYZER TABLE OF CONTENTS MFJ-249B... 2 Introduction... 2 Powering The MFJ-249B... 3 Battery Installation... 3 Alkaline Batteries... 3 NiCd Batteries... 4 Power Saving Mode... 4 Operation Of The MFJ-249B...5 SWR

More information

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 TABLE OF CONTENTS Page DESCRIPTION........................................... Front Cover GENERAL SPECIFICATIONS...................................

More information