Modal Parameter Estimation Using Acoustic Modal Analysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Modal Parameter Estimation Using Acoustic Modal Analysis"

Transcription

1 Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Modal Parameter Estimation Using Acoustic Modal Analysis W. Elwali, H. Satakopan, and V. Shauche R. Allemang, and A. Phillips University of Cincinnati, Department of Mechanical Engineering, Cincinnati, Ohio, 45221, USA ABSTRACT Acoustic modal analysis (AMA) is of interest in cases where accelerometer measurements are limited by mounting techniques and where the mass of sensors affects the system dynamics. Major problems in performing AMA are time delay adjustment and the inability of obtaining true driving point measurements. For an impact test, the former problem causes difficulties because each measured acoustic frequency response function (AFRF) will have its own time delay as a function of the position of the reference microphone with respect to the structure. Thus, obtaining consistent modal parameters conventional multi-input, multi-output (MIMO) modal parameter estimation methods utilizing several microphones (MIMO AFRFs) becomes rather difficult. The latter problem complicates the computation of modal scaling which is frequently required in model validation. As an example, both microphone measurements and accelerometer measurements are utilized in an impact test for a heavy ringdisc structure. The results from each method are compared to study the effectiveness of estimating modal parameters from AFRFs compared to conventional FRFs. While some conventional modal parameter estimation tools such as the consistency diagram and the complex mode indicator function (CMIF) look slightly different, the frequencies, damping and mode shapes estimated using AFRFs are consistent with those of standard modal analysis. 1. INTRODUCTION Acoustic modal analysis is an interesting technique since it does not affect the system parameters such as mass, stiffness and damping. It is a useful technique especially when mounting accelerometers is difficult or in cases where accelerometers affect system parameters. Acoustic modal analysis is based on the assumption that emitted sound pressure levels vary linearly with vibration amplitudes at a certain frequency. Therefore for a linear structure, at a particular frequency, sound pressure level is directly proportional to the modal coefficient of the input point [1]. The proportionality is a function of the modal vibration pattern that is excited at each frequency in the structure and the coupled acoustic pattern that emanates from the structure. Based upon the impact point and the modal pattern, the input location may not result in a mode being excited (node at the input). Based upon the impact point and location, the coupled acoustic pattern may have a null at one of the reference microphones (node at the output). Finally, based upon the impact point and the modal pattern, if the modal pattern does not involve sufficient surface area to provide adequate vibro-acoustic coupling, the modal pattern cannot be observed (node at all outputs). There are mainly two problems with using acoustic modal analysis. The first one is the limitation of microphone to be placed in the near field since the distance affects the signal to noise ratio [1]. The other problem is the time delay problem. It is the time required for the sound wave to travel from impact point to microphone.

2 System dynamics Vibrations Fluid structure interaction Impact hammer Sound pressure Accelerometer Microphone Accelerometer measurement Microphone measurement Figure 1. Accelerometer and microphone measurements flow charts In this paper, a circular disc is experimentally studied in order to find its modal parameters such as natural frequencies, mode shapes and modal damping. This research study was initiated by a need to identify vibration characteristic of a hypoid gear so the disc is just a simpler test structure that can be more accurately and easily modeled. The main objective of this work is to estimate modal parameters using two techniques: microphone measurements and conventional accelerometer measurements. Microphone measurements are to be examined in terms of their ability to estimate modal parameters compared with respect to conventional measurement. Moreover, the difficulties and limitations accompanied with acoustic modal analysis including the time delay problem are also discussed. 2. FINITE ELEMENT CHECK Before conducting the experiment, natural frequencies were found using the finite element method. The purpose of using the finite element method (FEM) is to check whether the in-plane (radial) modes are in the frequency range of interest (0-9000Hz). FEM is also used to detect the presence of repeated roots and thus decide on the minimum number of references to be used. It is necessary to check the presence of in-plane modes in the frequency range of interest, since exciting both sets of modes, in-plane modes and transverse modes, requires more FRF measurements, even though the inplane modes may not be well identified using acoustic modal analysis. Using the finite element method, it was found that a significant number of modes lie in the range Hz with all being out-of-plane (transverse) modes. In-plane modes are above 9000Hz and will not be accounted for. 3. EXPERIMENTAL PROCEDURE The experiment was performed by exciting the circular disc using an impact hammer at 17 points perpendicular to the plane of the disc. For accelerometer measurements, three uni-axial accelerometers were mounted on the disc. In this case frequency response functions [m/s 2 /N] are measured and then processed to estimate modal parameters. In the case of acoustic modal analysis, three microphones are mounted in the nearfield of the disc perpendicular to the plane of the disc. Acoustic frequency response functions [Pa/N] are then measured. These acoustic frequency response functions can be used to estimate modal parameters under the assumption that sound pressure level varies linearly with vibration amplitudes.

3 3.1. Experimental Setup There are a total of six fixed outputs (three accelerometers and three microphones). There are 17 input points on the disc. Impact hammer (Model E086C40) with metal tip is used for excitation since frequency range of interest is around 9 KHz. Since the response locations are fixed, the impact hammer is moved to various points for excitation. This is called a roving hammer method or a multiple reference impact test (MRIT). Uni-axial accelerometers (Model 352A56) are used to measure response (3 mounted in transverse direction). Three microphones (Model 130A10) are used for sound pressure measurements. The experimental setup is shown in Figure 2. Figure 2. The experimental setup In setting the digital signal processing (DSP) parameters in the MRIT VXI test setup, the span frequency is set at KHz and the number of spectral lines is set to 1600 lines for better frequency resolution. Force-Exponential windows are used for this test, since an impact type of excitation is used, and the pre-trigger value is set to 10%. All three accelerometers are calibrated using a hand held calibrator. The calibration is done at 159 Hz with 1g RMS acceleration level. The nominal sensitivity values (taken from the PCB website) are used for the microphones and load cell. The basic assumptions of experimental modal analysis like linearity and reciprocity are checked FRF Measurement Auto-ranging of the sensors is done for every impact point to prevent overloading of sensors. Five spectral averages are done. Force-exponential windows are applied to the data. The accelerometers are mounted using adhesive mounting, as it is effective up to 9000 Hz Correction for Time Delay in Microphone Signals Since the microphones are kept at a distance of around 5.5 inch from the test component, there is some time delay in the microphone signals. This time delay leads to the phase wrap in the AFRF over the entire frequency range. The phase plot of AFRF with time delay is shown in Figure 3(a). By impacting at the center of the component, the time delay values were obtained for each microphone. The microphone data in each channel were corrected based on the time delay. The phase wrap of AFRF reduced after the time delay correction. The phase plot of AFRF after time delay correction is shown in Figure 3(b).

4 (a) (b) Figure 3. Phase plots of AFRF. (a) With time delay. (b) With time delay correction Once these values were fixed based on the impact at the center point, the same values were used when impacting at different points. Consistent poles were not obtained with this approach as shown in Figure 4. Figure 4. Consistency diagram for acoustic modal analysis with constant time delay values This led to the speculation that time delay at different microphones varies significantly with impact point. So the time delays for the three microphones were calculated for each of the 17 impact points. These delay values were used for correcting each microphone channel while impacting at different points and thus consistent poles were obtained.

5 If time delay is not corrected and the same time is used as that for the accelerometers, data will be lost out of the end of the data block contributing to more noise and poor coherence (not all data is observed).[2] The first correction mentioned in the above explanation reduces the coherence problem but is not sufficient to get optimum data. The second method in the above explanation is needed to be certain the best quality data is available, which is required by the multiple reference parameter estimation algorithms Creation of Wireframe Model and Trace Lines Using the Wireframe Editor option in X-Modal II software (developed by SDRL, University of Cincinnati), the wireframe model of the circular disc is created by entering the co-ordinates of all the measurement points and the creating trace lines connecting measurement points. This wireframe model is saved in universal file format (.ufb). These.ufb files are loaded into X-Modal II Data manager for parameter estimation. 4. PARAMETER ESTIMATION PROCEDURE There are several modal parameter estimation methods available to extract modal behavior of the system from the measured frequency response functions. These methods are implemented to estimate modal parameters from the measured data and classify the modes as consistent, non-realistic, etc Mode Indicator Function Mode indication functions (MIF) are normally real-valued, frequency domain functions that exhibit local minima or maxima at the natural frequencies of the modes [3]. Figures 5 and 6 show mode indicator functions from which the number of modes, including close or repeated roots, can be obtained. The number of peaks in the Complex Mode Indicator Function (CMIF) plot indicates the number of modes in the disc in the specified frequency range. Multiple peaks at the same frequency indicate repeated roots or close modes. Figure 5. CMIF plot using accelerometer measurement From Figure 5 showing the CMIF based on accelerometer measurements, a total number of 13 peaks can be found in the 0 to 9000 Hz frequency range and thus number of modes is 13. The CMIF plot based on the microphone measurements (without correction) shows the presence of additional peaks (apparent repeated roots) which confuses the analysis of the data. The CMIF plot for microphone measurement is shown in Figure 6.

6 Figure 6. CMIF plot for microphone measurement 4.2. MDOF Methods Time domain methods are usually limited to low damping case and may not perform accurately in the moderate or heavily damped cases. Knowing that the circular disc is a lightly damped structure, the Polyreference Time Domain (PTD) method, which is a higher order, matrix coefficient polynomial method, is used in the following analysis. 5. RESULTS AND DISCUSSION Modal order of 20 is used to get the 13 modes from the accelerometer measurements. The consistency diagram represents consistent poles and mode shapes; the poles with Mean Phase Correlation (MPC) values greater than 0.95 are selected. Figure 7 shows the consistency diagram for accelerometer measurements.

7 Figure 7. Consistency diagram for accelerometer measurements Modal order of 30 is used to get 13 modes from the microphone measurements. The consistency diagram is shown in Figure 8. Figure 8. Consistency diagram for microphone measurements

8 Due to the geometrical symmetry of the plate, it is expected to observe close or repeated roots. However, the presence of repeated roots does not mean that they must be due to symmetry. Two roots are considered to be repeated if they are very close in frequency and in damping. The comparison of frequencies and damping values obtained using both the methods are given in Table 1. Mode Table 1. Comparison of standard and acoustic modal analysis result Accelerometer measurements Frequency (Hz) Damping % Microphone Measurements Frequency (Hz) Damping % % Difference in frequency % Difference in damping As seen from Table 1, the percentage difference in frequency values between the standard modal analysis and acoustic modal analysis is negligible. But there is considerable difference in some damping values, probably due to the vibro-acoustic nature of the test method involving the coupling of the vibration to the acoustic field and the characteristics of the acoustic pattern that develops. The close roots taken from standard modal analysis results are shown in Table 2. Table 2. Close roots from standard modal analysis Mode Frequency (Hz) Damping (%) 1, , , , , , , , , , , , , , , The modal vectors derived from the residues are generated using the poles selected from the consistency diagram. For the accelerometer measurement, the FRF correlation coefficient (comparing the FRF measurement and the synthesis of the FRF measurement based upon the model) is close to unity for all cases checked. In order to measure the linear dependence of mode shapes, the Modal Assurance Criterion (MAC) is used. MAC can take values between zero and one. If the modal assurance criterion has a value near zero, this is an indication that the modes are linearly independent. If the modal assurance criterion has a value near unity, this is an indication that the modes are linearly dependent. Figures 9 and 10 show MAC plots of standard modal analysis and acoustic modal analysis respectively.

9 Figure 9. MAC plot for Standard modal analysis Figure 10. MAC plot for Acoustic modal analysis The MAC plot of standard modal analysis (Figure 9) shows that most of the modes are linearly independent. Some small amount of linear dependence is observed in certain modes which is not unexpected. Note that there is good agreement (linear dependence) for the modal vectors and their complex conjugate pairs (lower diagonal of red squares). The MAC plot of acoustic modal analysis (Figure 10) shows that modal vectors associated with positive frequencies are again linearly independent of one another.

10 However, note that there is not good agreement for the modal vectors and their complex conjugate pairs (lower diagonal) as in the previous case. The modal vectors for the conjugate frequencies appear to be more linearly dependent. This may be because the acoustic frequency response function is a ratio of pressure to force where the modal vectors for the conjugate frequencies may not be necessarily the same Mode Shapes Table 3. Mode shapes description Mode number Description 1, 2 Bending mode (Saddle mode) 3 Bending mode (Umbrella mode) 4, 5 Bending mode 6, 7 Bending mode (Inner ring see-saw) 8, 9 Bending mode 10, 11 Bending mode (Inner saddle) 12 Bending mode 13 Bending mode (Reverse umbrella mode) The mode shapes obtained using microphone and accelerometer measurement are similar as shown in Figure 11. Accelerometer Microphone Hz % zeta Hz % zeta Hz % zeta Hz % zeta Figure 11. Comparison of mode shapes from standard and acoustic modal analysis 6. DISCUSSION OF ERRORS In conducting experiment, errors are usually generated by the following: Leakage error: The leakage error will exist anytime the digitized time domain data does not match the requirements of the FFT (periodic in observation time T or totally observed transient in observation time T). This was minimized using exponential windowing. The FRF referred to as the driving point FRF is approximate, because it was not possible to hit at the exact same location where the accelerometers are mounted. In taking averages, some errors may occur due to not hitting the same point and in the same direction, average to average. Force with same magnitude not applied during every measurement which should not be a problem if the system is linear.

11 The time delay correction factor for microphone measurements is measured to within the nearest time difference based on the measured pressure and impact at a particular point. The measured pressure signal is the superposition of sound radiated from various points and each point can have its own time delay. The time delay used for the correction is the minimum time delay. The PTD method is a time domain method that applies an inverse FFT to get the impulse response, which may have a small frequency domain truncation error. The selected poles from the consistency diagram may not be at the centroid of the pole cluster leading to variation in damping estimation. 7. SUMMARY AND CONCLUSIONS Accelerometer measurements and microphone measurements were conducted on a circular disc and modal analysis results were compared in terms of modal parameters. For accelerometer measurements, the setup consists of three accelerometers (outputs) and 17 impact points (inputs). At each point, impact excitation is done in the transverse direction. Time delay correction is done for each microphone channel during each measurement. In order to minimize leakage and noise errors, force-exponential windowing was applied to the measured data. For microphone measurements, it is critical to account for the time delay associated with the reference microphone s position relative to the part being tested. The PTD method was used to estimate modal parameters for both measurement techniques, from the measured FRFs and AFRFs independently. It was found that both techniques are able to find 13 modes in the frequency range 0 to 9000 Hz. In predicting natural frequencies, the acoustic modal analysis method is able to perform accurate estimation with an error of less than 0.096% relative to those found from accelerometer measurement. However, microphone and accelerometer measurements do not estimate the same value of damping with an average relative difference of 12.83% found. Some linear dependency was observed between modes 5 and 9 from the MAC plot of accelerometer measurements. More measurement points are required for better observability of these two modes. From the MAC plot of microphone measurements, it was observed that modal vectors associated with conjugate poles do not show a reasonable dependency. Modal scaling is not obtained from acoustic modal analysis since true driving point FRF measurements are not available. But, modal scaling can be obtained if a vibro-acoustic structure model with coupling is taken into consideration. It is probably easier to simply conduct a standard modal analysis test to get an estimate of the modal scaling even though the modal frequencies will be incorrectly identified. The two test cases can then be combined to give the complete modal model. REFERENCES [1] Allemang, R.J., Shapton, W.R., Using modal techniques to guide acoustic signature analysis, SAE, , [2] Halvorsen, W.G., Brown, D.L., Impulse Technique for Structural Frequency Response Testing, Sound and Vibration Magazine,November,1977,pp [3] Allemang, R.J., Phillips, A.W., The Unified Matrix Polynomial Approach to Understanding Modal Parameter Estimation: An Update, ISMA 2004.

Fundamentals of Structural Dynamics

Fundamentals of Structural Dynamics Fundamentals of Structural Dynamics Smarter decisions, better products. Structural Dynamics Agenda Topics How to characterize structural behavior? Fundamentals Natural Frequencies, Resonances, Damping

More information

Modal Excitation. D. L. Brown University of Cincinnati Structural Dynamics Research Laboratory. M. A. Peres The Modal Shop, Inc Cincinnati, OH

Modal Excitation. D. L. Brown University of Cincinnati Structural Dynamics Research Laboratory. M. A. Peres The Modal Shop, Inc Cincinnati, OH Modal Excitation D. L. Brown University of Cincinnati Structural Dynamics Research Laboratory M. A. Peres The Modal Shop, Inc Cincinnati, OH IMAC-XXVI, Modal Excitation, #356, Feb 04, 2008, Intoduction

More information

BASICS OF MODAL TESTING AND ANALYSIS

BASICS OF MODAL TESTING AND ANALYSIS CI PRODUCT NOTE No. 007 BASICS OF MODAL TESTING AND ANALYSIS WWW.CRYSTALINSTRUMENTS.COM BASICS OF MODAL TESTING AND ANALYSIS Introduction Modal analysis is an important tool for understanding the vibration

More information

How to perform transfer path analysis

How to perform transfer path analysis Siemens PLM Software How to perform transfer path analysis How are transfer paths measured To create a TPA model the global system has to be divided into an active and a passive part, the former containing

More information

THE DEVELOPMENT AND IMPLEMENTATION OF MULTIPLE REFERENCE IMPACT TESTING. A thesis submitted to the

THE DEVELOPMENT AND IMPLEMENTATION OF MULTIPLE REFERENCE IMPACT TESTING. A thesis submitted to the THE DEVELOPMENT AND IMPLEMENTATION OF MULTIPLE REFERENCE IMPACT TESTING A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the

More information

Excitation Techniques Do s and Don ts

Excitation Techniques Do s and Don ts Peter Avitabile UMASS Lowell Excitation Techniques Do s and Don ts Marco Peres The Modal Shop 1 Dr. Peter Avitabile Excitation Considerations Objectives of this lecture: Overview impact testing considerations

More information

A detailed experimental modal analysis of a clamped circular plate

A detailed experimental modal analysis of a clamped circular plate A detailed experimental modal analysis of a clamped circular plate David MATTHEWS 1 ; Hongmei SUN 2 ; Kyle SALTMARSH 2 ; Dan WILKES 3 ; Andrew MUNYARD 1 and Jie PAN 2 1 Defence Science and Technology Organisation,

More information

Airplane Ground Vibration Testing Nominal Modal Model Correlation

Airplane Ground Vibration Testing Nominal Modal Model Correlation Airplane Ground Vibration Testing Nominal Modal Model Correlation Charles R. Pickrel, Boeing Commercial Airplane Group, Seattle, Washington A brief overview is given of transport airplane ground vibration

More information

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Dean Ford, Greg Holbrook, Steve Shields and Kevin Whitacre Delphi Automotive Systems, Energy & Chassis Systems Abstract Efforts to

More information

IMAC 27 - Orlando, FL Shaker Excitation

IMAC 27 - Orlando, FL Shaker Excitation IMAC 27 - Orlando, FL - 2009 Peter Avitabile UMASS Lowell Marco Peres The Modal Shop 1 Dr. Peter Avitabile Objectives of this lecture: Overview some shaker excitation techniques commonly employed in modal

More information

CASE STUDY OF OPERATIONAL MODAL ANALYSIS (OMA) OF A LARGE HYDROELECTRIC GENERATOR

CASE STUDY OF OPERATIONAL MODAL ANALYSIS (OMA) OF A LARGE HYDROELECTRIC GENERATOR CASE STUDY OF OPERATIONAL MODAL ANALYSIS (OMA) OF A LARGE HYDROELECTRIC GENERATOR F. Lafleur 1, V.H. Vu 1,2, M, Thomas 2 1 Institut de Recherche de Hydro-Québec, Varennes, QC, Canada 2 École de Technologie

More information

Guided Wave Travel Time Tomography for Bends

Guided Wave Travel Time Tomography for Bends 18 th World Conference on Non destructive Testing, 16-20 April 2012, Durban, South Africa Guided Wave Travel Time Tomography for Bends Arno VOLKER 1 and Tim van ZON 1 1 TNO, Stieltjes weg 1, 2600 AD, Delft,

More information

ROOT MULTIPLE SIGNAL CLASSIFICATION SUPER RESOLUTION TECHNIQUE FOR INDOOR WLAN CHANNEL CHARACTERIZATION. Dr. Galal Nadim

ROOT MULTIPLE SIGNAL CLASSIFICATION SUPER RESOLUTION TECHNIQUE FOR INDOOR WLAN CHANNEL CHARACTERIZATION. Dr. Galal Nadim ROOT MULTIPLE SIGNAL CLASSIFICATION SUPER RESOLUTION TECHNIQUE FOR INDOOR WLAN CHANNEL CHARACTERIZATION Dr. Galal Nadim BRIEF DESCRIPTION The root-multiple SIgnal Classification (root- MUSIC) super resolution

More information

EWGAE 2010 Vienna, 8th to 10th September

EWGAE 2010 Vienna, 8th to 10th September EWGAE 2010 Vienna, 8th to 10th September Frequencies and Amplitudes of AE Signals in a Plate as a Function of Source Rise Time M. A. HAMSTAD University of Denver, Department of Mechanical and Materials

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

MODELLING AND CHATTER CONTROL IN MILLING

MODELLING AND CHATTER CONTROL IN MILLING MODELLING AND CHATTER CONTROL IN MILLING Ashwini Shanthi.A, P. Chaitanya Krishna Chowdary, A.Neeraja, N.Nagabhushana Ramesh Dept. of Mech. Engg Anurag Group of Institutions (Formerly C V S R College of

More information

Filling in the MIMO Matrix Part 2 Time Waveform Replication Tests Using Field Data

Filling in the MIMO Matrix Part 2 Time Waveform Replication Tests Using Field Data Filling in the MIMO Matrix Part 2 Time Waveform Replication Tests Using Field Data Marcos Underwood, Russ Ayres, and Tony Keller, Spectral Dynamics, Inc., San Jose, California There is currently quite

More information

University of Molise Engineering Faculty Dept. SAVA Engineering & Environment Section. C. Rainieri, G. Fabbrocino

University of Molise Engineering Faculty Dept. SAVA Engineering & Environment Section. C. Rainieri, G. Fabbrocino University of Molise Engineering Faculty Dept. SAVA Engineering & Environment Section C. Rainieri, G. Fabbrocino Operational Modal Analysis: overview and applications Carlo Rainieri Strucutural and Geotechnical

More information

CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS

CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS 35 CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS 3.1 INTRODUCTION This chapter deals with the details of the design and construction of transmission loss suite, measurement details

More information

Indoor Location Detection

Indoor Location Detection Indoor Location Detection Arezou Pourmir Abstract: This project is a classification problem and tries to distinguish some specific places from each other. We use the acoustic waves sent from the speaker

More information

Mode-based Frequency Response Function and Steady State Dynamics in LS-DYNA

Mode-based Frequency Response Function and Steady State Dynamics in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (3) Mode-based Frequency Response Function and Steady State Dynamics in LS-DYNA Yun Huang 1, Bor-Tsuen Wang 2 1 Livermore Software Technology Corporation

More information

Implementation and Validation of Frequency Response Function in LS-DYNA

Implementation and Validation of Frequency Response Function in LS-DYNA Implementation and Validation of Frequency Response Function in LS-DYNA Yun Huang 1, Bor-Tsuen Wang 2 1 Livermore Software Technology Corporation 7374 Las Positas Rd., Livermore, CA, United States 94551

More information

Portable FFT Analyzer CF-9200/9400

Portable FFT Analyzer CF-9200/9400 Portable FFT Analyzer CF-9200/9400 Frequency response measurement by impact excitation by using Impulse hammer November2015 Contents 1 Introduction 2 Preparing equipment 3 Before measurement 3-1. Connection

More information

Acoustic Emission Signals versus Propagation Direction for Hybrid Composite Layup with Large Stiffness Differences versus Direction

Acoustic Emission Signals versus Propagation Direction for Hybrid Composite Layup with Large Stiffness Differences versus Direction 31 st Conference of the European Working Group on Acoustic Emission (EWGAE) We.1.A.1 More Info at Open Access Database www.ndt.net/?id=17568 Acoustic Emission Signals versus Propagation Direction for Hybrid

More information

New Long Stroke Vibration Shaker Design using Linear Motor Technology

New Long Stroke Vibration Shaker Design using Linear Motor Technology New Long Stroke Vibration Shaker Design using Linear Motor Technology The Modal Shop, Inc. A PCB Group Company Patrick Timmons Calibration Systems Engineer Mark Schiefer Senior Scientist Long Stroke Shaker

More information

Comparison of a Linear Least Squares Algorithm and STAR Modal for a Square Elastic Plate

Comparison of a Linear Least Squares Algorithm and STAR Modal for a Square Elastic Plate Comparison of a Linear Least Squares Algorithm and STAR Modal for a Square Elastic Plate M. Allen, C. Moloney, J. H. Ginsberg, and A. Ferri The G. W. Woodruff School of Mechanical Engineering TheGeorgiaInstituteofTechnology

More information

EXAMINATION OF SUCCESSFUL MODAL ANALYSIS TECHNIQUES USED FOR BLADED-DISK ASSEMBLIES

EXAMINATION OF SUCCESSFUL MODAL ANALYSIS TECHNIQUES USED FOR BLADED-DISK ASSEMBLIES EXAMINATION OF SUCCESSFUL MODAL ANALYSIS TECHNIQUES USED FOR BLADED-DISK ASSEMBLIES R. F. Orsagh M. J. Roemer Impact Technologies, LLC 125 Tech Park Drive Rochester, New York 14623 rolf.orsagh@impact-tek.com

More information

Natural Frequency Measurement

Natural Frequency Measurement Natural Frequency Measurement 'Frequently Asked Questions' F 1 What is the motivation for 'natural frequency testing'? There are different applications which make use of this kind of test: A: Checking

More information

FEM Analysis and Optimization of Two Chamber Reactive Muffler by using Taguchi Method

FEM Analysis and Optimization of Two Chamber Reactive Muffler by using Taguchi Method American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 23-3491, ISSN (Online): 23-3580, ISSN (CD-ROM): 23-3629

More information

PeakVue Analysis for Antifriction Bearing Fault Detection

PeakVue Analysis for Antifriction Bearing Fault Detection Machinery Health PeakVue Analysis for Antifriction Bearing Fault Detection Peak values (PeakVue) are observed over sequential discrete time intervals, captured, and analyzed. The analyses are the (a) peak

More information

BASICS OF STRUCTURAL VIBRATION TESTING AND ANALYSIS

BASICS OF STRUCTURAL VIBRATION TESTING AND ANALYSIS CI PRODUCT NOTE No. 006 BASICS OF STRUCTURAL VIBRATION TESTING AND ANALYSIS Damping material reduces vibration amplitudes of structure Active suppression uses sensors, electronic controls, and mechanical

More information

Reverberation time and structure loss factor

Reverberation time and structure loss factor Reverberation time and structure loss factor CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Reverberation time and structure loss factor Christer

More information

Damage Detection Using Wavelet Transforms for Theme Park Rides

Damage Detection Using Wavelet Transforms for Theme Park Rides Damage Detection Using Wavelet Transforms for Theme Park Rides Amy N. Robertson, Hoon Sohn, and Charles R. Farrar Engineering Sciences and Applications Division Weapon Response Group Los Alamos National

More information

LORENTZ FORCE DETUNING ANALYSIS OF THE SPALLATION NEUTRON SOURCE (SNS) ACCELERATING CAVITIES *

LORENTZ FORCE DETUNING ANALYSIS OF THE SPALLATION NEUTRON SOURCE (SNS) ACCELERATING CAVITIES * LORENTZ FORCE DETUNING ANALYSIS OF THE SPALLATION NEUTRON SOURCE (SNS) ACCELERATING CAVITIES * R. Mitchell, K. Matsumoto, Los Alamos National Lab, Los Alamos, NM 87545, USA G. Ciovati, K. Davis, K. Macha,

More information

Proposal. Analysis of Parallel Vibration Paths with Potential Application to Vehicle Noise. Reduction. Submitted to. The Engineering Honors Committee

Proposal. Analysis of Parallel Vibration Paths with Potential Application to Vehicle Noise. Reduction. Submitted to. The Engineering Honors Committee Proposal Analysis of Parallel Vibration Paths with Potential Application to Vehicle Noise Reduction Submitted to The Engineering Honors Committee 119 Hitchcock Hall College of Engineering The Ohio State

More information

Congress on Technical Diagnostics 1996

Congress on Technical Diagnostics 1996 Congress on Technical Diagnostics 1996 G. Dalpiaz, A. Rivola and R. Rubini University of Bologna, DIEM, Viale Risorgimento, 2. I-4136 Bologna - Italy DYNAMIC MODELLING OF GEAR SYSTEMS FOR CONDITION MONITORING

More information

Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested

Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested EXPERIMENTAL SETUP AND PROCEDURES Dynamic testing was performed in two phases. The first phase took place

More information

Wavelet analysis to detect fault in Clutch release bearing

Wavelet analysis to detect fault in Clutch release bearing Wavelet analysis to detect fault in Clutch release bearing Gaurav Joshi 1, Akhilesh Lodwal 2 1 ME Scholar, Institute of Engineering & Technology, DAVV, Indore, M. P., India 2 Assistant Professor, Dept.

More information

Effects of Instrumentation Recorder time Base Error on Spectral Purity

Effects of Instrumentation Recorder time Base Error on Spectral Purity Effects of Instrumentation Recorder time Base Error on Spectral Purity Item Type text; Proceedings Authors Leeke, P. D. Publisher International Foundation for Telemetering Journal International Telemetering

More information

EFFECTS OF LATERAL PLATE DIMENSIONS ON ACOUSTIC EMISSION SIGNALS FROM DIPOLE SOURCES. M. A. HAMSTAD*, A. O'GALLAGHER and J. GARY

EFFECTS OF LATERAL PLATE DIMENSIONS ON ACOUSTIC EMISSION SIGNALS FROM DIPOLE SOURCES. M. A. HAMSTAD*, A. O'GALLAGHER and J. GARY EFFECTS OF LATERAL PLATE DIMENSIONS ON ACOUSTIC EMISSION SIGNALS FROM DIPOLE SOURCES ABSTRACT M. A. HAMSTAD*, A. O'GALLAGHER and J. GARY National Institute of Standards and Technology, Boulder, CO 835

More information

System Inputs, Physical Modeling, and Time & Frequency Domains

System Inputs, Physical Modeling, and Time & Frequency Domains System Inputs, Physical Modeling, and Time & Frequency Domains There are three topics that require more discussion at this point of our study. They are: Classification of System Inputs, Physical Modeling,

More information

8th AIAA/CEAS Aeroacoustics Conference June 16 18, 2002/Breckenridge, CO

8th AIAA/CEAS Aeroacoustics Conference June 16 18, 2002/Breckenridge, CO AIAA 22-2416 Noise Transmission Characteristics of Damped Plexiglas Windows Gary P. Gibbs, Ralph D. Buehrle, Jacob Klos, Sherilyn A. Brown NASA Langley Research Center, Hampton, VA 23681 8th AIAA/CEAS

More information

Dynamic characterization of the A400M acoustics fuselage demonstrator

Dynamic characterization of the A400M acoustics fuselage demonstrator Dynamic characterization of the A400M acoustics fuselage demonstrator René WINTER 1 ; Jörn BIEDERMANN 2 ; Marc BÖSWALD 3 ; Martin WANDEL 4 1,2,3 Deutsches Zentrum für Luft- und Raumfahrt e.v., Germany

More information

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient Alex ZINOVIEV 1 ; David W. BARTEL 2 1,2 Defence Science and Technology Organisation, Australia ABSTRACT

More information

Resonant characteristics of flow pulsation in pipes due to swept sine constraint

Resonant characteristics of flow pulsation in pipes due to swept sine constraint TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 133, 2016, 131 144 Tomasz Pałczyński Resonant characteristics of flow pulsation in pipes due to swept sine constraint Institute of Turbomachinery,

More information

Using frequency and modal analysis to attenuate low frequency waves

Using frequency and modal analysis to attenuate low frequency waves Using frequency and modal analysis to attenuate low frequency waves Stanislav ZIARAN 1 1 Slovak university of technology in Bratislava Faculty of mechanical engineering, Slovakia ABSTRACT The paper analyzes

More information

THE problem of acoustic echo cancellation (AEC) was

THE problem of acoustic echo cancellation (AEC) was IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 6, NOVEMBER 2005 1231 Acoustic Echo Cancellation and Doubletalk Detection Using Estimated Loudspeaker Impulse Responses Per Åhgren Abstract

More information

Separation of Sine and Random Com ponents from Vibration Measurements

Separation of Sine and Random Com ponents from Vibration Measurements Separation of Sine and Random Com ponents from Vibration Measurements Charlie Engelhardt, Mary Baker, Andy Mouron, and Håvard Vold, ATA Engineering, Inc., San Diego, California Defining sine and random

More information

Signal Analysis Techniques to Identify Axle Bearing Defects

Signal Analysis Techniques to Identify Axle Bearing Defects Signal Analysis Techniques to Identify Axle Bearing Defects 2011-01-1539 Published 05/17/2011 Giovanni Rinaldi Sound Answers Inc. Gino Catenacci Ford Motor Company Fund Todd Freeman and Paul Goodes Sound

More information

Introduction to LIVM Accelerometers

Introduction to LIVM Accelerometers Introduction to LIVM Accelerometers Construction Low Impedance Voltage Mode (LIVM) accelerometers are designed to measure shock and vibration phenomena over a wide frequency range. They contain integral

More information

Appendix. RF Transient Simulator. Page 1

Appendix. RF Transient Simulator. Page 1 Appendix RF Transient Simulator Page 1 RF Transient/Convolution Simulation This simulator can be used to solve problems associated with circuit simulation, when the signal and waveforms involved are modulated

More information

SDOF System: Obtaining the Frequency Response Function

SDOF System: Obtaining the Frequency Response Function University Consortium on Instructional Shake Tables SDOF System: Obtaining the Frequency Response Function Developed By: Dr. Shirley Dyke and Xiuyu Gao Purdue University [updated July 6, 2010] SDOF System:

More information

Determination of the width of an axisymmetric deposit on a metallic pipe by means of Lamb type guided modes

Determination of the width of an axisymmetric deposit on a metallic pipe by means of Lamb type guided modes Acoustics 8 Paris Determination of the width of an axisymmetric deposit on a metallic pipe by means of Lamb type guided modes M. El Moussaoui a, F. Chati a, F. Leon a, A. Klauson b and G. Maze c a LOMC

More information

THE USE OF VOLUME VELOCITY SOURCE IN TRANSFER MEASUREMENTS

THE USE OF VOLUME VELOCITY SOURCE IN TRANSFER MEASUREMENTS THE USE OF VOLUME VELOITY SOURE IN TRANSFER MEASUREMENTS N. Møller, S. Gade and J. Hald Brüel & Kjær Sound and Vibration Measurements A/S DK850 Nærum, Denmark nbmoller@bksv.com Abstract In the automotive

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

Mel Spectrum Analysis of Speech Recognition using Single Microphone

Mel Spectrum Analysis of Speech Recognition using Single Microphone International Journal of Engineering Research in Electronics and Communication Mel Spectrum Analysis of Speech Recognition using Single Microphone [1] Lakshmi S.A, [2] Cholavendan M [1] PG Scholar, Sree

More information

On the Influence of the Junctions on Wooden Buildings Structural-Acoustic Behaviour

On the Influence of the Junctions on Wooden Buildings Structural-Acoustic Behaviour On the Influence of the Junctions on Wooden Buildings Structural-Acoustic Behaviour David Blon, Olivier Dazel, Brouard Bruno, Jean-Michel Genevaux, Antonin Tribaleau LAUM acoustics laboratory, Maine University,

More information

FIR Filter For Audio Practitioners

FIR Filter For Audio Practitioners Introduction Electronic correction in the form of Equalization (EQ) is one of the most useful audio tools for loudspeaker compensation/correction, whether it compensates from non linearities in the loudspeaker

More information

Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn

Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn R K Pradeep, S Sriram, S Premnath Department of Mechanical Engineering, PSG College of Technology, Coimbatore, India 641004 Abstract

More information

AN AUTOMATED DAMAGE DETECTION SYSTEM FOR ARMORED VEHICLE LAUNCHED BRIDGE

AN AUTOMATED DAMAGE DETECTION SYSTEM FOR ARMORED VEHICLE LAUNCHED BRIDGE AN AUTOMATED DAMAGE DETECTION SYSTEM FOR ARMORED VEHICLE LAUNCHED BRIDGE E. S. Sazonov 1, P. Klinkhachorn 1, H. V. S. GangaRao 2, and U. B. Halabe 2 1 Lane Department of Computer Science and Electrical

More information

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 18 CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 2.1 INTRODUCTION Transformers are subjected to a variety of electrical, mechanical and thermal stresses during normal life time and they fail when these

More information

DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS

DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS Jing Tian and Michael Pecht Prognostics and Health Management Group Center for Advanced

More information

Copper Pipe Xylophone

Copper Pipe Xylophone Copper Pipe Xylophone EQUIPMENT ¾ Copper pipes Different diameter pipes with same lengths Mallets Weather-strip coated board stands for the copper pipes Tuners Rulers or tape measures Microphones, stands,

More information

VENTILATION CONTROL OF THE BLANKA TUNNEL: A MATHEMATICAL PROGRAMMING APPROACH

VENTILATION CONTROL OF THE BLANKA TUNNEL: A MATHEMATICAL PROGRAMMING APPROACH - 19 - VENTILATION CONTROL OF THE BLANKA TUNNEL: A MATHEMATICAL PROGRAMMING APPROACH Pořízek J. 1, Zápařka J. 1, Ferkl L. 1 Satra, Czech Republic Feramat Cybernetics, Czech Republic ABSTRACT The Blanka

More information

EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - II Time Response Analysis Two marks 1. What is transient response? The transient response is the response of the system when the system

More information

Noise and Vibration Prediction in Shunt- Reactor using Fluid Structure Interaction Technique

Noise and Vibration Prediction in Shunt- Reactor using Fluid Structure Interaction Technique Noise and Vibration Prediction in Shunt- Reactor using Fluid Structure Interaction Technique by PARMATMA DUBEY CROMPTON GREAVES LTD. parmatma.dubey@cgglobal.com and VIJENDRA GUPTA CROMPTON GREAVES LTD.

More information

The Basics of Patch Antennas, Updated

The Basics of Patch Antennas, Updated The Basics of Patch Antennas, Updated By D. Orban and G.J.K. Moernaut, Orban Microwave Products www.orbanmicrowave.com Introduction This article introduces the basic concepts of patch antennas. We use

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

The Naim Balanced Mode Radiator The Naim Ovator Bass Driver

The Naim Balanced Mode Radiator The Naim Ovator Bass Driver 1 The Naim Balanced Mode Radiator The Naim Ovator Bass Driver Lampos Ferekidis & Karl-Heinz Fink Fink Audio Consulting on behalf of Naim Audio Southampton Road, Salisbury SP1 2LN, ENGLAND The Balanced

More information

PRODUCT DATA. Pocket Front-end Type 3560 L PULSE Lite Software Types 7781, 7782, 7783

PRODUCT DATA. Pocket Front-end Type 3560 L PULSE Lite Software Types 7781, 7782, 7783 PRODUCT DATA Pocket Front-end Type 3560 L PULSE Lite Software Types 7781, 7782, 7783 Pocket Front-end Type 3560 L and PULSE TM Lite software give you a full-featured analyzer in a small size; the power

More information

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis M. Sofian D. Hazry K. Saifullah M. Tasyrif K.Salleh I.Ishak Autonomous System and Machine Vision Laboratory, School of Mechatronic,

More information

Time-domain simulation of the bowed cello string: Dual-polarization effect

Time-domain simulation of the bowed cello string: Dual-polarization effect Time-domain simulation of the bowed cello string: Dual-polarization effect Hossein Mansour, Jim Woodhouse, and Gary Scavone Citation: Proc. Mtgs. Acoust. 19, 035014 (2013); View online: https://doi.org/10.1121/1.4800058

More information

OROS Modal Analyzer : comprehensive and portable

OROS Modal Analyzer : comprehensive and portable OROS Modal 2 OROS Modal Analyzer : comprehensive and portable Modal analysis is a powerful technique for understanding structures behavior and for validating mechanical design and simulation results. Listening

More information

NON-SELLABLE PRODUCT DATA

NON-SELLABLE PRODUCT DATA PRODUCT DATA NON-SELLABLE PULSE Reflex Measurements PULSE Reflex Spectral Analysis Type 8729 A, PULSE Reflex Structural Measurements Hammer and Shaker Type 8729 B, PULSE Reflex Structural Measurements

More information

Autocorrelator Sampler Level Setting and Transfer Function. Sampler voltage transfer functions

Autocorrelator Sampler Level Setting and Transfer Function. Sampler voltage transfer functions National Radio Astronomy Observatory Green Bank, West Virginia ELECTRONICS DIVISION INTERNAL REPORT NO. 311 Autocorrelator Sampler Level Setting and Transfer Function J. R. Fisher April 12, 22 Introduction

More information

Fundamentals of Vibration Measurement and Analysis Explained

Fundamentals of Vibration Measurement and Analysis Explained Fundamentals of Vibration Measurement and Analysis Explained Thanks to Peter Brown for this article. 1. Introduction: The advent of the microprocessor has enormously advanced the process of vibration data

More information

ME scopeves Application Note #21 Calculating Responses of MIMO Systems to Multiple Forces

ME scopeves Application Note #21 Calculating Responses of MIMO Systems to Multiple Forces ME scopeves Application Note #21 Calculating Responses of MIMO Systems to Multiple Forces INTRODUCTION Driving forces and response motions of a vibrating structure are related in a very straightforward

More information

Frequency Domain Analysis

Frequency Domain Analysis 1 Frequency Domain Analysis Concerned with analysing the frequency (wavelength) content of a process Application example: Electromagnetic Radiation: Represented by a Frequency Spectrum: plot of intensity

More information

A Prototype Wire Position Monitoring System

A Prototype Wire Position Monitoring System LCLS-TN-05-27 A Prototype Wire Position Monitoring System Wei Wang and Zachary Wolf Metrology Department, SLAC 1. INTRODUCTION ¹ The Wire Position Monitoring System (WPM) will track changes in the transverse

More information

Veröffentlichungen am IKFF PIEZOELECTRIC TRAVELLING WAVE MOTORS GENERATING DIRECT LINEAR MOTION

Veröffentlichungen am IKFF PIEZOELECTRIC TRAVELLING WAVE MOTORS GENERATING DIRECT LINEAR MOTION Veröffentlichungen am IKFF PIEZOELECTRIC TRAVELLING WAVE MOTORS GENERATING DIRECT LINEAR MOTION M. Hermann, W. Schinköthe (IKFF) Beitrag zur Actuator 96 Bremen 26. - 28.06.96 Conference Proceedings, S.

More information

Real-Time FFT Analyser - Functional Specification

Real-Time FFT Analyser - Functional Specification Real-Time FFT Analyser - Functional Specification Input: Number of input channels 2 Input voltage ranges ±10 mv to ±10 V in a 1-2 - 5 sequence Autorange Pre-acquisition automatic selection of full-scale

More information

Maximizing LPM Accuracy AN 25

Maximizing LPM Accuracy AN 25 Maximizing LPM Accuracy AN 25 Application Note to the KLIPPEL R&D SYSTEM This application note provides a step by step procedure that maximizes the accuracy of the linear parameters measured with the LPM

More information

ENHANCED PRECISION IN SOURCE LOCALIZATION BY USING 3D-INTENSITY ARRAY MODULE

ENHANCED PRECISION IN SOURCE LOCALIZATION BY USING 3D-INTENSITY ARRAY MODULE BeBeC-2016-D11 ENHANCED PRECISION IN SOURCE LOCALIZATION BY USING 3D-INTENSITY ARRAY MODULE 1 Jung-Han Woo, In-Jee Jung, and Jeong-Guon Ih 1 Center for Noise and Vibration Control (NoViC), Department of

More information

T10FS. Data Sheet. Torque Flange. Special features. Installation example T10FS. B en

T10FS. Data Sheet. Torque Flange. Special features. Installation example T10FS. B en T10FS Torque Flange Data Sheet Special features Nominal (rated) torques: 100 NVm, 200 NVm, 500 NVm, 1 knvm, 2 knvm, 3 knvm, 5 knvm, 10 knvm Nominal speed from 12,000 rpm to 24,000 rpm Low rotor weights

More information

New developments in near-field acoustic holography

New developments in near-field acoustic holography Please leave this heading unchanged! New developments in near-field acoustic holography N.B. Roozen*, A.C. Geerlings, B.T. Verhaar, T. Vliegenthart. Philips Applied Technologies, High Tech Campus 7, 5656

More information

Telling. The tailpiece of the violin family is an

Telling. The tailpiece of the violin family is an Telling tails How much can an instrument s tailpiece affect its sound? Violin maker and researcher Ted White explains why it should be treated as more than just an anchor for the strings The tailpiece

More information

[ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system

[ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system Chapter Four Time Domain Analysis of control system The time response of a control system consists of two parts: the transient response and the steady-state response. By transient response, we mean that

More information

Active Stabilization of a Mechanical Structure

Active Stabilization of a Mechanical Structure Active Stabilization of a Mechanical Structure L. Brunetti 1, N. Geffroy 1, B. Bolzon 1, A. Jeremie 1, J. Lottin 2, B. Caron 2, R. Oroz 2 1- Laboratoire d Annecy-le-Vieux de Physique des Particules LAPP-IN2P3-CNRS-Université

More information

Genetic Algorithms-Based Parameter Optimization of a Non-Destructive Damage Detection Method

Genetic Algorithms-Based Parameter Optimization of a Non-Destructive Damage Detection Method Genetic Algorithms-Based Parameter Optimization of a Non-Destructive Damage Detection Method E.S. Sazonov, P. Klinkhachorn Lane Dept. of Computer Science and Electrical Engineering, West Virginia University,

More information

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya 1 THE ELECTROMAGNETIC FIELD THEORY Dr. A. Bhattacharya The Underlying EM Fields The development of radar as an imaging modality has been based on power and power density It is important to understand some

More information

Structure-borne Vibration Analysis of Acoustic Enclosure of Compressor

Structure-borne Vibration Analysis of Acoustic Enclosure of Compressor ISSN 2395-1621 Structure-borne Vibration Analysis of Acoustic Enclosure of Compressor #1 Onkar Madhekar #1 madhekaronkar007@gmail.com #1 Mechanical Engineering Department, SCoE Pune ABSTRACT In this paper,

More information

STRUCTURAL AND ACOUSTIC NUMERICAL MODELING OF A CURVED COMPOSITE HONEYCOMB PANEL

STRUCTURAL AND ACOUSTIC NUMERICAL MODELING OF A CURVED COMPOSITE HONEYCOMB PANEL AIAA-2001-2277 STRUCTURAL AND ACOUSTIC NUMERICAL MODELING OF A CURVED COMPOSITE HONEYCOMB PANEL Ferdinand W. Grosveld* Lockheed Martin Engineering and Sciences Hampton, VA 23681 Ralph D. Buehrle and Jay

More information

7.8 The Interference of Sound Waves. Practice SUMMARY. Diffraction and Refraction of Sound Waves. Section 7.7 Questions

7.8 The Interference of Sound Waves. Practice SUMMARY. Diffraction and Refraction of Sound Waves. Section 7.7 Questions Practice 1. Define diffraction of sound waves. 2. Define refraction of sound waves. 3. Why are lower frequency sound waves more likely to diffract than higher frequency sound waves? SUMMARY Diffraction

More information

NON-SELLABLE PRODUCT DATA. Order Analysis Type 7702 for PULSE, the Multi-analyzer System. Uses and Features

NON-SELLABLE PRODUCT DATA. Order Analysis Type 7702 for PULSE, the Multi-analyzer System. Uses and Features PRODUCT DATA Order Analysis Type 7702 for PULSE, the Multi-analyzer System Order Analysis Type 7702 provides PULSE with Tachometers, Autotrackers, Order Analyzers and related post-processing functions,

More information

Grinding Process Validation Approach (gpva)

Grinding Process Validation Approach (gpva) Journal of Physical Science and Application 7 (5) (217) 4-47 doi:1.17265/2159-5348/217.5.4 D DAVID PUBLISHING Grinding Process Validation Approach (gpva) C. Vogt 1, O. Faehnle 2 and R. Rascher 1 1. IPH

More information

A C. Wallner Siemens AG Berlin, (Germany)

A C. Wallner Siemens AG Berlin, (Germany) 21, rue d'artois, F-75008 Paris http://www.cigre.org A3-115 Session 2004 CIGRÉ A Algorithm for the Three-Pole Controlled Auto-Reclosing of Shunt Compensated Transmission Lines with a Optimization for the

More information

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals 16 3. SPEECH ANALYSIS 3.1 INTRODUCTION TO SPEECH ANALYSIS Many speech processing [22] applications exploits speech production and perception to accomplish speech analysis. By speech analysis we extract

More information

Improving room acoustics at low frequencies with multiple loudspeakers and time based room correction

Improving room acoustics at low frequencies with multiple loudspeakers and time based room correction Improving room acoustics at low frequencies with multiple loudspeakers and time based room correction S.B. Nielsen a and A. Celestinos b a Aalborg University, Fredrik Bajers Vej 7 B, 9220 Aalborg Ø, Denmark

More information

Resonance Tube Lab 9

Resonance Tube Lab 9 HB 03-30-01 Resonance Tube Lab 9 1 Resonance Tube Lab 9 Equipment SWS, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK vii TABLES OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES

More information