Introduction Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion

Size: px
Start display at page:

Download "Introduction Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion"

Transcription

1 Petawatt OPCPA Lasers: Status and Perspectives V.V.Lozhkarev, G.I.Freidman, V.N.Ginzburg, E.V.Katin, E.A.Khazanov, A.V.Kirsanov, G.A.Luchinin, A.N.Mal'shakov, M.A.Martyanov, O.V.Palashov, A.K.Poteomkin, A.M.Sergeev, A.A.Shaykin and I.V.Yakovlev Institute of Applied Physics Russian Academy of Science Introduction Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion

2 Introduction. OPCPA vs CPA Advantages of OPCPA: + broad gain bandwidth + high aperture + considerable decrease in thermal loading + significantly lower level of ASE + very high gain + no self-lasing + no backscattering from a target Disadvantages of OPCPA: high precision synchronization high quality of a pump beam short (1ns) pump pulse duration

3 Introduction. Petawatt laser systems type I type II type III Gain medium Ti:sapphire KD*P Energy source Pump no 2ω Nd 2ω Nd Pump duration, ns no <30 1 Amplifier aperture, cm 40х х40 Minimum duration, fs Efficiency (1ω Nd фс), % Number of PWs from 1 kj 1ω Nd 4(5) 8 ( 1.5 ) 4 Maximum power obtained, PW 1.3 PW LLNL, PW JAEA PW IAP 2006 Diffraction grating damage threshold Ti:sapphire damage threshold

4 Physics of OPCPA. KD*P vs KDP. superbroadband 1800 phasematching FWHM of gain spectra, cm -1 (lines) generated phase matching λ signal =2λ pump =1053nm KD*P bandwidth KD P bandwidth KD*P absorption KDP absorption signal wavelength, nm KD*P DKDP V.V.Lozhkarev, G.I.Freidman, V.N.Ginzburg, E.A.Khazanov, О.V.Palashov, A.M.Sergeev, I.V.Yakovlev. Laser Physics, 15, 1319 (2005). 0,35 0,3 0, ,2 = + 527nm 911nm 1250nm 0,15 0,1 0,05 0 ordinary wave absorbtion, cm -1 (dots)

5 Petawatt OPCPA Lasers: Status and Perspectives Introduction to PW lasers Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion

6 Compact 0.56 PW laser system. Architecture Synchronization system Nd:YLF Q-switch laser λ=1053nm 10mJ 12nc Pulse shaper Cr:Forsterite fs-laser λ=1250nm 2nJ 40 fs 1nJ 0.5 ns Stretcher 40 fs 0.5 ns 1mJ 1.5ns 1 J 1.5ns Two-stage Nd:YLF amplifier 2J 1.5 ns OPA I KD*P CW Yb:fiber pump 10W λ= nm 2ω λ=911nm 0.8mJ 0.5ns OPA II KD*P λ=1250nm First phase (TW level) λ=911 nm 50 mj 0.5 ns Compressor 0.5 ns 50 fs 50 mj 50 fs 2Hz amplifier 300J 1ns 2ω 170J 1ns OPA III KD*P 10cm dia 38J 0.5ns Compressor 0.5ns 50fs 24J 43fs Second phase (PW level) Freidman G., Andreev N., Ginzburg V., Katin E., Khazanov E., Lozhkarev V., Palashov O.,

7 Compact 0.56 PW laser system. Key elements of tabletop 300 J laser spatial filter input beam shaping 85mm dia. polarizer 60mm dia. λ/4 λ/2 Faraday 10mm dia. KDP soft aperture Nd:YLF 1054 nm 2ω 1 J to pump OPA I, II spatial filters self-focusing suppression laser heads self-excitation suppression 30mm dia. second harmonic generation λ/4 λ/4 100mm dia. spatial filter 100mm dia. 2ω Martyanov M. A., Khazanov E.A., Poteomkin A. K., 180 J to pump OPA III

8 Compact 0.56 PW laser system. laser output beam 300J, 1ns λ/D=21μrad 50 μrad мм

9 Compact 0.56 PW laser system. Energy characteristics of final OPCPA Efficiency, % Efficiency, % Pulse energy. J 38 J Output pulse energy, J 2.44λ/D=21μrad 25μrad Pump pulse energy, J

10 Compact 0.56 PW laser system. Compressed pulse ACF experiment ACF of 33fs FTL pulse ACF, a.u time, fs 24 J /43 fs=0.56 PW Contrast: 10 8 (0.5ns window) 10 4 (1ps window) Lozhkarev V.V., Freidman G.I., Ginzburg V.N., Katin E.V., Khazanov E.A., Kirsanov A.V., Luchinin G.A., Mal'shakov A.N., Martyanov M.A., Palashov O.V., Poteomkin A.K., Sergeev A.M., Shaykin A.A., Yakovlev I.V.

11

12 Compact 0.56 PW laser system. Compressed pulse CPA Vilnius U., Lithuania Rutherford Lab, UK SIOM, China laser power, TW PW Rochester, USA LLNL, USA IAP, Russia LLNL, USA Rutherford Lab, UK year ILE, Japan JAEA, Japan SIOM, China Texas U., USA

13 Petawatt OPCPA Lasers: Status and Perspectives Introduction to PW lasers Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion

14 Scalability to multi-petawatt power. Routes to increase power and contrast POWER: + Pulse duration: x3 (15fs instead of 45fs) + OPCPA efficiency: x2 (40% instead of 20%) + Pump power x1.3: (230J instead of 180J) + Compressor efficiency x1.2 (79% instead of 66%) TOTAL: x11 ( 6PW instead of 0.56PW ) CONTRAST: Second harmonic generation in KDP crystal theory (includes self-focusing) predicts high efficiency crystal 100mm diameter and 0.5mm thickness was grown experiments are coming soon

15 Scalability to multi-petawatt power. Four started projects. VNIIEF (Sarov) + IAP, Russia, , 3PW OPCPA Rutherford Lab, UK, , 10PW OPCPA НiPER, pan-european, , 150PW / 2000PW OPCPA ELI, pan-european, PW OPCPA or Ti:sapphire

16 Scalability to multi-petawatt power. Sarov N.Novgorod. Synchronization system Nd:YLF Q-switch laser λ=1053nm 10mJ 12nc Pulse shaper Cr:Forsterite fs-laser λ=1250nm 2nJ 40 fs 1nJ 0.5 ns Stretcher 40 fs 0.5 ns 1mJ 1.5ns 1 J 1.5ns Two-stage Nd:YLF amplifier 2J 1.5 ns OPA I KD*P CW Yb:fiber pump 10W λ= nm 2ω λ=911nm 0.8mJ 0.5ns OPA II KD*P λ=1250nm First phase ( TW level) λ=911 nm 70 mj 0.5 ns Compressor 0.5 ns 70 fs 32 mj 70 fs 2Hz Nd:YLF Q-switch laser λ=1053nm amplifier 300J 1ns 2ω 180J 1ns OPA III KD*P 10cm dia 38J 0.5ns Second phase (PW level) Compressor 0.5ns 50fs 24J 43fs 10mJ 12nc Pulse shaper Nd:YLF amplifier amplifier 2kJ 1.5ns 2ω 1kJ 1.5ns OPA IV KD*P 20cm dia 150J 0.5ns Third phase ( 2 PW) Compressor 0.5ns 50fs 100J 50fs

17 Scalability to multi petawatt power. Sarov N.Novgorod. 100??fs November, 2008 OPCPA gain =35 Peak efficiency = 38% chirped pulse energy, J fs 600TW October, Pump energy, J 2.44 λ/d = 12.2 μrad I.A. Belov, O.A. et al. Petawatt laser system of the "Luch" facility

18 Conclusion #1. OPCPA at 910 nm in DKDP is the best. No question. #2. There is only one question. Q.: The best or one of the best? A1: See message #1. 25μrad A2: Will live and see.

19 After conclusion Let s think about laser ceramics! Cr:YAG ceramics Nd,Yb:Re 2 O 3 ceramics (Re=Y,Lu,Sc) very wide aperture to amplify chirped pulses to the multikilojoule level, high conversion efficiency of narrow band laser pulses into chirped pulses, large gain bandwidth to amplify chirped pulses with less than 20 fs durations 1. Very wide aperture to amplify chirped pulses to the multikilojoule level 2. Large gain bandwidth to amplify chirped pulses with less than 50 fs durations 3. High conversion efficiency due to direct lamp pumping (lamps pump Nd and excitation transfers to Yb) Е.А.Khazanov, А.M.Sergeev. Laser Physics, Е.А.Khazanov, А.M.Sergeev. UFN, 2008.

20

21 Compact 0.56 PW laser system. Electon acceleration (preliminary results) Electrons energy spectrum, Numerical simulation drive pulse 1, vacuum tract 2, flat mirror 3, off-axis parabola 4, gas jet 5, foil partition 6, LANEX screen 7, CCD camera with vacuum window 8, probe pulse 9, delay line10, mirror 11, microscopic objective12, wedge

22 Compact 0.56 PW laser system. 120mm clear aperture ОPA OPA 120 mm clear aperture SHG From front-end system (911nm) 300 J 1054 nm pump pulse OPA 3 38J to compressor (911nm) To diagnostic 300 J 1054 nm 180 J 527 nm

23 Scalability to 100(s) petawatt power 18 fs pulse: Ripin D.J., Chudoba C., Gopinath J.T., Fujimoto J.G., Ippen E.P., Morgner U., Kartner F.X., Scheuer V., Angelow G., Tschudi T. // Optics Letters, 27, 61-63, Crazy ideas are welcome! Cr 4+ :YAG ceramics (CPA) 1 Cr:YAG Cr:YSGG Cr:YAG+Cr:YSGG spectra, a.u wave length, nm

24 Scalability to multi-petawatt power. Crazy ideas are welcome! Gain medium Energy source type I type II Ti:saphire type III DKDP type IV Cr:YAG ceramics Pump no 2ω Nd 2ω Nd 1ω Nd Pump duration, ns no <30 1 <30 Amplifier aperture, cm 40х х40 >50 Minimum duration, fs Efficiency (1ω Nd фс), % Number of PWs from 1 kj 1ω Nd 4.5 (5) 8 ( 1.5 ) 4 10 Maximum power obtained, PW 1.3 LLNL, JAEA IAP

25 Physics of OPCPA. Wideband phase-matching ω ω ω = ω ω = ω = ω Ω Ω ( t) () t k r 10 v r v r 1 ϕ 12 2 Z k r Δk 2x ( ω 2 ) = k 3x r ( Ω ) = Δk( Ω ) z 0 ϕ 12 ( ) Ω r ϕ 13 k r k k r Δk ( Ω) Δk(0) 0= phase-matching k 3 = k 0) + k 1 ( 2 (0) 2 Рис 1 2 dk1 dk 1 2z d k1 d k2z 2 + Ω 0( Ω dω dω Ω dω dω V =0 wideband phase-matching = V cos ϕ =0 super-wideband phase-matching 3 )

Optical Parametrical Chirped Pulse Amplification

Optical Parametrical Chirped Pulse Amplification Optical Parametrical Chirped Pulse Amplification for Petawatt Lasers Efim Khazanov Institute of Applied Physics of Russian Academy of Science Introduction Physics of OPCPA Compact 0.56 PW laser system

More information

Recent Progress on the 10PW laser Project at SIOM

Recent Progress on the 10PW laser Project at SIOM Recent Progress on the 10PW laser Project at SIOM Ruxin Li, Yuxin Leng, Xiaoyan Liang, and Zhizhan Xu State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics (SIOM),

More information

Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers

Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers Beamline 1 Beamline 2 Beamline 3 Polarizer Polarizer KDP Type II KDP Type II Ultra-broadband front end 10 J, 1.5 ns, 160 nm DKDP Beamline

More information

J-KAREN-P Session 1, 10:00 10:

J-KAREN-P Session 1, 10:00 10: J-KAREN-P 2018 Session 1, 10:00 10:25 2018 5 8 Outline Introduction Capabilities of J-KAREN-P facility Optical architecture Status and implementation of J-KAREN-P facility Amplification performance Recompression

More information

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Razvan Dabu, Daniel Ursescu INFLPR, Magurele, Romania Contents GiWALAS laser facility TEWALAS laser facility CETAL project

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

High Energy Non - Collinear OPA

High Energy Non - Collinear OPA High Energy Non - Collinear OPA Basics of Operation FEATURES Pulse Duration less than 10 fs possible High Energy (> 80 microjoule) Visible Output Wavelength Tuning Computer Controlled Tuning Range 250-375,

More information

Controlling the phase matching conditions of optical parametric chirped-pulse amplification using partially deuterated KDP

Controlling the phase matching conditions of optical parametric chirped-pulse amplification using partially deuterated KDP Controlling the phase matching conditions of optical parametric chirped-pulse amplification using partially deuterated KDP K. Ogawa 1,3, K. Sueda 2,3, Y. Akahane 1,3, M. Aoyama 1,3, K. Tsuji 1, K. Fujioka

More information

Adaptive Optics for. High Peak Power Lasers

Adaptive Optics for. High Peak Power Lasers Adaptive Optics for High Peak Power Lasers Chris Hooker Central Laser Facility STFC Rutherford Appleton Laboratory Chilton, Oxfordshire OX11 0QX U.K. What does High-Power Laser mean nowadays? Distinguish

More information

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating Spectral density (db) 0 10 20 30 40 Mirror VBG 1053.0 1053.3 1053.6 Wavelength (nm) Frontiers in Optics 2007/Laser

More information

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C Lithium Triborate Crystal LBO Lithium triborate (LiB3O5 or LBO) is an excellent nonlinear optical crystal for many applications. It is grown by an improved flux method. AOTK s LBO is Featured by High damage

More information

Lithium Triborate (LiB 3 O 5, LBO)

Lithium Triborate (LiB 3 O 5, LBO) NLO Cr ys tals Introduction Lithium Triborate (LiB 3 O 5, LBO) Lithium Triborate (LiB 3 O 5 or LBO) is an excellent nonlinear optical crystal discovered and developed by FIRSM, CAS (Fujian Institute of

More information

Development of scalable laser technology for EUVL applications

Development of scalable laser technology for EUVL applications Development of scalable laser technology for EUVL applications Tomáš Mocek, Ph.D. Chief Scientist & Project Leader HiLASE Centre CZ.1.05/2.1.00/01.0027 Lasers for real-world applications Laser induced

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton Progress in ultrafast Cr:ZnSe Lasers Evgueni Slobodtchikov, Peter Moulton Topics Diode-pumped Cr:ZnSe femtosecond oscillator CPA Cr:ZnSe laser system with 1 GW output This work was supported by SBIR Phase

More information

High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses

High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses Since its invention in the early 199s, 1 optical parametric chirped-pulse amplification

More information

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA Alexander N. Starodub Deputy Director N.G.Basov Institute of Quantum Radiophysics of P.N.Lebedev Physical Institute of the RAS Leninsky

More information

Lithium Triborate (LiB 3 O 5, LBO) Introductions

Lithium Triborate (LiB 3 O 5, LBO) Introductions s Laser s NLO s Birefringent s AO and EO s Lithium Triborate (LiB 3 O 5, ) Introductions Banner Union provide the high quality Broad transparency range from 160nm to 2600nm; High optical homogeneity (δn

More information

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc. Development of near and mid-ir ultrashort pulse laser systems at Q-Peak Evgueni Slobodtchikov Q-Peak, Inc. Outline Motivation In search of Ti:Sapphire of infrared Yb:doped laser crystals Mid-IR laser crystals

More information

MEC Laser Systems. Bill White LCLS Laser Group Leader April 13, Bill White. MEC Laser Systems. MEC Workshop.

MEC Laser Systems. Bill White LCLS Laser Group Leader April 13, Bill White. MEC Laser Systems. MEC Workshop. Bill White LCLS Laser Group Leader April 13, 2009 1 1 Bill White Outline Laser Requirements / Wish List Energy vs. Rep Rate Trade-offs Baseline ns laser fs laser Layout in Hutch 6 Other possibilities Helen

More information

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec SPIE Photonics West 2.2.2014 Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier Bruno Le Garrec bruno.legarrec@eli-beams.eu On behalf of Georg Korn, Bedrich Rus and

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors Ming-Yuan Cheng, Almantas Galvanauskas University of Michigan Vadim Smirnov,

More information

Chirped Pulse Amplification

Chirped Pulse Amplification Chirped Pulse Amplification Short pulse oscillator t Dispersive delay line t Solid state amplifiers t Pulse compressor t Higher laser peak powers (laser intensity) reduce pulse duration increase pulse

More information

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Chapter 9: Optical Parametric Amplifiers and Oscillators 9.8 Noncollinear optical parametric amplifier (NOPA) 9.9 Optical parametric chirped-pulse

More information

High Energy Laser Systems

High Energy Laser Systems High Energy Laser Systems 2019 FEMTOSECOND LASERS UltraFlux Tunable Wavelength Femtosecond Laser Systems UltraFlux is a compact high energy tunable wavelength femtosecond laser system which incorporates

More information

The Realization of Ultra-Short Laser Sources. with Very High Intensity

The Realization of Ultra-Short Laser Sources. with Very High Intensity Adv. Studies Theor. Phys., Vol. 3, 2009, no. 10, 359-367 The Realization of Ultra-Short Laser Sources with Very High Intensity Arqile Done University of Gjirokastra, Department of Mathematics Computer

More information

1.2. Optical parametric chirped pulse

1.2. Optical parametric chirped pulse OPCPA and new amplification techniques Hugo Filipe de Almeida Pires Recent developments in high intensity lasers have allowed increasingly higher powers, up to the Petawatt (10 15 W) level. This redefinition

More information

DEVELOPMENT OF A PHOTO CATHODE LASER SYSTEM FOR QUASI ELLIPSOIDAL BUNCHES AT PITZ*

DEVELOPMENT OF A PHOTO CATHODE LASER SYSTEM FOR QUASI ELLIPSOIDAL BUNCHES AT PITZ* DEVELOPMENT OF A PHOTO CATHODE LASER SYSTEM FOR QUASI ELLIPSOIDAL BUNCHES AT PITZ* M. Krasilnikov #, M. Khojoyan, F. Stephan, DESY Zeuthen, Zeuthen, Germany, A. Andrianov, E. Gacheva, E. Khazanov, S. Mironov,

More information

ALPHA 5/XS 200 TW Ultrafast Ti:Sa Series

ALPHA 5/XS 200 TW Ultrafast Ti:Sa Series > ALPHA 5/XS 200 TW Ultrafast Ti:Sa Series FEATURES Broadband, high contrast using XPW filter High beam quality with high energy pumping lasers Unmatched energy stability Industrial reliability with water

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

5kW DIODE-PUMPED TEST AMPLIFIER

5kW DIODE-PUMPED TEST AMPLIFIER 5kW DIODE-PUMPED TEST AMPLIFIER SUMMARY?Gain - OK, suggest high pump efficiency?efficient extraction - OK, but more accurate data required?self-stabilisation - Yes, to a few % but not well matched to analysis

More information

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit MIT X-ray Laser Project The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit 30 or more independent beamlines Fully coherent milli-joule pulses at khz rates Wavelength range

More information

OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility

OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility Complete in 2007 J. Kelly, et al. University of Rochester Laboratory for Laser Energetics Inertial Fusion Sciences and Applications

More information

Laser Science and Technology at LLE

Laser Science and Technology at LLE Laser Science and Technology at LLE Nd:glass High energy Electrical Yb:YAG High peak power Mechanical OPCPA High average power Eye injuries OPO Exotic wavelengths Fire J. Bromage Group Leader, Sr. Scientist

More information

Femtosecond Laser Simulation Facility for SEE IC Testing

Femtosecond Laser Simulation Facility for SEE IC Testing Femtosecond Laser Simulation Facility for SEE IC Testing Andrey N. Egorov, Alexander I. Chumakov, Oleg B. Mavritskiy, Alexander A. Pechenkin, Dmitry V. Savchenkov, Vitaliy A. Telets, Andrey V. Yanenko

More information

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza Experiment C & D: Course: FY1 The Pulsed Laser Done by: Wael Al-Assadi Mangwiza 8/1/ Wael Al Assadi Mangwiza Experiment C & D : Introduction: Course: FY1 Rev. 35. Page: of 16 1// In this experiment we

More information

Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression

Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression K. Murari 1,2,3, H. Cankaya 1,2, B. Debord 5, P. Li 1, G. Cirmi 1,2, G. M. Rossi 1,2, S. Fang 1,2, O. D. Mücke 1,2, P.

More information

New generation Laser amplifier system for FEL applications at DESY.

New generation Laser amplifier system for FEL applications at DESY. New generation Laser amplifier system for FEL applications at DESY. Franz Tavella Helmholtz-Institut-Jena Merging advanced solid-state Laser technology with FEL sources Helmholtz-Institut-Jena DESY F.

More information

Power scaling of picosecond thin disc laser for LPP and FEL EUV sources

Power scaling of picosecond thin disc laser for LPP and FEL EUV sources Power scaling of picosecond thin disc laser for LPP and FEL EUV sources A. Endo 1,2, M. Smrz 1, O. Novak 1, T. Mocek 1, K.Sakaue 2 and M.Washio 2 1) HiLASE Centre, Institute of Physics AS CR, Dolní Břežany,

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES Luca Poletto CNR - Institute of Photonics and Nanotechnologies Laboratory for UV and X-Ray Optical Research Padova, Italy e-mail:

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

Overview of Project Orion

Overview of Project Orion Overview of Project Orion Nicholas W. Hopps, Thomas H. Bett, Nicholas Cann, Colin N. Danson, Stuart J. Duffield, David A. Egan, Stephen P. Elsmere, Mark T. Girling, Ewan J. Harvey, David I. Hillier, David

More information

SCS Optical Laser Delivery

SCS Optical Laser Delivery SCS Optical Laser Delivery Robert Carley Instrument Scientist SCS Group Schenefeld, 23 January 2017 2 Overiew Pump-probe laser at European XFEL Laser system Burst mode operation Sample heating SCS optical

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

The KrF alternative for fast ignition inertial fusion

The KrF alternative for fast ignition inertial fusion The KrF alternative for fast ignition inertial fusion IstvánB Földes 1, Sándor Szatmári 2 Students: A. Barna, R. Dajka, B. Gilicze, Zs. Kovács 1 Wigner Research Centre of the Hungarian Academy of Sciences,

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

Characterization of Chirped volume bragg grating (CVBG)

Characterization of Chirped volume bragg grating (CVBG) Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds

More information

How far are we today from its availability?

How far are we today from its availability? The 10 PW Ti-Sapphire based Lasers for the Romanian ELI NP Pillar How far are we today from its availability? Jean Paul Chambaret (ILE/ ENSTA) Jean-paul.chambaret@ensta.fr How to compare ILE APOLLON and

More information

FA Noncollinear Optical Parametric Amplifier

FA Noncollinear Optical Parametric Amplifier REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience

Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience Michelle Shinn ERL Workshop Jefferson Lab March 22, 2005 Work supported by, the Joint

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Industrial High Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 6 W output power at

More information

High Average Power Frequency Conversion on the Mercury Laser

High Average Power Frequency Conversion on the Mercury Laser UCRL-POST-213237 High Average Power Frequency Conversion on the Laser Zhi M. Liao, Christopher Ebbers, Andy Bayramian, Mike Benapfl, Barry Freitas, Bob Kent, Dave van Lue, Kathleen Schaffers, Steve Telford,

More information

Ultrawideband regenerative amplifiers via intracavity acousto-optic programmable gain control

Ultrawideband regenerative amplifiers via intracavity acousto-optic programmable gain control Ultrawideband regenerative amplifiers via intracavity acousto-optic programmable gain control Thomas Oksenhendler, Nicolas Forget, Daniel Kaplan, Pierre Tournois Fastlite, Bât 403, Ecole Polytechnique,

More information

Development of High-peak Power Yb-doped Fiber Laser in Large Core Fiber

Development of High-peak Power Yb-doped Fiber Laser in Large Core Fiber Development of High-peak Power Yb-doped Fiber Laser in Large Core Fiber Institute of Laser Engineering Osaka University Hidetsugu Yoshida Koji Tsubakimoto Hisanori Fujita Masahiro Nakatsuka Noriaki Miyanaga

More information

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009 Beam for LCLS Henrik Loos Workshop July 29-31, 29 1 1 Henrik Loos Overview Coherent Radiation Sources Timing THz Source Performance 2 2 Henrik Loos LCLS Layout 6 MeV 135 MeV 25 MeV 4.3 GeV 13.6 GeV σ z.83

More information

A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation

A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation I. Mantouvalou, K. Witte, R. Jung, J. Tümmler, G. Blobel, H. Legall,

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture q Basic Lidar Architecture q Configurations vs. Arrangements q Transceiver with HOE q A real example: STAR Na Doppler Lidar

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

Gigashot TM FT High Energy DPSS Laser

Gigashot TM FT High Energy DPSS Laser Gigashot TM FT High Energy DPSS Laser Northrop Grumman Cutting Edge Optronics (636) 916-4900 / Email: st-ceolaser-info@ngc.com 2015 Northrop Grumman Systems Corporation Gigashot TM FT Key Specifications

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology* TIGER Femtosecond and Picosecond Ti:Sapphire Lasers Customized systems with SESAM technology* www.lumentum.com Data Sheet The TIGER femtosecond and picosecond lasers combine soliton mode-locking, a balance

More information

Thin-Disc-Based Driver

Thin-Disc-Based Driver Thin-Disc-Based Driver Jochen Speiser German Aerospace Center (DLR) Institute of Technical Physics Solid State Lasers and Nonlinear Optics Folie 1 German Aerospace Center! Research Institution! Space Agency!

More information

Sept 24-30, 2017 LLNL-PRES

Sept 24-30, 2017 LLNL-PRES Sept 24-30, 2017 Constantin Haefner, Craig Siders, Andy Bayramian, David Alessi, Kyle Chestnut, Al Erlandson, Eyal Feigenbaum, Tom Galvin, Paul Leisher, Emily Link, Dan Mason, Bill Molander, Paul Rosso,

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Atlantic Industrial High Power Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 8 W

More information

Laser Induced Damage Threshold of Optical Coatings

Laser Induced Damage Threshold of Optical Coatings White Paper Laser Induced Damage Threshold of Optical Coatings An IDEX Optics & Photonics White Paper Ronian Siew, PhD Craig Hanson Turan Erdogan, PhD INTRODUCTION Optical components are used in many applications

More information

Flash-lamp Pumped Q-switched

Flash-lamp Pumped Q-switched NL120 NL200 NL220 NL230 NL300 NL303D NL310 NL300 series electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3 6 ns duration. Pulse repetition rate can be selected in range

More information

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to Nd: YAG Lasers Dope Neodynmium (Nd) into material (~1%) Most common Yttrium Aluminum Garnet - YAG: Y 3 Al 5 O 12 Hard brittle but good heat flow for cooling Next common is Yttrium Lithium Fluoride: YLF

More information

Outline. Motivation Experimental Set-Up Theory behind the set-up Results Acknowledgements

Outline. Motivation Experimental Set-Up Theory behind the set-up Results Acknowledgements Outline Motivation Experimental Set-Up Theory behind the set-up Results Acknowledgements Motivation Attosecond pulses could be used to study time-dependence of atomic dynamics. Greater control of pulse

More information

High-Energy 6.2-fs Pulses for Attosecond Pulse Generation

High-Energy 6.2-fs Pulses for Attosecond Pulse Generation Laser Physics, Vol. 15, No. 6, 25, pp. 838 842. Original Text Copyright 25 by Astro, Ltd. Copyright 25 by MAIK Nauka /Interperiodica (Russia). ATTOSECOND SCIENCE AND TECHNOLOGY High-Energy 6.2-fs Pulses

More information

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts PITZ Laser Systems General introduction: systems, layouts Matthias Groß PITZ Laser Systems Technisches Seminar Zeuthen, 14.11.2017 What is a Laser? > General setup Light Amplification by Stimulated Emission

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture Basic Lidar Architecture Configurations vs. Arrangements Transceiver with HOE A real example: STAR Na Doppler Lidar Another

More information

Atlantic. series. Industrial High Power Picosecond DPSS Lasers

Atlantic. series. Industrial High Power Picosecond DPSS Lasers Atlantic series Industrial High Power Picosecond DPSS Lasers Laser description Laser micromachining is rapidly becoming the material processing technology of choice for numerous small scale, real world

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Atlantic Industrial High Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 8 W output

More information

GRENOUILLE.

GRENOUILLE. GRENOUILLE Measuring ultrashort laser pulses the shortest events ever created has always been a challenge. For many years, it was possible to create ultrashort pulses, but not to measure them. Techniques

More information

Development of high average power fiber lasers for advanced accelerators

Development of high average power fiber lasers for advanced accelerators Development of high average power fiber lasers for advanced accelerators Almantas Galvanauskas Center for Ultrafast Optical Science (CUOS), University of Michigan 16 th Advanced Accelerator Concepts Workshop

More information

Laser systems for science instruments

Laser systems for science instruments European XFEL Users Meeting 27-20 January 2016, Main Auditorium (Bldg. 5), DESY, Hamburg Laser systems for science instruments M. J. Lederer WP78, European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg,

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

LCLS-II-HE Instrumentation

LCLS-II-HE Instrumentation LCLS-II-HE Instrumentation Average Brightness (ph/s/mm 2 /mrad 2 /0.1%BW) LCLS-II-HE: Enabling New Experimental Capabilities Structural Dynamics at the Atomic Scale Expand the photon energy reach of LCLS-II

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

How to build an Er:fiber femtosecond laser

How to build an Er:fiber femtosecond laser How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Konstanz Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Frequency comb laser Time domain : pulse train

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

1 kw, 15!J linearly polarized fiber laser operating at 977 nm 1 kw, 15!J linearly polarized fiber laser operating at 977 nm V. Khitrov, D. Machewirth, B. Samson, K. Tankala Nufern, 7 Airport Park Road, East Granby, CT 06026 phone: (860) 408-5000; fax: (860)408-5080;

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

Single-frequency operation of a Cr:YAG laser from nm

Single-frequency operation of a Cr:YAG laser from nm Single-frequency operation of a Cr:YAG laser from 1332-1554 nm David Welford and Martin A. Jaspan Paper CThJ1, CLEO/QELS 2000 San Francisco, CA May 11, 2000 Outline Properties of Cr:YAG Cr:YAG laser design

More information

Review of RF photoinjector for radiation chemistry. Univ. Tokyo A. Sakumi, M. Uesaka, Y. Muroya, Y. Katsumura

Review of RF photoinjector for radiation chemistry. Univ. Tokyo A. Sakumi, M. Uesaka, Y. Muroya, Y. Katsumura Review of RF photoinjector for radiation chemistry Univ. Tokyo A. Sakumi, M. Uesaka, Y. Muroya, Y. Katsumura Application for ultra-short pulse Radiation Chemistry experiments Application for ultra-short

More information

FemtoFAB. Femtosecond laser micromachining system. tel fax Konstitucijos ave. 23C LT Vilnius, Lithuania

FemtoFAB. Femtosecond laser micromachining system. tel fax Konstitucijos ave. 23C LT Vilnius, Lithuania FemtoFAB Femtosecond laser micromachining system Konstitucijos ave. 23C LT-08105 Vilnius, Lithuania tel. +370 5 272 57 38 fax +370 5 272 37 04 info@wophotonics.com www.wophotonics.com INTRODUCTION FemtoFAB

More information

LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS

LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS A. Aryshev On behalf of QB group and THz collaboration 14 Outline THz project overview LUCX activity LUCX Projects Overview THz program LUCX Laser system LUCX

More information

DCS laser for Thomson scattering diagnostic applications

DCS laser for Thomson scattering diagnostic applications DCS laser for Thomson scattering diagnostic applications Authors Jason Zweiback 10/6/2015 jzweiback@logostech.net 1 Summary Motivation DCS laser Laser for Thomson scattering diagnostics 2 What is the Dynamic

More information

Advanced seeders for fiber lasers - IFLA. 23 June. 2014

Advanced seeders for fiber lasers - IFLA. 23 June. 2014 Advanced seeders for fiber lasers - IFLA 23 June. 2014 Seeders - introduction In MOPA * pulsed fiber lasers, seeders largely impact major characteristics of the laser system: Optical spectrum Peak power

More information

Research Article Design Considerations for Dispersion Control with a Compact Bonded Grism Stretcher for Broadband Pulse Amplification

Research Article Design Considerations for Dispersion Control with a Compact Bonded Grism Stretcher for Broadband Pulse Amplification International Scholarly Research Network ISRN Optics Volume 2012, Article ID 120827, 4 pages doi:10.5402/2012/120827 Research Article Design Considerations for Dispersion Control with a Compact Bonded

More information

Narrow line diode laser stacks for DPAL pumping

Narrow line diode laser stacks for DPAL pumping Narrow line diode laser stacks for DPAL pumping Tobias Koenning David Irwin, Dean Stapleton, Rajiv Pandey, Tina Guiney, Steve Patterson DILAS Diode Laser Inc. Joerg Neukum Outline Company overview Standard

More information

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Panel discussion Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Akira Endo * Extreme Ultraviolet Lithography System Development Association Gigaphoton Inc * 2008 EUVL Workshop 11

More information

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously FLASH at DESY The first soft X-ray FEL operating two undulator beamlines simultaneously Katja Honkavaara, DESY for the FLASH team FEL Conference 2014, Basel 25-29 August, 2014 First Lasing FLASH2 > First

More information

Review of MPS Solid State Laser Systems

Review of MPS Solid State Laser Systems Review of MPS Solid State Laser Systems P.F. Moulton Q-Peak 135 South Road Bedford, MA 01730 LEOS 2006 Montreal, Canada November 2, 2006 Outline General design Specific systems Nd:YLF, 1047 and 1053 nm

More information

Ultra-stable flashlamp-pumped laser *

Ultra-stable flashlamp-pumped laser * SLAC-PUB-10290 September 2002 Ultra-stable flashlamp-pumped laser * A. Brachmann, J. Clendenin, T.Galetto, T. Maruyama, J.Sodja, J. Turner, M. Woods Stanford Linear Accelerator Center, 2575 Sand Hill Rd.,

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Qualifying Exam. Brendan Reagan July 10 th, 2009

Qualifying Exam. Brendan Reagan July 10 th, 2009 Qualifying Exam Brendan Reagan July 10 th, 2009 Papers 1. Christoph Wandt, et al, "Generation of 220 mj nanosecond pulses at a 10 Hz repetition rate with excellent beam quality in a diode-pumped Yb:YAG

More information