Dual, 16 MHz, Rail-to-Rail FET Input Amplifier AD823

Size: px
Start display at page:

Download "Dual, 16 MHz, Rail-to-Rail FET Input Amplifier AD823"

Transcription

1 FEATURES Single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V to 36 V High load drive Capacitive load drive of 5 pf, G = + Output current of 5 ma,.5 V from supplies Excellent ac performance on.6 ma/amplifier 3 db bandwidth of 6 MHz, G = + 35 ns settling time to.% ( V step) Slew rate of V/µs Good dc performance 8 µv maximum input offset voltage µv/ C offset voltage drift 5 pa maximum input bias current Low distortion: 8 dbc worst khz Low noise: 6 nv/ khz No phase inversion with inputs to the supply rails APPLICATIONS Battery-powered precision instrumentation Photodiode preamps Active filters -bit to 6-bit data acquisition systems Medical instrumentation GENERAL DESCRIPTION The is a dual precision, 6 MHz, JFET input op amp that can operate from a single supply of 3. V to 36 V or from dual supplies of ±.5 V to ±8 V. It has true single-supply capability with an input voltage range extending below ground in single-supply mode. Output voltage swing extends to within 5 mv of each rail for IOUT µa, providing outstanding output dynamic range. An offset voltage of 8 µv maximum, an offset voltage drift of µv/ C, input bias currents below 5 pa, and low input voltage noise provide dc precision with source impedances up to a Gigaohm. It provides 6 MHz, 3 db bandwidth, 8 db khz, and a V/µs slew rate with a low supply current of.6 ma per amplifier. The drives up to 5 pf of direct capacitive load as a follower and provides an output current of 5 ma,.5 V from the supply rails. This allows the amplifier to handle a wide range of load conditions. 3V GND OUTPUT (db) Dual, 6 MHz, Rail-to-Rail FET Input Amplifier k CONNECTION DIAGRAM OUT 8 +V S IN +IN V S OUT IN +IN Figure. 8-Lead PDIP and SOIC 5mV µs Figure. Output Swing, +VS = +3 V, G = + G = + k k M FREQUENCY (Hz) Figure 3. Small Signal Bandwidth, G = + 9- R L = kω C L = 5pF +V S = +3V G = + This combination of ac and dc performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for applications such as A/D drivers, high speed active filters, and other low voltage, high dynamic range systems. The is available over the industrial temperature range of 4 C to +85 C and is offered in both 8-lead PDIP and 8-lead SOIC packages. M Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 96, Norwood, MA 6-96, U.S.A. Tel: Fax: Analog Devices, Inc. All rights reserved.

2 * PRODUCT PAGE QUICK LINKS Last Content Update: /8/7 COMPARABLE PARTS View a parametric search of comparable parts. EVALUATION KITS Universal Evaluation Board for Dual High Speed Operational Amplifiers DOCUMENTATION Application Notes AN-8: JFET-Input Amps are Unrivaled for Speed and Accuracy AN-53: Find Op Amp Noise with Spreadsheet AN-57: Careful Design Tames High Speed Op Amps AN-4: Replacing Output Clamping Op Amps with Input Clamping Amps AN-47: Fast Rail-to-Rail Operational Amplifiers Ease Design Constraints in Low Voltage High Speed Systems AN-58: Biasing and Decoupling Op Amps in Single Supply Applications AN-649: Using the Analog Devices Active Filter Design Tool : Dual, 6 MHz, Rail-to-Rail FET Input Amplifier Data Sheet User Guides UG-8: Universal Evaluation Board for Dual High Speed Op Amps in SOIC Packages TOOLS AND SIMULATIONS Analog Filter Wizard Analog Photodiode Wizard Power Dissipation vs Die Temp VRMS/dBm/dBu/dBV calculators SPICE Macro Model A SPICE Macro Model REFERENCE MATERIALS Product Selection Guide High Speed Amplifiers Selection Table Tutorials MT-3: Ideal Voltage Feedback (VFB) Op Amp MT-33: Voltage Feedback Op Amp Gain and Bandwidth MT-47: Op Amp Noise MT-48: Op Amp Noise Relationships: /f Noise, RMS Noise, and Equivalent Noise Bandwidth MT-49: Op Amp Total Output Noise Calculations for Single-Pole System MT-5: Op Amp Total Output Noise Calculations for Second-Order System MT-5: Op Amp Noise Figure: Don't Be Misled MT-53: Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR MT-56: High Speed Voltage Feedback Op Amps MT-58: Effects of Feedback Capacitance on VFB and CFB Op Amps MT-6: Choosing Between Voltage Feedback and Current Feedback Op Amps DESIGN RESOURCES Material Declaration PCN-PDN Information Quality And Reliability Symbols and Footprints DISCUSSIONS View all EngineerZone Discussions. SAMPLE AND BUY Visit the product page to see pricing options. TECHNICAL SUPPORT Submit a technical question or find your regional support number. DOCUMENT FEEDBACK Submit feedback for this data sheet. This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

3 TABLE OF CONTENTS Features... Applications... General Description... Connection Diagram... Revision History... Specifications... 3 Absolute Maximum Ratings... 6 Thermal Resistance... 6 ESD Caution... 6 Typical Performance Characteristics...7 Theory of Operation... 3 Output Impedance... 4 Application Notes... 5 Input Characteristics... 5 Output Characteristics... 5 Outline Dimensions... 8 Ordering Guide... 9 REVISION HISTORY / Rev. D to Rev. E Changes to Theory of Operation Section... 3 Changes to Ordering Guide / Rev. C to Rev. D Changes to Figure Changes to Figure / Rev. B to Rev. C Changes to Table /7 Rev. A to Rev. B Updated Format... Universal Changes to DC Performance... 5 Updated Outline Dimensions... 8 Changes to Ordering Guide /4 Rev. to Rev. A Changes to Specifications... Changes to Ordering Guide... 7 Updated Outline Dimensions /95 Revision : Initial Version Rev. E Page of

4 SPECIFICATIONS At TA = 5 C, +VS = +5 V, R L = kω to.5 V, unless otherwise noted. Table. Parameter Conditions Min Typ Max Unit DYNAMIC PERFORMANCE 3 db Bandwidth, VO. V p-p G = + 6 MHz Full Power Response VO = V p-p 3.5 MHz Slew Rate G =, VO = 4 V Step 4 V/µs Settling Time to.% G =, VO = V Step 3 ns to.% G =, VO = V Step 35 ns NOISE/DISTORTION PERFORMANCE Input Voltage Noise f = khz 6 nv/ Hz Input Current Noise f = khz fa/ Hz Harmonic Distortion RL = 6 Ω to.5 V, VO = V p-p, f = khz 8 dbc Crosstalk f = khz RL = 5 kω 5 db f = MHz RL = 5 kω 63 db DC PERFORMANCE Initial Offset..8 mv Maximum Offset Over temperature.3. mv Offset Drift µv/ C Input Bias Current VCM = V to 4 V 3 5 pa at TMAX VCM = V to 4 V.5 5 na Input Offset Current pa at TMAX.5 na Open-Loop Gain VO =. V to 4 V, RL = kω 45 V/mV TMIN to TMAX V/mV INPUT CHARACTERISTICS Input Common-Mode Voltage Range. to +3. to +3.8 V Input Resistance 3 Ω Input Capacitance.8 pf Common-Mode Rejection Ratio VCM = V to 3 V 6 76 db OUTPUT CHARACTERISTICS Output Voltage Swing IL = ± µa.5 to V IL = ± ma.8 to 4.9 V IL = ± ma.5 to 4.75 V Output Current VOUT =.5 V to 4.5 V 6 ma Short-Circuit Current Sourcing to.5 V 4 ma Sinking to.5 V 3 ma Capacitive Load Drive G = + 5 pf POWER SUPPLY Operating Range 3 36 V Quiescent Current TMIN to TMAX, total ma Power Supply Rejection Ratio VS = 5 V to 5 V, TMIN to TMAX 7 8 db Rev. E Page 3 of

5 At TA = 5 C, +VS = +3.3 V, RL = kω to.65 V, unless otherwise noted. Table. Parameter Conditions Min Typ Max Unit DYNAMIC PERFORMANCE 3 db Bandwidth, VO. V p-p G = + 5 MHz Full Power Response VO = V p-p 3. MHz Slew Rate G =, VO = V Step 3 V/µs Settling Time to.% G =, VO = V Step 5 ns to.% G =, VO = V Step 3 ns NOISE/DISTORTION PERFORMANCE Input Voltage Noise f = khz 6 nv/ Hz Input Current Noise f = khz fa/ Hz Harmonic Distortion RL = Ω, VO = V p-p, f = khz 93 dbc Crosstalk f = khz RL = 5 kω 5 db f = MHz RL = 5 kω 63 db DC PERFORMANCE Initial Offset..5 mv Maximum Offset Over temperature.5.5 mv Offset Drift µv/ C Input Bias Current VCM = V to V 3 5 pa at TMAX VCM = V to V.5 5 na Input Offset Current pa at TMAX.5 na Open-Loop Gain VO =. V to V, RL = kω 5 3 V/mV TMIN to TMAX V/mV INPUT CHARACTERISTICS Input Common-Mode Voltage Range. to +. to +.8 V Input Resistance 3 Ω Input Capacitance.8 pf Common-Mode Rejection Ratio VCM = V to V 54 7 db OUTPUT CHARACTERISTICS Output Voltage Swing IL = ± µa.5 to 3.75 V IL = ± ma.8 to 3. V IL = ± ma.5 to 3.5 V Output Current VOUT =.5 V to.5 V 5 ma Short-Circuit Current Sourcing to.5 V 4 ma Sinking to.5 V 3 ma Capacitive Load Drive G = + 5 pf POWER SUPPLY Operating Range 3 36 V Quiescent Current TMIN to TMAX, total ma Power Supply Rejection Ratio VS = 3.3 V to 5 V, TMIN to TMAX 7 8 db Rev. E Page 4 of

6 At TA = 5 C, VS = ±5 V, RL = kω to V, unless otherwise noted. Table 3. Parameter Conditions Min Typ Max Unit DYNAMIC PERFORMANCE 3 db Bandwidth, VO. V p-p G = + 6 MHz Full Power Response VO = V p-p 4 MHz Slew Rate G =, VO = V Step 7 5 V/µs Settling Time to.% G =, VO = V Step 55 ns to.% G =, VO = V Step 65 ns NOISE/DISTORTION PERFORMANCE Input Voltage Noise f = khz 6 nv/ Hz Input Current Noise f = khz fa/ Hz Harmonic Distortion RL = 6 Ω, VO = V p-p, f = khz 9 dbc Crosstalk f = khz RL= 5 kω 5 db f = MHz RL= 5 kω 63 db DC PERFORMANCE Initial Offset mv Maximum Offset Over temperature. 7 mv Offset Drift µv/ C Input Bias Current VCM = V 5 3 pa VCM = V 6 pa at TMAX VCM = V.5 5 na Input Offset Current pa at TMAX.5 na Open-Loop Gain VO = + V to V, RL = kω 3 6 V/mV TMIN to TMAX 3 V/mV INPUT CHARACTERISTICS Input Common-Mode Voltage Range 5. to to +3.8 V Input Resistance 3 Ω Input Capacitance.8 pf Common-Mode Rejection Ratio VCM = 5 V to +3 V 66 8 db OUTPUT CHARACTERISTICS Output Voltage Swing IL = ± µa 4.95 to V IL = ± ma 4.9 to +4.9 V IL = ± ma 4.75 to V Output Current VOUT = 4.5 V to +4.5 V 7 ma Short-Circuit Current Sourcing to V 8 ma Sinking to V 6 ma Capacitive Load Drive G = + 5 pf POWER SUPPLY Operating Range 3 36 V Quiescent Current TMIN to TMAX, total ma Power Supply Rejection Ratio VS = 5 V to 5 V, TMIN to TMAX 7 8 db Rev. E Page 5 of

7 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Rating Supply Voltage 36 V Internal Power Dissipation PDIP (N).3 W SOIC (R).9 W Input Voltage (Common Mode) ±VS Differential Input Voltage ±VS Output Short-Circuit Duration See Figure 4 Storage Temperature Range N, R 65 C to +5 C Operating Temperature Range 4 C to +85 C Lead Temperature Range 3 C (Soldering, sec) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE θja is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Specification is for device in free air. Table 5. Thermal Resistance Package Type θja Unit 8-Lead PDIP 9 C/W 8-Lead SOIC 6 C/W MAXIMUM POWER DISSIPATION (W) LEAD PDIP 8-LEAD SOIC T J = 5 C AMBIENT TEMPERATURE ( C) Figure 4. Maximum Power Dissipation vs. Temperature 9-4 ESD CAUTION Rev. E Page 6 of

8 TYPICAL PERFORMANCE CHARACTERISTICS UNITS σ = 4µV UNITS σ =.4pA UNITS 4 3 UNITS INPUT OFFSET VOLTAGE (µv) Figure 5. Typical Distribution of Input Offset Voltage INPUT BIAS CURRENT (pa) Figure 8. Typical Distribution of Input Bias Current 9-8 UNITS C TO +5 C 3 UNITS INPUT BIAS CURRENT (pa) V CM = V INPUT OFFSET VOLTAGE DRIFT (µv/ C) Figure 6. Typical Distribution of Input Offset Voltage Drift TEMPERATURE ( C) Figure 9. Input Bias Current vs. Temperature VS = +5V V S = ±5V INPUT BIAS CURRENT (pa) 3 INPUT BIAS CURRENT (pa) COMMON-MODE VOLTAGE (V) Figure 7. Input Bias Current vs. Common-Mode Voltage COMMON-MODE VOLTAGE (V) Figure. Input Bias Current vs. Common-Mode Voltage 9- Rev. E Page 7 of

9 V S = ±.5V R L = kω 93 OPEN-LOOP GAIN (db) OPEN-LOOP GAIN (db) k k k 5k LOAD RESISTANCE (Ω) Figure. Open-Loop Gain vs. Load Resistance TEMPERATURE ( C) Figure 4. Open-Loop Gain vs. Temperature 9-4 OPEN-LOOP GAIN (k V ) V R L = kω R L = kω R L = Ω OPEN-LOOP GAIN (db) GAIN R L = kω C L = pf PHASE PHASE MARGIN (Degrees) OUTPUT VOLTAGE (V) Figure. Open-Loop Gain vs. Output Voltage, VS = ±.5 V 9- k k k M M M FREQUENCY (Hz) Figure 5. Open-Loop Gain and Phase Margin vs. Frequency THD (db) V S = +3V V OUT = V p-p R L = Ω V S = ±5V V OUT = V p-p R L = 6Ω V S = ±.5V V OUT = V p-p R L = kω V OUT = V p-p R L = 5kΩ k k k FREQUENCY (Hz) ALL OTHERS +V S = +3V V OUT = V p-p R L = 5kΩ Figure 3. Total Harmonic Distortion vs. Frequency M 9-3 INPUT VOLTAGE NOISE (nv/ Hz) 3 3 k k k M FREQUENCY (Hz) Figure 6. Input Voltage Noise vs. Frequency 9-6 Rev. E Page 8 of

10 CLOSED-LOOP GAIN (db) C +7 C 55 C C L = pf R L = kω G = + CMRR (db) V S = ±5V FREQUENCY (MHz) 9-7 k k k M M FREQUENCY (Hz) 9- Figure 7. Closed-Loop Gain vs. Frequency Figure. Common-Mode Rejection Ratio vs. Frequency GAIN = + OUTPUT RESISTANCE (Ω). OUTPUT SATURATION VOLTAGE (V). V OL 5 C V S V OH 5 C. k k k M M FREQUENCY (Hz) Figure 8. Output Resistance vs. Frequency, +VS = +5 V, Gain = LOAD CURRENT (ma) Figure. Output Saturation Voltage vs. Load Current 9- OUTPUT STEP SIZE FROM V TO V SHOWN (V) V S = ±5V C L = pf %.%.% %.%.% SETTLING TIME (ns) 9-9 QUIESCENT CURRENT (ma) C +5 C 55 C 5 5 SUPPLY VOLTAGE (±V) 9- Figure 9. Output Step Size vs. Settling Time (Inverter) Figure. Quiescent Current vs. Supply Voltage Rev. E Page 9 of

11 POWER SUPPLY REJECTION (db) PSRR +PSRR SERIES RESISTANCE (Ω) Ф M = V IN Ф M = 45 R S C L k k k M M FREQUENCY (Hz) Figure 3. Power Supply Rejection vs. Frequency CAPACITOR (pf ) Figure 6. Series Resistance vs. Capacitive Load R L = kω G = OUTPUT VOLTAGE (V p-p) V S = ±5V CROSSTALK (db) k +V S = +3V k M M FREQUENCY (Hz) k k k M FREQUENCY (Hz) M 9-7 Figure 4. Large Signal Frequency Response Figure 7. Crosstalk vs. Frequency V IN =.9V p-p +V S = +3V G = V IN = V p-p V S = ±5V G = + 5mV µs 5V µs kω +5V V IN =.9V p-p kω 5Ω 3V kω V OUT 5pF 9-5 khz, V p-p 5V 64Ω 5pF 9-8 Figure 5. Output Swing, +VS = +3 V, G = Figure 8. Output Swing, VS = ±5 V, G = + Rev. E Page of

12 5V R L = 3Ω C L = 5pF R F = R G = kω G = 3V R L = kω C L = 5pF +V S = +3V G = + GND GND 5mV µs 9-9 5mV µs 9-3 Figure 9. Output Swing, +VS = +5 V, G = Figure 3. Output Swing, +VS = +3 V, G = + V IN = mv STEP +V S = +3V G = + 5V R L = kω C L = 5pF G = +.55V.45V 5mV 5ns Figure 3. Pulse Response, +VS = +3 V, G = GND 5mV ns Figure 33. Pulse Response, +VS = +5 V, G = V R L = kω C L = 5pF G = + R L = kω C L = 47pF G = + GND 5mV ns Figure 3. Pulse Response, +VS = +5 V, G = mV ns Figure 34. Pulse Response, +VS = +5 V, G = +, CL = 47 pf 9-34 Rev. E Page of

13 R L = kω C L = 5pF V S = ±5V G = + +V V 5V 5ns Figure 35. Pulse Response, VS = ±5 V, G = Rev. E Page of

14 THEORY OF OPERATION The is fabricated on the Analog Devices, Inc. proprietary complementary bipolar (CB) process that enables the construction of PNP and NPN transistors with similar ft s in the 6 MHz to 8 MHz region. In addition, the process also features N-Channel JFETs that are used in the input stage of the. These process features allow the construction of high frequency, low distortion op amps with picoamp input currents. This design uses a differential output input stage to maximize bandwidth and headroom (see Figure 36). The smaller signal swings required on the SP/SN outputs reduce the effect of the nonlinear currents due to junction capacitances and improve the distortion performance. With this design, harmonic distortion of better than 9 khz into 6 Ω with VOUT = 4 V p-p on a single 5 V supply is achieved. The complementary common emitter design of the output stage provides excellent load drive without the need for emitter followers, thereby improving the output range of the device considerably with respect to conventional op amps. The can drive ma with the outputs within.6 V of the supply rails. The also offers outstanding precision for a high speed op amp. Input offset voltages of mv maximum and offset drift of µv/ C are achieved through the use of the Analog Devices advanced thin film trimming techniques. A nested integrator topology is used in the (see Figure 37). The output stage can be modeled as an ideal op amp with a single-pole response and a unity-gain frequency set by transconductance gm and Capacitor C. R is the output impedance of the input stage; gm is the input transconductance. C and C5 provide Miller compensation for the overall op amp. The unity-gain frequency occurs at gm/c5. Solving the node equations for this circuit yields V OUT Vi = A ( sr[ C( A + ) ] + ) s + g m C where: A = gmgm RR (open-loop gain of op amp). A = gm R (open-loop gain of output stage). The first pole in the denominator is the dominant pole of the amplifier and occurs at ~8 Hz. This equals the input stage output impedance R multiplied by the Miller-multiplied value of C. The second pole occurs at the unity-gain bandwidth of the output stage, which is 3 MHz. This type of architecture allows more open-loop gain and output drive to be obtained than a standard -stage architecture would allow. V CC R4 R37 V BE +.3V V I5 Q43 Q55 I6 Q44 A = Q57 A = 9 V INP J J6 Q7 Q6 Q46 Q58 R44 Q49 R8 Q8 C Q Q54 V OUT V INN SP SN Q6 Q6 V CC C Q48 V B Q53 Q35 V EE I C6 R33 I R43 I3 Q56 Q5 I4 Q59 A = Q7 A = Figure 36. Simplified Schematic Rev. E Page 3 of

15 OUTPUT IMPEDANCE The low frequency open-loop output impedance of the commonemitter output stage used in this design is approximately 3 kω. Although this is significantly higher than a typical emitter follower output stage, when it is connected with feedback, the output impedance is reduced by the open-loop gain of the op amp. With 9 db of open-loop gain, the output impedance is reduced to <. Ω. At higher frequencies, the output impedance rises as the open-loop gain of the op amp drops; however, the output also becomes capacitive due to the integrator capacitors C and C. This prevents the output impedance from ever becoming excessively high (see Figure 8), which can cause stability problems when driving capacitive loads. In fact, the has excellent cap-load drive capability for a high frequency op amp. Figure 34 shows the connected as a follower while driving 47 pf direct capacitive load. Under these conditions, the phase margin is approximately. If greater phase margin is desired, a small resistor can be used in series with the output to decouple the effect of the load capacitance from the op amp (see Figure 6). In addition, running the part at higher gains also improves the capacitive load drive capability of the op amp. g m VI g m VI C SN R V OUT SP C R C5 R g m Figure 37. Small Signal Schematic 9-37 Rev. E Page 4 of

16 APPLICATION NOTES INPUT CHARACTERISTICS In the, N-Channel JFETs are used to provide a low offset, low noise, high impedance input stage. Minimum input commonmode voltage extends from. V below VS to V < +VS. Driving the input voltage closer to the positive rail causes a loss of amplifier bandwidth and increased common-mode voltage error. The does not exhibit phase reversal for input voltages up to and including +VS. Figure 38 shows the response of an voltage follower to a V to 5 V (+VS) square wave input. The input and output are superimposed. The output polarity tracks the input polarity up to +VS, with no phase reversal. The reduced bandwidth above a 4 V input causes the rounding of the output wave form. For input voltages greater than +VS, a resistor in series with the s noninverting input prevents phase reversal, at the expense of greater input voltage noise. This is illustrated in Figure GND % +V S GND V µs V Figure 38. Input Response: RP =, VIN = to +VS 9 % V IN V V R P 5V µs Figure 39. Input Response: VIN = to +VS + mv, VOUT = to +VS, RP = 49.9 kω V OUT Because the input stage uses N-Channel JFETs, input current during normal operation is negative; the current flows out from the input terminals. If the input voltage is driven more positive than +VS.4 V, the input current reverses direction as internal device junctions become forward biased. This is illustrated in Figure 7. A current limiting resistor should be used in series with the input of the if there is a possibility of the input voltage exceeding the positive supply by more than 3 mv, or if an input voltage is applied to the when ±VS =. The amplifier becomes damaged if left in that condition for more than seconds. A kω resistor allows the amplifier to withstand up to V of continuous overvoltage and increases the input voltage noise by a negligible amount. Input voltages less than VS are a completely different story. The amplifier can safely withstand input voltages V below VS as long as the total voltage from the positive supply to the input terminal is less than 36 V. In addition, the input stage typically maintains picoamp level input currents across that input voltage range. The is designed for 6 nv/ Hz wideband input voltage noise and maintains low noise performance to low frequencies (see Figure 6). This noise performance, along with the s low input current and current noise, means that the contributes negligible noise for applications with source resistances greater than kω and signal bandwidths greater than khz. OUTPUT CHARACTERISTICS The s unique bipolar rail-to-rail output stage swings within 5 mv of the supplies with no external resistive load. The s approximate output saturation resistance is 5 Ω sourcing and sinking. This can be used to estimate the output saturation voltage when driving heavier current loads. For instance, when driving 5 ma, the saturation voltage to the rails is approximately 5 mv. If the s output is driven hard against the output saturation voltage, it recovers within 5 ns of the input returning to the amplifier s linear operating region. A/D Driver The rail-to-rail output of the makes it useful as an A/D driver in a single-supply system. Because it is a dual op amp, it can be used to drive both the analog input of the A/D as well as its reference input. The high impedance FET input of the is well suited for minimal loading of high output impedance devices. Rev. E Page 5 of

17 Figure 4 shows a schematic of an being used to drive both the input and reference input of an AD67, a -bit, 3-MSPS, single-supply ADC. One amplifier is configured as a unity-gain follower to drive the analog input of the AD67, which is configured to accept an input voltage that ranges from V to.5 V. The other amplifier is configured as a gain of to drive the reference input from a.5 V reference. Although the AD67 has its own internal reference, there are systems that require greater accuracy than the internal reference provides. On the other hand, if the AD67 internal reference is used, the second amplifier can be used to buffer the reference voltage for driving other circuitry while minimally loading the reference source. +5VA +5VD The distortion analysis is important for systems requiring good frequency domain performance. Other systems may require good time domain performance. The noise and settling time performance of the provides the necessary information for its applicability for these systems. 5dB/DIV V IN =.5V p-p G = + FI = 49kHz V IN V REF (.5V) kω VA 8 4.µF 7 kω µf.µf.µf µf CLOCK 49.9Ω µf V CC REFOUT AIN AIN REFIN REFCOM NCOMP NCOMP ACOM 6 REF 8 9 COM 9 8 +V DD AD67 DCOM µF OTR BIT (MSB) BIT BIT3 BIT4 BIT5 BIT6 Figure 4. Driving Input and Reference of the AD67, a -Bit, 3-MSPS ADC +5VD BIT7 BIT8 BIT9 BIT BIT BIT (LSB) The circuit was tested with a 5 khz sine wave input that was heavily low-pass filtered (6 db) to minimize the harmonic content at the input to the. The digital output of the AD67 was analyzed by performing a fast Fourier transform (FFT). During the testing, it was observed that at 5 khz, the output of the cannot go below ~35 mv (operating with negative supply at ground) without seriously degrading the second harmonic distortion. Another test was performed with a Ω pull-down resistor to ground that allowed the output to go as low as mv without seriously affecting the second harmonic distortion. There was, however, a slight increase in the third harmonic term with the resistor added, but it was still less than the second harmonic. Figure 4 is an FFT plot of the results of driving the AD67 with the with no pull-down resistor. The input amplitude was.5 V p-p and the lower voltage excursion was 35 mv. The input frequency was 49 khz, which was chosen to spread the location of the harmonics. 9-4 Figure 4. FFT of AD67 Output Driven by 3 V, Single-Supply Stereo Headphone Driver The exhibits good current drive and total harmonic distortion plus noise (THD+N) performance, even at 3 V single supplies. At khz, THD+N equals 6 db (.79%) for a 3 mv p-p output signal. This is comparable to other singlesupply op amps that consume more power and cannot run on 3 V power supplies. In Figure 4, each channel s input signal is coupled via a μf Mylar capacitor. Resistor dividers set the dc voltage at the noninverting inputs so that the output voltage is midway between the power supplies (+.5 V). The gain is.5. Each half of the can then be used to drive a headphone channel. A 5 Hz high-pass filter is realized by the 5 μf capacitors and the headphones that can be modeled as 3 Ω load resistors to ground. This ensures that all signals in the audio frequency range ( Hz to khz) are delivered to the headphones. CHANNEL CHANNEL 95.3kΩ µf MYLAR 95.3kΩ µf MYLAR 3V 95.3kΩ 3 8 / 47.5kΩ kω kω 4.99kΩ 4.99kΩ.µF 5µF HEADPHONES 3Ω IMPEDANCE 6 / 5µF 47.5kΩ µf Figure 4. 3 V Single-Supply Stereo Headphone Driver L R Rev. E Page 6 of

18 Second-Order Low-Pass Filter Figure 43 depicts the configured as a second-order Butterworth low-pass filter. With the values as shown, the corner frequency equals khz. Component selection is shown in the following equations: R = R = User Selected (Typical Values: kω to kω). 44 C farads π f R. 77 C π f R V IN R kω cutoff C 8pF cutoff C 56pF R kω +5V C3.µF / C4.µF 5V Figure 43. Second-Order Low-Pass Filter 5pF V OUT A plot of the filter is shown in Figure 44; better than 5 db of high frequency rejection is provided. HIGH FREQUENCY REJECTION (db) k V DB V OUT k k M M M FREQUENCY (Hz) Figure 44. Frequency Response of Filter Single-Supply Half-Wave and Full-Wave Rectifiers An configured as a unity-gain follower and operated with a single supply can be used as a simple half-wave rectifier. The inputs maintain picoamp level input currents even when driven well below the minus supply. The rectifier puts that behavior to good use, maintaining an input impedance of over Ω for input voltages from within V of the positive supply to V below the negative supply. The full-wave and half-wave rectifier shown in Figure 45 operates as follows: when VIN is above ground, R is bootstrapped through the unity-gain follower A and the loop of Amplifier A. This forces the inputs of A to be equal, thus no current flows through R or R, and the circuit output tracks the input. When VIN is below ground, the output of A is forced to ground. The noninverting input of Amplifier A sees the ground level output of A; therefore, A operates as a unitygain inverter. The output at Node C is then a full-wave rectified version of the input. Node B is a buffered half-wave rectified version of the input. Input voltage supply to ±8 V can be rectified, depending on the voltage supply used. A V IN A 9 B 3 +V S 8 R kω.µf A / R kω 7 A / Figure 45. Full-Wave and Half-Wave Rectifier V µs C FULL-WAVE RECTIFIED OUTPUT B HALF-WAVE RECTIFIED OUTPUT 9-44 C % V Figure 46. Single-Supply Half-Wave and Full-Wave Rectifier 9-46 Rev. E Page 7 of

19 OUTLINE DIMENSIONS.4 (.6).365 (9.7).355 (9.). (5.33) MAX.5 (3.8).3 (3.3).5 (.9). (.56).8 (.46).4 (.36) 8. (.54) BSC 5.8 (7.).5 (6.35) 4.4 (6.).5 (.38) MIN SEATING PLANE.5 (.3) MIN.6 (.5) MAX.5 (.38) GAUGE PLANE.35 (8.6).3 (7.87).3 (7.6).43 (.9) MAX.95 (4.95).3 (3.3).5 (.9).4 (.36). (.5).8 (.).7 (.78).6 (.5).45 (.4) COMPLIANT TO JEDEC STANDARDS MS- CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-8) Dimensions shown in inches and (millimeters) 766-A 5. (.968) 4.8 (.89) 4. (.574) 3.8 (.497) (.44) 5.8 (.84).5 (.98). (.4) COPLANARITY. SEATING PLANE.7 (.5) BSC.75 (.688).35 (.53).5 (.).3 (.) 8.5 (.98).7 (.67).5 (.96).5 (.99).7 (.5).4 (.57) 45 COMPLIANT TO JEDEC STANDARDS MS--AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 47-A Rev. E Page 8 of

20 ORDERING GUIDE Model Temperature Range Package Description Package Option ANZ 4 C to +85 C 8-Lead PDIP N-8 AR 4 C to +85 C 8-Lead SOIC_N R-8 AR-REEL 4 C to +85 C 8-Lead SOIC_N, 3 Tape and Reel R-8 AR-REEL7 4 C to +85 C 8-Lead SOIC_N, 7 Tape and Reel R-8 ARZ 4 C to +85 C 8-Lead SOIC_N R-8 ARZ-RL 4 C to +85 C 8-Lead SOIC_N, 3 Tape and Reel R-8 ARZ-R7 4 C to +85 C 8-Lead SOIC_N, 7 Tape and Reel R-8 AR-EBZ Evaluation Board Z = RoHS Compliant Part. Rev. E Page 9 of

21 NOTES 995 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D9--/(E) Rev. E Page of

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp FEATURES True Single-Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single-Supply Capability from 3 V to 36

More information

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP Dual Precision, Low Cost, High Speed BiFET Op Amp FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +125 C) Controlled manufacturing baseline One

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails High linear

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD8 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V to

More information

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599 Dual, Ultralow Distortion, Ultralow Noise Op Amp FEATURES Low noise: 1 nv/ Hz at 1 khz Low distortion: 5 db THD @ khz

More information

High-Speed, Low-Power Dual Operational Amplifier AD826

High-Speed, Low-Power Dual Operational Amplifier AD826 a FEATURES High Speed: MHz Unity Gain Bandwidth 3 V/ s Slew Rate 7 ns Settling Time to.% Low Power: 7. ma Max Power Supply Current Per Amp Easy to Use: Drives Unlimited Capacitive Loads ma Min Output Current

More information

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643 Data Sheet Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD864/AD8642/AD8643 FEATURES Low supply current: 25 μa max Very low input bias current: pa max Low offset voltage: 75 μv max Single-supply

More information

150 μv Maximum Offset Voltage Op Amp OP07D

150 μv Maximum Offset Voltage Op Amp OP07D 5 μv Maximum Offset Voltage Op Amp OP7D FEATURES Low offset voltage: 5 µv max Input offset drift:.5 µv/ C max Low noise:.25 μv p-p High gain CMRR and PSRR: 5 db min Low supply current:. ma Wide supply

More information

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo FEATURES Low supply current: 25 µa max Very low input bias current: pa max Low offset voltage: 75 µv max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output Unity-gain

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2 6 V, MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2 FEATURES Lower power at high voltage: 29 μa per amplifier typical Low input bias current: pa maximum Wide bandwidth:.2 MHz typical

More information

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3 High Speed,, Low Cost, Triple Op Amp ADA4862-3 FEATURES Ideal for RGB/HD/SD video Supports 8i/72p resolution High speed 3 db bandwidth: 3 MHz Slew rate: 75 V/μs Settling time: 9 ns (.5%). db flatness:

More information

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature Data Sheet Dual Picoampere Input Current Bipolar Op Amp Rev. F Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by

More information

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe NC NC NC NC 5 6 7 8 6 NC 4 PD 3 PD FEATURES Ultralow power-down current: 5 na/amplifier maximum Low quiescent current:.4 ma/amplifier High speed 75 MHz, 3 db bandwidth V/μs slew rate 85 ns settling time

More information

Low Cost, Low Power Video Op Amp AD818

Low Cost, Low Power Video Op Amp AD818 Low Cost, Low Power Video Op Amp FEATURES Low Cost Excellent Video Performance 55 MHz. db Bandwidth (Gain = +2).% and.5 Differential Gain and Phase Errors High Speed 3 MHz Bandwidth (3 db, G = +2) MHz

More information

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP 5 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +25 C) Controlled manufacturing baseline

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V to

More information

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4 Low Cost, Precision JFET Input Operational Amplifiers ADA-/ADA-/ADA- FEATURES High slew rate: V/μs Fast settling time Low offset voltage:.7 mv maximum Bias current: pa maximum ± V to ±8 V operation Low

More information

Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA4851-1/ADA4851-2/ADA4851-4

Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA4851-1/ADA4851-2/ADA4851-4 Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA485-/ADA485-/ADA485-4 FEATURES High speed 3 MHz, 3 db bandwidth 375 V/μs slew rate 55 ns settling time to.% Excellent video specifications. db flatness:

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

High Speed, Low Noise Video Op Amp AD829

High Speed, Low Noise Video Op Amp AD829 FEATURES High speed MHz bandwidth, gain = V/µs slew rate 9 ns settling time to.% Ideal for video applications.% differential gain. differential phase Low noise.7 nv/ Hz input voltage noise. pa/ Hz input

More information

270 MHz, 400 μa Current Feedback Amplifier AD8005

270 MHz, 400 μa Current Feedback Amplifier AD8005 Data Sheet 27 MHz, μa Current Feedback Amplifier AD85 FEATURES Ultralow power μa power supply current ( mw on ±5 VS) Specified for single supply operation High speed 27 MHz, 3 db bandwidth (G = +) 7 MHz,

More information

High-Speed, Low-Power Dual Operational Amplifier AD826

High-Speed, Low-Power Dual Operational Amplifier AD826 a FEATURES High Speed: MHz Unity Gain Bandwidth 3 V/ s Slew Rate 7 ns Settling Time to.% Low Power: 7. ma Max Power Supply Current Per Amp Easy to Use: Drives Unlimited Capacitive Loads ma Min Output Current

More information

6 db Differential Line Receiver

6 db Differential Line Receiver a FEATURES High Common-Mode Rejection DC: 9 db typ Hz: 9 db typ khz: 8 db typ Ultralow THD:.% typ @ khz Fast Slew Rate: V/ s typ Wide Bandwidth: 7 MHz typ (G = /) Two Gain Levels Available: G = / or Low

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

High Resolution, Zero-Drift Current Shunt Monitor AD8217

High Resolution, Zero-Drift Current Shunt Monitor AD8217 High Resolution, Zero-Drift Current Shunt Monitor AD8217 FEATURES High common-mode voltage range 4.5 V to 8 V operating V to 85 V survival Buffered output voltage Wide operating temperature range: 4 C

More information

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio Low Power, Precision, Auto-Zero Op Amps FEATURES Low offset voltage: 3 μv maximum Input offset drift:.3 μv/ C Single-supply operation: 2.7 V to 5.5 V High gain, CMRR, and PSRR Low input bias current: 25

More information

High Speed, Low Power Dual Op Amp AD827

High Speed, Low Power Dual Op Amp AD827 a FEATURES High Speed 50 MHz Unity Gain Stable Operation 300 V/ms Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads Excellent Video Performance 0.04% Differential Gain @ 4.4 MHz 0.198 Differential

More information

Low Power, 350 MHz Voltage Feedback Amplifiers AD8038/AD8039

Low Power, 350 MHz Voltage Feedback Amplifiers AD8038/AD8039 Low Power, MHz Voltage Feedback Amplifiers AD88/AD89 FEATURES Low power: ma supply current/amp High speed MHz, db bandwidth (G = +) V/μs slew rate Low cost Low noise 8 nv/ Hz @ khz fa/ Hz @ khz Low input

More information

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps FEATURES Low noise:. nv/ Hz at khz Low distortion: db THD @ khz Input noise,. Hz to Hz:

More information

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668 6 V, MHz RR Amplifiers AD8665/AD8666/AD8668 FEATURES Offset voltage:.5 mv max Low input bias current: pa max Single-supply operation: 5 V to 6 V Dual-supply operation: ±.5 V to ±8 V Low noise: 8 nv/ Hz

More information

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP22/OP42 FEATURES High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 2 µa/amplifier max Low offset voltage: 3 mv max Low bias

More information

Single Supply, High Speed, Rail-to-Rail Output, Triple Op Amp ADA4855-3

Single Supply, High Speed, Rail-to-Rail Output, Triple Op Amp ADA4855-3 FEATURES Voltage feedback architecture Rail-to-rail output swing:. V to 4.9 V High speed amplifiers 4 MHz, 3 db bandwidth, G = 2 MHz, 3 db bandwidth, G = 2 Slew rate: 87 V/µs 53 MHz,. db large signal flatness

More information

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276 Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD87 FEATURES Wide input range Rugged input overvoltage protection Low supply current: μa maximum Low power dissipation:. mw at VS

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES FUNCTIONAL BLOCK DIAGRAM High common-mode input voltage range ±20 V at VS = ±5 V Gain range 0. to 00 Operating temperature

More information

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 FEATURES High slew rate: 9 V/μs Wide bandwidth: 4 MHz Low supply current: 2 μa/amplifier maximum Low offset voltage: 3 mv maximum

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 FEATURES Very low voltage noise 2.8 nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage: 2 μv typical Low input offset drift:.6 μv/ C maximum Very high gain:

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 High Voltage, Current Shunt Monitor AD825 FEATURES ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

Low Cost, High Speed Differential Amplifier AD8132

Low Cost, High Speed Differential Amplifier AD8132 Low Cost, High Speed Differential Amplifier FEATURES High speed 350 MHz, 3 db bandwidth 1200 V/μs slew rate Resistor set gain Internal common-mode feedback Improved gain and phase balance 68 db @ 10 MHz

More information

Low Cost, High Speed Rail-to-Rail Amplifiers AD8091/AD8092

Low Cost, High Speed Rail-to-Rail Amplifiers AD8091/AD8092 Low Cost, High Speed Rail-to-Rail Amplifiers AD891/AD892 FEATURES Low cost single (AD891) and dual (AD892) amplifiers Fully specified at +3 V, +5 V, and ±5 V supplies Single-supply operation Output swings

More information

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2 FEATURES Ultralow noise.9 nv/ Hz.4 pa/ Hz. nv/ Hz at Hz Ultralow distortion: 93 dbc at 5 khz Wide supply voltage range: ±5 V to ±6 V High speed 3 db bandwidth: 65 MHz (G = +) Slew rate: 55 V/µs Unity gain

More information

Precision Micropower Single Supply Operational Amplifier OP777

Precision Micropower Single Supply Operational Amplifier OP777 a FEATURES Low Offset Voltage: 1 V Max Low Input Bias Current: 1 na Max Single-Supply Operation: 2.7 V to 3 V Dual-Supply Operation: 1.35 V to 15 V Low Supply Current: 27 A/Amp Unity Gain Stable No Phase

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Low Cost JFET Input Operational Amplifiers ADTL/ADTL FEATURES TL/TL compatible Low input bias current: pa maximum Offset voltage 5.5 mv maximum (ADTLA/ADTLA) 9 mv maximum (ADTLJ/ADTLJ) ±5 V operation Low

More information

High Speed, Low Power Monolithic Op Amp AD847

High Speed, Low Power Monolithic Op Amp AD847 a FEATURES Superior Performance High Unity Gain BW: MHz Low Supply Current:.3 ma High Slew Rate: 3 V/ s Excellent Video Specifications.% Differential Gain (NTSC and PAL).19 Differential Phase (NTSC and

More information

Micropower Precision CMOS Operational Amplifier AD8500

Micropower Precision CMOS Operational Amplifier AD8500 Micropower Precision CMOS Operational Amplifier AD85 FEATURES Supply current: μa maximum Offset voltage: mv maximum Single-supply or dual-supply operation Rail-to-rail input and output No phase reversal

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±2 V at VS = ± V Gain range. to Operating temperature range: 4 C to ±8 C Supply voltage range

More information

Quad 150 MHz Rail-to-Rail Amplifier AD8044

Quad 150 MHz Rail-to-Rail Amplifier AD8044 a FEATURES Single AD84 and Dual AD842 Also Available Fully Specified at + V, +5 V, and 5 V Supplies Output Swings to Within 25 mv of Either Rail Input Voltage Range Extends 2 mv Below Ground No Phase Reversal

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 FEATURES ±4 V human body model (HBM) ESD High common-mode voltage range V to +6 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead SOIC: 4 C to + C Excellent

More information

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±12 V at VS = ±15 V Gain range.1 to 1 Operating temperature range: 4 C to ±85 C Supply voltage

More information

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES Preliminary Technical Data 0 MHz, 20 V/μs, G =, 0, 00, 000 i CMOS Programmable Gain Instrumentation Amplifier FEATURES Small package: 0-lead MSOP Programmable gains:, 0, 00, 000 Digital or pin-programmable

More information

Dual, Low Power Video Op Amp AD828

Dual, Low Power Video Op Amp AD828 a FEATURES Excellent Video Performance Differential Gain and Phase Error of.% and. High Speed MHz db Bandwidth (G = +) V/ s Slew Rate ns Settling Time to.% Low Power ma Max Power Supply Current High Output

More information

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Zero Drift, Unidirectional Current Shunt Monitor AD8219 Zero Drift, Unidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to +85 V survival Buffered output voltage Gain = 6 V/V Wide operating temperature range:

More information

Dual, Current Feedback Low Power Op Amp AD812

Dual, Current Feedback Low Power Op Amp AD812 a FEATURES Two Video Amplifiers in One -Lead SOIC Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = ): Gain Flatness. db to MHz.% Differential Gain Error. Differential

More information

Self-Contained Audio Preamplifier SSM2019

Self-Contained Audio Preamplifier SSM2019 a FEATURES Excellent Noise Performance:. nv/ Hz or.5 db Noise Figure Ultra-low THD:

More information

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Offset Voltage Operational Amplifier OP07 FEATURES Low VOS: 5 μv maximum Low VOS drift:. μv/ C maximum Ultrastable vs. time:.5 μv per month maximum Low noise:. μv p-p maximum Wide input voltage range: ± V typical Wide supply voltage range: ± V

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 Precision, Low Power, Micropower Dual Operational Amplifier OP9 FEATURES Single-/dual-supply operation:. V to 3 V, ±.8 V to ±8 V True single-supply operation; input and output voltage Input/output ranges

More information

Quad Low Offset, Low Power Operational Amplifier OP400

Quad Low Offset, Low Power Operational Amplifier OP400 FEATURES Low input offset voltage: 5 µv maximum Low offset voltage drift over 55 C to 25 C:.2 μv/ C maximum Low supply current (per amplifier): 725 µa maximum High open-loop gain: 5 V/mV minimum Input

More information

Ultraprecision Operational Amplifier OP177

Ultraprecision Operational Amplifier OP177 Ultraprecision Operational Amplifier FEATURES Ultralow offset voltage TA = 25 C, 25 μv maximum Outstanding offset voltage drift 0. μv/ C maximum Excellent open-loop gain and gain linearity 2 V/μV typical

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V Max Offset Voltage V/ C Max Offset Voltage Drift 5 pa Max Input Bias Current.2 pa/ C Typical I B Drift Low Noise.5 V p-p Typical Noise,. Hz to Hz Low Power 6 A Max Supply

More information

Precision, 16 MHz CBFET Op Amp AD845

Precision, 16 MHz CBFET Op Amp AD845 a FEATURES Replaces Hybrid Amplifiers in Many Applications AC PERFORMANCE: Settles to 0.01% in 350 ns 100 V/ s Slew Rate 12.8 MHz Min Unity Gain Bandwidth 1.75 MHz Full Power Bandwidth at 20 V p-p DC PERFORMANCE:

More information

REV. D Ultralow Distortion High Speed Amplifiers AD8007/AD8008 FEATURES CONNECTION DIAGRAMS Extremely Low Distortion Second Harmonic 88 5 MHz SO

REV. D Ultralow Distortion High Speed Amplifiers AD8007/AD8008 FEATURES CONNECTION DIAGRAMS Extremely Low Distortion Second Harmonic 88 5 MHz SO Ultralow Distortion High Speed Amplifiers FEATURES CONNECTION DIAGRAMS Extremely Low Distortion Second Harmonic 88 dbc @ 5 MHz SOIC (R) SC7 (KS-5) 8 dbc @ MHz (AD87) AD87 AD87 NC V (Top View) 8 NC OUT

More information

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515 Data Sheet FEATURES Single-supply operation: 1.8 V to 5 V Offset voltage: 6 mv maximum Space-saving SOT-23 and SC7 packages Slew rate: 2.7 V/μs Bandwidth: 5 MHz Rail-to-rail input and output swing Low

More information

Ultralow Input Bias Current Operational Amplifier AD549

Ultralow Input Bias Current Operational Amplifier AD549 Ultralow Input Bias Current Operational Amplifier AD59 FEATURES Ultralow input bias current 60 fa maximum (AD59L) 250 fa maximum (AD59J) Input bias current guaranteed over the common-mode voltage range

More information

Dual 160 MHz Rail-to-Rail Amplifier AD8042

Dual 160 MHz Rail-to-Rail Amplifier AD8042 Dual MHz Rail-to-Rail Amplifier AD8 FEATURES Single AD8 and quad AD8 also available Fully specified at + V, + V, and ± V supplies Output swings to within mv of either rail Input voltage range extends mv

More information

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers FEATURES Offset voltage: 2.2 mv maximum Low input bias current: pa maximum Single-supply operation:.8 V to 5 V Low

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Preliminary Technical Data FEATURES TL082 / TL08 compatible Low input bias current: 0 pa max Offset voltage: 5mV max (ADTL082A/ADTL08A) 9 mv max (ADTL082/ADTL08) ±5 V to ±5 V operation Low noise: 5 nv/

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers AD854/AD8542/AD8544 FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents:

More information

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum FEATURES Offset voltage: 2.5 mv maximum Single-supply operation: 2.7 V to 5.5 V Low noise: 8 nv/ Hz Wide bandwidth: 24 MHz Slew rate: V/μs Short-circuit output current: 2 ma No phase reversal Low input

More information

High Speed, Low Noise Video Op Amp AD829

High Speed, Low Noise Video Op Amp AD829 High Speed, Low Noise Video Op Amp AD89 FEATURES High speed MHz bandwidth, gain = V/μs slew rate 9 ns settling time to.% Ideal for video applications.% differential gain. differential phase Low noise.7

More information

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279 Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 /AD8279 FEATURES Wide input range beyond supplies Rugged input overvoltage protection Low supply current: 2 μa maximum (per amplifier)

More information

250 MHz, Voltage Output, 4-Quadrant Multiplier AD835

250 MHz, Voltage Output, 4-Quadrant Multiplier AD835 25 MHz, Voltage Output, 4-Quadrant Multiplier FEATURES Simple: basic function is W = XY + Z Complete: minimal external components required Very fast: Settles to.1% of full scale (FS) in 2 ns DC-coupled

More information

AD8218 REVISION HISTORY

AD8218 REVISION HISTORY Zero Drift, Bidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to 85 V survival Buffered output voltage Gain = 2 V/V Wide operating temperature range:

More information

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481 Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP28/OP48 FEATURES Low supply current: 4 μa/amplifier maximum Single-supply operation: 2.7 V to 2 V Wide input voltage range Rail-to-rail output

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 a FEATURES Single-/Dual-Supply Operation, 1. V to 3 V,. V to 1 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), A Max High Output Drive,

More information

High Common-Mode Voltage Difference Amplifier AD629

High Common-Mode Voltage Difference Amplifier AD629 a FEATURES Improved Replacement for: INAP and INAKU V Common-Mode Voltage Range Input Protection to: V Common Mode V Differential Wide Power Supply Range (. V to V) V Output Swing on V Supply ma Max Power

More information

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP FEATURES Digitally/pin-programmable gain G = 1, 2, 4, 8, 16, 32, 64, or 128 Specified from 55 C to +125 C 5 nv/ C maximum input offset

More information

Quad 7 ns Single Supply Comparator AD8564

Quad 7 ns Single Supply Comparator AD8564 Quad 7 ns Single Supply Comparator AD8564 FEATURES 5 V single-supply operation 7 ns propagation delay Low power Separate input and output sections TTL/CMOS logic-compatible outputs Wide output swing TSSOP,

More information

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP Enhanced Product FEATURES Low offset voltage and low offset voltage drift Maximum offset voltage: 9 µv at TA = 2 C Maximum offset voltage drift:.2 µv/ C Moisture sensitivity level (MSL) rated Low input

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 Ultraprecision, 36 V, 2. nv/ Hz Dual Rail-to-Rail Output Op Amp AD676 FEATURES Very low voltage noise: 2. nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage:

More information

Single-Supply, 42 V System Difference Amplifier AD8206

Single-Supply, 42 V System Difference Amplifier AD8206 Single-Supply, 42 V System Difference Amplifier FEATURES Ideal for current shunt applications High common-mode voltage range 2 V to +65 V operating 25 V to +75 V survival Gain = 20 Wide operating temperature

More information

High Voltage Current Shunt Monitor AD8211

High Voltage Current Shunt Monitor AD8211 High Voltage Current Shunt Monitor AD8211 FEATURES Qualified for automotive applications ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage

More information

Dual, High Voltage Current Shunt Monitor AD8213

Dual, High Voltage Current Shunt Monitor AD8213 Dual, High Voltage Current Shunt Monitor AD823 FEATURES ±4 V HBM ESD High common-mode voltage range 2 V to +6 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range

More information

Single-Supply 42 V System Difference Amplifier AD8205

Single-Supply 42 V System Difference Amplifier AD8205 Single-Supply 42 V System Difference Amplifier FEATURES Ideal for current shunt applications High common-mode voltage range 2 V to +65 V operating 5 V to +68 V survival Gain = 50 Wide operating temperature

More information

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608 Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608 FEATURES Low offset voltage: 65 μv maximum Low input bias currents: pa maximum Low noise: 8 nv/ Hz Wide

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents: 4 pa Unity gain

More information

Single Supply, Low Power, Triple Video Amplifier AD8013

Single Supply, Low Power, Triple Video Amplifier AD8013 a FEATURES Three Video Amplifiers in One Package Drives Large Capacitive Load Excellent Video Specifications (R L = 5 ) Gain Flatness. db to MHz.% Differential Gain Error. Differential Phase Error Low

More information

10-Channel Gamma Buffer with VCOM Driver ADD8710

10-Channel Gamma Buffer with VCOM Driver ADD8710 1-Channel Gamma Buffer with VCOM Driver ADD871 FEATURES Single-supply operation: 4.5 V to 18 V Upper/lower buffers swing to VS/GND Gamma continuous output current: >1 ma VCOM peak output current: 25 ma

More information

Single-Supply 42 V System Difference Amplifier AD8205

Single-Supply 42 V System Difference Amplifier AD8205 FEATURES Ideal for current shunt applications High common-mode voltage range 2 V to +65 V operating 25 V to +75 V survival Gain = 50 V/V Wide operating temperature range: 40 C to +125 C for Y and W grade

More information

High Performance, 145 MHz FastFET Op Amps AD8065/AD8066

High Performance, 145 MHz FastFET Op Amps AD8065/AD8066 High Performance, 45 MHz FastFET Op Amps AD8065/AD8066 FEATURE FET input amplifier pa input bias current Low cost High speed: 45 MHz, 3 db bandwidth (G = +) 80 V/μs slew rate (G = +2) Low noise 7 nv/ Hz

More information