High Power Full-Bridge DC-DC Converter using a Center-Tapped Transformer and a Full-Wave Type Rectifier

Size: px
Start display at page:

Download "High Power Full-Bridge DC-DC Converter using a Center-Tapped Transformer and a Full-Wave Type Rectifier"

Transcription

1 , pp hp://dx.doi.org/ /ijca High Power Full-Bridge DC-DC Converer using a Cener-Tapped Transformer and a Full-Wave Type Recifier Min-Gi Kim, Geun-Yong Park, Doo-HeeYoo and Gang-YoulJeong Deparmen of Elecronic Informaion Engineering, Soonchunhyang Universiy 22 Soonchunhyang-Ro, Shinchang-Myun, san-si, Choongnam, Souh Korea gangyoul@sch.ac.kr bsrac This paper proposes a high power full-bridge DC-Donverer, using a cener-apped ransformer and a full-wave ype recifier. The proposed converer realizes unipolar primary volage swiching, using he unipolar pulse-widh modulaion (PWM) echnique. lso, he proposed converer reduces he freewheeling conducion loss, using he unipolar PWM echnique and a resonan circui, composed of a clamp capacior and resonan inducor in he primary, and hus achieves high efficiency. However, because he proposed converer uses only a full-bridge circui, cener-apped ransformer, and full-wave ype recifier, he srucure of he proposed converer is simple. In his paper, he operaional principle of he proposed converer is described in deail, and a design example of a proposed converer prooype is shown. Finally, experimenal resuls of he prooype are shown, o verify he feasibiliy of he proposed converer. Keywords: Full-bridge DC-Donverer, Cener-apped ransformer, Full-wave ype recifier, unipolar PWM echnique, Resonan circui 1. Inroducion Recenly, according o he increase of power capaciy of elecric/elecronic devices, many high power DC-DC power converers have been proposed [1-15]. mong hese power converers, convenional ZVS (Zero Volage Swiching) unipolar PWM full-bridge converers are a popular opology for medium/high power applicaions, offering desirable feaures, such as ZVS operaion, and high efficiency. However, he convenional ZVS full-bridge DC-Donverer has a serious disadvanage: ha of he narrow ZVS range of he lagging leg. During he lagging leg ransiion under ligh load operaion, he primary curren decreases, and finally changes is polariy; bu he energy available for charging or discharging he swich oupu capacior is insufficien, which unforunaely resuls in hard swiching condiions. However,because his also increases he circulaing curren under normal load, iresuls in increase of he oal conducion loss of he converer and he volage/curren sress of each swich. Therefore, many research resuls have been proposed, o exend he ZVS range down o a ligh load [3-6]. Bu here are some disadvanages: in [3] and [4], he effecive duy raio should be reduced, and in [5] and [6], excessive conducion losses occur,due o an increased auxiliary resonan curren.lso, i causes problems, such as he hermal problem and increased cos. Because of hese problems, ZVS full-bridge DC-Donverers were proposed ha use wo ransformers. Bu, his proposal canno solve he bulky sysem problem. Half- ISSN: IJC Copyrigh c 2014 SERSC

2 bridge DC-Donverers wih oher mehods [7-11] are proposed, bu heir oupu power was no large. In his paper, a high power DC-Donverer using a cener-apped ransformer and fullwave ype recifier is presened. clamp capacior and resonan inducance are used as a resonan circui for he sof-swiching of he converer primary, wih he unipolar PWM echnique. The proposed converer reducesfreewheeling conducion loss wih he unipolar PWM echnique, and a simple resonan circui, composed of a clamp capacior and resonan inducor. The proposed converer uilizes he unipolar PWM echnique like he convenional full-bridge DC-Donverer, so is modificaion from he convenional converer circui is easy. Thus, he proposed converer achieves high efficiency. lso,because he proposed converer is composed of only a full-bridge circui, cener-apped ransformer, and full-wave ype recifier, he srucure of he proposed converer becomes simple. In his paper, heoperaional principle is explained in deail, and a design example of a prooype of he proposed converer is shown. Experimenal resuls based on he prooype are shown, o confirm he validiy of he proposed converer. 2. Operaional Principles D S1 C S1 i S2 B D S4 C S4 Figure 1. circui diagram of he proposed converer Figure 1 shows a circui diagram of he proposed full-bridge DC-Donverer. The proposed converer is composed of he primary, he cener-apped ransformer, and he secondary. The primary par of he proposed converer is composed of a Dpu source, he main swiches of he full-bridge circui, a clamp capacior, and a resonan inducor. The secondary par of he proposed converer is composed of a full-wave ype recifier and, oupu filer capacior, and load. The configuraion of he proposed converer is basically similar o ha of he convenional full bridge DC-Donverer, excep for he cener-apped ransformer, and resonan circui, composed of a clamp capacior and resonan inducor. Figure 2 shows he key par waveforms of he proposed converer in seadysae. The proposed converer operaesbased onhe gae-source volages of he main swiches.the converer operaion can be divided ino six modes or hree caegories: power delivery inerval, freewheeling inerval, and commuaion inerval. N s1 N s2 V Dr1 V Dr2 268 Copyrigh c 2014 SERSC

3 V GS1,3 V GS2,4 V GS1 V GS3 V GS1 V B DT s D e T s DT s Figure 2. The key par waveforms of he proposed converer in seadysae Figure 3 showshe equivalen circuis of each mode of he proposed converer, where he bold lines denoepahs ha conduc currens, andhe doed lines denoe pahs ha do no conduc curren. To illusrae he seady sae operaion, he following appropriae iems are assumed: 1) The power swiches are ideal, excep for heir ani-parallel diodes and parasiic capaciors. 2) The magneizing inducance is of very large value, and and ( ) are he primary and he secondary urn numbers of he ransformer, respecively. 3) The oupu volage is consan. V GS2 V GS4 V GS2 V B Mode 1 Mode 2 T T Mode 3 V Cc,max Mode 4 T s =T/2 Mode Mode 6 Copyrigh c 2014 SERSC 269

4 D S1 C S1 DS4 C S4 B D S1 C S1 B D S1 C S1 B V N Dr1 s1 N s2 V Dr2 DS4 C S4 DS4 C S4 (a) Mode 1 (b) Mode 2 (c) Mode 3 N s1 N s2 N s1 N s2 V Dr1 V Dr2 V Dr1 V Dr2 D S1 C S1 DS4 C S4 B N s1 N s2 V Dr1 V Dr2 (d) Mode Copyrigh c 2014 SERSC

5 D S1 C S1 DS4 C S4 D S1 C S1 B B DS4 C S4 Figure 3. The equivalen circuis of each mode of he proposed converer Mode 1( ): In his mode, he power is delivered from he primary o he secondary. This is he power delivery inerval. The secondary diodes and are urned on and off, respecively. his ime, he primary curren increases almos linearly, as follows: Then, he resonan inducor volage and he clamp capacior volage are expressed, respecively, as follows: The slope of he primary curren is changed more rapidly by he clamp capacior volage, compared wih he convenional full-bridge DC-Donverer. (e) Mode 5 (f) Mode 6 N s1 N s2 N s1 N s2 V Dr1 V Dr2 V Dr1 V Dr2 (1) (2) (3) Mode 2( : Mode 2 begins when he swich is urned off a ime. This mode is he freewheeling inerval. The primary curren charges and discharges he parasiic Copyrigh c 2014 SERSC 271

6 capaciors and of he swiches and, respecively. his ime, he primary curren can be expressed as follows: (4) The ani-parallel diode of swich conducs, and hus he ZVS of is achieved. Mode 3( : Mode 3 begins when he swich is urned off a ime,. During mode 3, he direcion of primary curren is changed, which is differen from modes 1 and 2. The primary curren is expressed by he following equaion: ime, he commuaion beween secondary diode and is compleed, and his mode ends. Since from mode 4, he mode operaions are symmeric in he curren conducing pahs and componens, as shown in Figures 2 and 3, he explanaion of he nex hree modes, modes 4~6, can convenienlybe omied. 3. Design Examples In order o verifyhe performance of he proposed converer, a prooype of he proposed convereris designed and implemened, based on he following Table 1: Table 1. Design specificaions of heprooype converer Iem Symbol Value Inpu DC volage 380V Oupu DC volage Max oupu power Swiching frequency 24V 960W 100kHz Effeciveduy raio 0.5 Based on he srucure and operaion of he proposed converer, he main cener-apped ransformer urn raio (= ) is calculaed by he following equaion: (5) (6) 272 Copyrigh c 2014 SERSC

7 where, is he effecive duy raio of he converer primary volage applied o he bridge poins -B. Thus, based on he design specificaions of Table 1, he urn raio is se as. modes 1 and 3, he clamp capaciance a mode 3, and he maximum volage clamp capacior from equaion (3), as follows: is calculaed by is maximum volage is calculaed by he ripple volage of he where, is he load curren a maximum oupu power.from equaion (7), he clamp capaciance is given by he following equaion: In order ha he slope of he primary curren becomes posiive, he following relaion should be saisfied: Therefore, he clamp capaciance follows: From equaion (9), he maximum value (7) (8) (9) can be calculaed using equaions (8) and(9), as (10) of he clamp capacior volage should be less han. Here, he design margin of he maximum value is considered, whichis se o abou 10% of hevolage. Therefore, he clamp capaciance was seleced as an approximaed value of =0.33μF. Thus,by equaion (7), he maximumclamp capacior volage is modified o. In order o achieve he ZVS of he primary full-bridge circui,normally he lagging-leg swiches and mus operae as he ZVS a he urn-off condiion. This means ha he following relaion should be saisfied: where, helef side is he energy sored in a mode 1,and he righ side is he double margin value of he energy comingou from he resonan inducor, whichhe parasiic capaciors of he lagging-leg swiches and should charge or discharge.so he peak value of he primary curren can beapproximaely calculaed by he following equaion: (11) Copyrigh c 2014 SERSC 273

8 (12) where, is he effecive on-duy ime, which can be approximaed as he ime of mode 1.Therefore, he resonan inducance can be calculaed using equaions (11) and(12), as follows: where,he parasiic capaciance of he MOSFET swiches is seleced as =2200pF, according o he specificaion of he MOSFET used, FQ24N50. Thus, he resonan inducance is selecedas. 4. Experimenal Resuls To verify he effeciveness of he proposed converer, a prooype of he proposed converer is implemened, wih he specificaions of Table 1 in Secion 3. Figure 4 shows he experimenal waveforms of he gae-source driving volages of he upper MOSFET swiches and, and he bridge volage of he primary full-bridge MOSFET circui. From his, i can be known ha he conrol and driving circui operaions of he proposed converer are good, and he full-bridge circui is well operaed by he operaions of he conrol and driving circuis. Figure 5 shows he experimenal waveforms of he primary volages and currens of he primary full-bridge circui, which le us know ha he full-bridge circui is well designed and operaed, because he experimenal waveforms coincide wih he heoreical waveforms of Figure 2. Figure 6 shows he experimenal waveforms of he secondary oupu volage, and curren of he proposed converer. This shows ha he proposed converer operaes well and sably, as a high power DC-Donverer. (13) Figure 4. Experimenal waveforms of he gae-source driving volages of he upper swiches, and he bridge volage of he primary full-bridge circui 274 Copyrigh c 2014 SERSC

9 Figure 5. Experimenal waveforms of he primary volages, and curren of he full-bridge circui Figure 6. Experimenal waveforms of he secondary oupu volage, and curren of he proposed converer 5. Conclusion In his paper, a high power DC-Donverer is proposed, using a cener-apped ransformer and full-wave ype recifier. simple resonan circui, composed of a clamp capacior and resonan inducor, is used for sof-swiching of he converer primary, wih he unipolar PWM echnique. The proposed converer reduces freewheeling conducion loss,using he unipolar PWM echnique, and a simple resonan circui. Thus, he proposed converer achieves high efficiency. However, he proposed converer uilizes he unipolar PWM echnique, like he convenional full-bridge DC-Donverer. Because he proposed converer is composed of a full-bridge circui, cener-apped ransformer, and full-wave ype recifier, he srucure of he proposed converer is simple. In his paper, he operaional principle is explained in deail,according o each operaion mode; and a design example of a prooype of he proposed converer is shown. Experimenal resuls based on he implemened Copyrigh c 2014 SERSC 275

10 prooype are shown, o confirm he validiy of he proposed converer. The proposed converer shows good performance as a high power DC-Donverer. cknowledgemens This work was suppored by he Soonchunhyang Universiy Research Fund. References [1] J. G. Cho, J. W. Baek, C. Y. Jeong, D. W. Yoo and K. Y. Joe, IEEE Trans on Power Elecronics, vol. 2, no. 250, (2000). [2] G. B. Koo, G. W. Moon and M. J. Youn, IEEE Trans on Power Elecronics, vol. 2, no. 411, (2004). [3] W. Chen, F. C. Lee, M. M. Jovanovic and J.. Sabae, Comparaive Sudy of a Class of Full Bridge Zer- Volage-Swiched PWM Converers, in Proc. IEEE PEDES, (1996), pp [4] R. Redl, N. O. Sokal and L. Balogh, Novel Sof-Swiching Full-Bridge DC/DC Converer: nalysis, Design Consideraions, and Experimenal Resuls a 1.5kW, 100kHz, IEEE nnual Conf. PESC 90, (1990), pp [5] R. yyanar and N. Mohan, IEEE Trans on Power Elecronics, vol. 2, no. 184, (2001). [6] P. K. Jain, W. Kang, H. Soin and Y. Hi, IEEE Trans on Power Elec, vol. 5, no. 649, (2002). [7] G. B. Koo, G. W. Moon and M. J. Youn, IEEE Trans on Indusrial Elecronics, vol. 1, no. 228, (2005). [8] S. -Y. Lin and C. -L. Chen, IEEE Trans on Indusrial Elecronics, vol. 2, no. 358, (1998). [9] W. Li, Y. Shen, Y. Deng and X. He, ZVZCS Full-Bridge DC/DC Converer wih a Passive uxiliary Circui in he Primary Side, in Proc. IEEE PESC, (2006), pp [10] X. Huang, X. Wang, T. Nergaard, J. Lai, X. Xu and L. Zhu, IEEE Trans on Power Elecronics, vol. 5, no. 1341, (2004). [11] G. Y. Jeong, D. H. Yoo and M. G. Kim, Journal of KIIT, vol. 11, no. 5, (2013). [12] C. W. Lee, S. J. Lee, M. C. Kim, Y. S. Kyung and K. H. Eom, IJST, vol. 36, (2011), pp. 15. [13] S. Banerjee, M. Mukherjee and J. P. Banerjee, IJST, SERSC, vol. 16, (2010), pp. 11. [14] K. Somsai, N. Voraphonpipu and T. Kulworawanichpong, SERSC, IJC, vol. 2, (2013), pp. 65. [15] M. li, S. Khan, M. Waleed and Islamuddin, SERSC IJST, vol. 48, no. 139 (2012). Min-Gi Kim uhors Min-Gi Kim received his B.S. degree in Elecronic Informaion Engineering in 2013 from Soonchunhyang Universiy, Korea, where he is currenly working oward he M.S. degree. His research ineress include DC-DC power converer, C-DC high frequency inverer, and power conversion for he renewable energy. Geun-Yong Park Geun-Yong Park received his B.S. degree in Elecronic Informaion Engineering in 2013 from Soonchunhyang Universiy, Korea, where he is currenly working oward he M.S. degree. His research ineress include DC-DC power converer, C-DC high frequency inverer, and power conversion for he renewable energy. 276 Copyrigh c 2014 SERSC

11 Doo-HeeYoo Doo-HeeYooreceived his B.S. and M.S. degrees in Elecronic Informaion Engineering from Soonchunhyang Universiy, Korea, in 2007 and2009, respecively, where he is currenly working oward he Ph.D. degree. His research ineress include DC-DC power converer, C-DC high frequency inverer, and power conversion for he renewable energy. Gang-YoulJeong Gang-YoulJeong received his B.S. degree in Elecrical Engineering from Yeungnam Universiy, Korea, in 1997, and his M.S. and Ph.D. degrees in Elecronic and Elecrical Engineering from POSTECH (Pohang Universiy of Science and Technology), Korea, in 1999 and 2002, respecively. He has been an associae professor in Deparmen of Elecronic Informaion Engineering, SoonchunhyangUniversiy, Korea. His research ineress include DC-DC power converer, C-DC high frequency inverer, and power conversion for he renewable energy. Copyrigh c 2014 SERSC 277

12 278 Copyrigh c 2014 SERSC

A Novel Bidirectional DC-DC Converter with Battery Protection

A Novel Bidirectional DC-DC Converter with Battery Protection Inernaional Journal of Engineering Research and Developmen e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 1 (November 12), PP. 46-53 A Novel Bidirecional DC-DC Converer wih Baery

More information

A Control Technique for 120Hz DC Output Ripple-Voltage Suppression Using BIFRED with a Small-Sized Energy Storage Capacitor

A Control Technique for 120Hz DC Output Ripple-Voltage Suppression Using BIFRED with a Small-Sized Energy Storage Capacitor 90 Journal of Power Elecronics, Vol. 5, No. 3, July 005 JPE 5-3-3 A Conrol Technique for 0Hz DC Oupu Ripple-Volage Suppression Using BIFRED wih a Small-Sized Energy Sorage Capacior Jung-Bum Kim, Nam-Ju

More information

An Improved Zero-Voltage-Transition Technique in a Single-Phase Active Power Factor Correction Circuit

An Improved Zero-Voltage-Transition Technique in a Single-Phase Active Power Factor Correction Circuit An Improved Zero-lage-Transiion Technique in a Single-Phase Acive Power Facor Correcion Circui Suriya Kaewarsa School of Elecrical Engineering, Rajamangala Universiy of Technology Isan Sakon Nakhon Campus,

More information

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c Inernaional Symposium on Mechanical Engineering and Maerial Science (ISMEMS 016 Phase-Shifing Conrol of Double Pulse in Harmonic Eliminaion Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi i1, c

More information

Design and Development of Zero Voltage Switched Full Bridge 5 kw DC Power Supply

Design and Development of Zero Voltage Switched Full Bridge 5 kw DC Power Supply Inernaional Journal of Engineering Research & Technology (IJERT) Design and Developmen of Zero Volage Swiched Full Bridge 5 kw DC Power Supply ISSN: 2278-181 Vol. 3 Issue 5, May - 214 S. K. Agrawal, S.

More information

A Bidirectional Three-Phase Push-Pull Converter With Dual Asymmetrical PWM Method

A Bidirectional Three-Phase Push-Pull Converter With Dual Asymmetrical PWM Method A Bidirecional Three-Phase Push-Pull Converer Wih Dual Asymmeral PWM Mehod Minho Kwon, Junsung Par, Sewan Choi, IEEE Senior Member Deparmen of Elecral and Informaion Engineering Seoul Naional Universiy

More information

Three-Level TAIPEI Rectifier

Three-Level TAIPEI Rectifier Three-Level TAIPEI Recifier Yungaek Jang, Milan M. Jovanović, and Juan M. Ruiz Power Elecronics Laboraory Dela Producs Corporaion 5101 Davis Drive, Research Triangle Park, C, USA Absrac A new low-cos,

More information

Pulse Train Controlled PCCM Buck-Boost Converter Ming Qina, Fangfang Lib

Pulse Train Controlled PCCM Buck-Boost Converter Ming Qina, Fangfang Lib 5h Inernaional Conference on Environmen, Maerials, Chemisry and Power Elecronics (EMCPE 016 Pulse Train Conrolled PCCM Buck-Boos Converer Ming Qina, Fangfang ib School of Elecrical Engineering, Zhengzhou

More information

Family of Single-Inductor Multi-Output DC-DC Converters

Family of Single-Inductor Multi-Output DC-DC Converters PEDS009 Family of Single-Inducor Muli-Oupu DC-DC Converers Ray-ee in Naional Cheng Kung Universiy No., a-hseuh Road ainan Ciy, aiwan rayleelin@ee.ncku.edu.w Chi-Rung Pan Naional Cheng Kung Universiy No.,

More information

A New ZVS-PWM Full-Bridge Converter

A New ZVS-PWM Full-Bridge Converter New ZV-PW Full-ridge onverer Yungaek Jang and ilan. Jovanović Dela Producs orporaion Power Elecronics Laboraory P.O. ox 73, 50 Davis Dr. Research Triangle Park, N 7709, U... Yu-ing hang DELT Elecronics

More information

Lecture 5: DC-DC Conversion

Lecture 5: DC-DC Conversion 1 / 31 Lecure 5: DC-DC Conversion ELEC-E845 Elecric Drives (5 ECTS) Mikko Rouimo (lecurer), Marko Hinkkanen (slides) Auumn 217 2 / 31 Learning Oucomes Afer his lecure and exercises you will be able o:

More information

Comparative Analysis of the Large and Small Signal Responses of "AC inductor" and "DC inductor" Based Chargers

Comparative Analysis of the Large and Small Signal Responses of AC inductor and DC inductor Based Chargers Comparaive Analysis of he arge and Small Signal Responses of "AC inducor" and "DC inducor" Based Chargers Ilya Zelser, Suden Member, IEEE and Sam Ben-Yaakov, Member, IEEE Absrac Two approaches of operaing

More information

JPE Soon-Kurl Kwon, Bishwajit Saha *, Sang-Pil Mun *, Kazunori Nishimura ** *, *** and Mutsuo Nakaoka. 1. Introduction

JPE Soon-Kurl Kwon, Bishwajit Saha *, Sang-Pil Mun *, Kazunori Nishimura ** *, *** and Mutsuo Nakaoka. 1. Introduction 18 Journal of Power Elecronics, Vol. 9, No. 1, January 2009 JPE 9-1-2 Series Resonan ZCS- PFM DC-DC Converer using High Frequency Transformer Parasiic Inducive Componens and Lossless Inducive Snubber for

More information

7 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 27 29,

7 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 27 29, 7 h Inernaional Conference on DEVEOPMENT AND APPICATION SYSTEMS S u c e a v a, o m a n i a, M a y 27 29, 2 0 0 4 THEE-PHASE AC CHOPPE WITH IGBT s Ovidiu USAU 1, Mihai UCANU, Crisian AGHION, iviu TIGAEU

More information

M2 3 Introduction to Switching Regulators. 1. What is a switching power supply? 2. What types of switchers are available?

M2 3 Introduction to Switching Regulators. 1. What is a switching power supply? 2. What types of switchers are available? M2 3 Inroducion o Swiching Regulaors Objecive is o answerhe following quesions: 1. Wha is a swiching power supply? 2. Wha ypes of swichers are available? 3. Why is a swicher needed? 4. How does a swicher

More information

A1 K. 12V rms. 230V rms. 2 Full Wave Rectifier. Fig. 2.1: FWR with Transformer. Fig. 2.2: Transformer. Aim: To Design and setup a full wave rectifier.

A1 K. 12V rms. 230V rms. 2 Full Wave Rectifier. Fig. 2.1: FWR with Transformer. Fig. 2.2: Transformer. Aim: To Design and setup a full wave rectifier. 2 Full Wave Recifier Aim: To Design and seup a full wave recifier. Componens Required: Diode(1N4001)(4),Resisor 10k,Capacior 56uF,Breadboard,Power Supplies and CRO and ransformer 230V-12V RMS. + A1 K B1

More information

Investigation and Simulation Model Results of High Density Wireless Power Harvesting and Transfer Method

Investigation and Simulation Model Results of High Density Wireless Power Harvesting and Transfer Method Invesigaion and Simulaion Model Resuls of High Densiy Wireless Power Harvesing and Transfer Mehod Jaber A. Abu Qahouq, Senior Member, IEEE, and Zhigang Dang The Universiy of Alabama Deparmen of Elecrical

More information

Three-Phase Isolated High-Power-Factor Rectifier Using Soft-Switched Two-Switch Forward Converter

Three-Phase Isolated High-Power-Factor Rectifier Using Soft-Switched Two-Switch Forward Converter Three-Phase Isolaed High-Power-Facor Recifier Using Sof-Swiched Two-Swich Forward Converer Yungaek Jang, David L. Dillman, and Milan M. Jovanović Power Elecronics Laboraory Dela Producs Corporaion P.O.

More information

A ZVS Integrated Single-Input-Dual-Output DC/DC Converter for High Step-up Applications

A ZVS Integrated Single-Input-Dual-Output DC/DC Converter for High Step-up Applications A ZS Inegraed Single-Inpu-Dual-Oupu / Converer for High Sep-up Applicaions Ming Shang, Suden Member, IEEE, Haoyu Wang, Member, IEEE School of Informaion Science and Technology ShanghaiTech Universiy Shanghai,

More information

Series-Resonant Converter with Reduced- Frequency-Range Control

Series-Resonant Converter with Reduced- Frequency-Range Control Series-Resonan Converer wih Reduced- Frequency-Range Conrol Yungaek Jang, Milan M. Jovanović, Juan M. Ruiz, and Gang Liu 1, Power Elecronics Laboraory, Dela Producs Corporaion, 511 Davis Drive, Research

More information

ORDER INFORMATION TO pin 320 ~ 340mV AMC7150DLF

ORDER INFORMATION TO pin 320 ~ 340mV AMC7150DLF www.addmek.com DESCRIPTI is a PWM power ED driver IC. The driving curren from few milliamps up o 1.5A. I allows high brighness power ED operaing a high efficiency from 4Vdc o 40Vdc. Up o 200KHz exernal

More information

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents ree-wheeling diode Turn-off power dissipaion: off/d = f s * E off/d (v d, i LL, T j/d ) orward power dissipaion: fw/t = 1 T T 1 v () i () d Neglecing he load curren ripple will resul in: fw/d = i Lavg

More information

Power Efficient Battery Charger by Using Constant Current/Constant Voltage Controller

Power Efficient Battery Charger by Using Constant Current/Constant Voltage Controller Circuis and Sysems, 01, 3, 180-186 hp://dx.doi.org/10.436/cs.01.304 Published Online April 01 (hp://www.scirp.org/journal/cs) Power Efficien Baery Charger by Using Consan Curren/Consan olage Conroller

More information

Aleksandrs Andreiciks, Riga Technical University, Ingars Steiks, Riga Technical University, Oskars Krievs, Riga Technical University

Aleksandrs Andreiciks, Riga Technical University, Ingars Steiks, Riga Technical University, Oskars Krievs, Riga Technical University Scienific Journal of Riga Technical Universiy Power and Elecrical Engineering Curren-fed Sep-up DC/DC Converer for Fuel Cell Applicaions wih Acive Overvolage Clamping Aleksandrs Andreiciks, Riga Technical

More information

ISSCC 2007 / SESSION 29 / ANALOG AND POWER MANAGEMENT TECHNIQUES / 29.8

ISSCC 2007 / SESSION 29 / ANALOG AND POWER MANAGEMENT TECHNIQUES / 29.8 ISSCC 27 / SESSION 29 / ANALOG AND POWER MANAGEMENT TECHNIQUES / 29.8 29.8 A 3GHz Swiching DC-DC Converer Using Clock- Tree Charge-Recycling in 9nm CMOS wih Inegraed Oupu Filer Mehdi Alimadadi, Samad Sheikhaei,

More information

Chapter 1: Introduction

Chapter 1: Introduction Second ediion ober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder.. Inroducion o power processing.. Some applicaions of power elecronics.3. Elemens of power elecronics Summary of he course.

More information

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost)

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost) Table of Conens 3.0 SMPS Topologies 3.1 Basic Componens 3.2 Buck (Sep Down) 3.3 Boos (Sep Up) 3.4 nverer (Buck/Boos) 3.5 Flyback Converer 3.6 Curren Boosed Boos 3.7 Curren Boosed Buck 3.8 Forward Converer

More information

HF Transformer Based Grid-Connected Inverter Topology for Photovoltaic Systems

HF Transformer Based Grid-Connected Inverter Topology for Photovoltaic Systems 1 HF Transformer Based Grid-Conneced Inverer Topology for Phoovolaic Sysems Abhiji Kulkarni and Vinod John Deparmen of Elecrical Engineering, IISc Bangalore, India. (abhijik@ee.iisc.erne.in, vjohn@ee.iisc.erne.in)

More information

Introduction to Soft Switching

Introduction to Soft Switching Prof. S. Ben-Yaakov, Fundamenals of PWM Converer [NL_11 1] Inroducion o Sof Swiching Why sof swiching Types of sof swiching Examples Prof. S. Ben-Yaakov, Fundamenals of PWM Converer [NL_11 2] Why Sof Swiching?

More information

Integrated Forward Half-Bridge Resonant Inverter as a High-Power-Factor Electronic Ballast

Integrated Forward Half-Bridge Resonant Inverter as a High-Power-Factor Electronic Ballast Inegraed Forward Half-Bridge Resonan Inverer as a High-Power-Facor Elecronic Ballas Absrac.- A novel single-sage high-power-facor elecronic ballas obained from he inegraion of a forward dc-o-dc converer

More information

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter 160 Journal of Power Elecronics, Vol. 5, No. 2, April 2005 JPE 5-2-9 A Harmonic Circulaion Curren Reducion Mehod for Parallel Operaion of U wih a Three-Phase Inverer Kyung-Hwan Kim, Wook-Dong Kim * and

More information

The Single-Stage TAIPEI Rectifier

The Single-Stage TAIPEI Rectifier The Single-Sage TAIPEI Recifier Yungaek Jang, Milan M. Jovanović, and Juan M. Ruiz Power Elecronics Laboraory Dela Producs Corporaion 5101 Davis Drive, Research Triangle Park, C, USA Absrac A new hree-phase,

More information

A New Voltage Sag and Swell Compensator Switched by Hysteresis Voltage Control Method

A New Voltage Sag and Swell Compensator Switched by Hysteresis Voltage Control Method Proceedings of he 8h WSEAS Inernaional Conference on ELECTRIC POWER SYSTEMS, HIGH VOLTAGES, ELECTRIC MACHINES (POWER '8) A New Volage Sag and Swell Compensaor Swiched by Hyseresis Volage Conrol Mehod AMIR

More information

Multiple Load-Source Integration in a Multilevel Modular Capacitor Clamped DC-DC Converter Featuring Fault Tolerant Capability

Multiple Load-Source Integration in a Multilevel Modular Capacitor Clamped DC-DC Converter Featuring Fault Tolerant Capability Muliple Load-Source Inegraion in a Mulilevel Modular Capacior Clamped DC-DC Converer Feauring Faul Toleran Capabiliy Faisal H. Khan, Leon M. Tolber The Universiy of Tennessee Elecrical and Compuer Engineering

More information

MODELING OF CROSS-REGULATION IN MULTIPLE-OUTPUT FLYBACK CONVERTERS

MODELING OF CROSS-REGULATION IN MULTIPLE-OUTPUT FLYBACK CONVERTERS MODELING OF CROSS-REGULATION IN MULTIPLE-OUTPUT FLYBACK CONVERTERS Dragan Maksimovićand Rober Erickson Colorado Power Elecronics Cener Deparmen of Elecrical and Compuer Engineering Universiy of Colorado,

More information

Research Article Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

Research Article Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier The Scienific World Journal Volume 013, ricle I 61896, 11 pages hp://dx.doi.org/10.1155/013/61896 esearch ricle omparison beween Phase-Shif Full-ridge onverers wih Noncoupled and oupled urren-oubler ecifier

More information

Control and Protection Strategies for Matrix Converters. Control and Protection Strategies for Matrix Converters

Control and Protection Strategies for Matrix Converters. Control and Protection Strategies for Matrix Converters Conrol and Proecion Sraegies for Marix Converers Dr. Olaf Simon, Siemens AG, A&D SD E 6, Erlangen Manfred Bruckmann, Siemens AG, A&D SD E 6, Erlangen Conrol and Proecion Sraegies for Marix Converers To

More information

Simulation Analysis of DC-DC Circuit Based on Simulink in Intelligent Vehicle Terminal

Simulation Analysis of DC-DC Circuit Based on Simulink in Intelligent Vehicle Terminal Open Access Library Journal 218, Volume 5, e4682 ISSN Online: 2333-9721 ISSN Prin: 2333-975 Simulai Analysis of DC-DC Circui Based Simulink in Inelligen Vehicle erminal Weiran Li, Guoping Yang College

More information

GaN-HEMT Dynamic ON-state Resistance characterisation and Modelling

GaN-HEMT Dynamic ON-state Resistance characterisation and Modelling GaN-HEMT Dynamic ON-sae Resisance characerisaion and Modelling Ke Li, Paul Evans, Mark Johnson Power Elecronics, Machine and Conrol group Universiy of Noingham, UK Email: ke.li@noingham.ac.uk, paul.evans@noingham.ac.uk,

More information

Electrical, Control and Communication Engineering

Electrical, Control and Communication Engineering Elecrical, Conrol and Communicaion Engineering ISSN 2255-959 (online) ISSN 2255-940 (prin) 208, vol. 4, no., pp. 5 doi: 0.2478/ecce-208-000 hps://www.degruyer.com/view/j/ecce Asymmeric Snubberless Curren-Fed

More information

A New Isolated DC-DC Boost Converter using Three-State Switching Cell

A New Isolated DC-DC Boost Converter using Three-State Switching Cell A New Isolaed DCDC Boos nverer using hreesae Swiching Cell René P. orricobascopé (1) Grover V. orricobascopé () Francisco A. A. de Souza (1) Carlos G. C. Branco (3) Cícero M.. Cruz (1) Luiz H. C. Barreo

More information

Linear PFC regulator for LED lighting with the multi-level structure and low voltage MOSFETs.

Linear PFC regulator for LED lighting with the multi-level structure and low voltage MOSFETs. Linear PFC regulaor for lighing wih he muli-level srucure and low volage MOSFETs. Yuichi Noge Nagaoka Universiy of Technology Niigaa, Japan noge@sn.nagaokau.ac.jp Jun-ichi Ioh Nagaoka Universiy of Technology

More information

Yungtaek Jang, Milan M. Jovanović, Juan M. Ruiz, Misha Kumar, and Gang Liu 1, /16/$ IEEE 1292

Yungtaek Jang, Milan M. Jovanović, Juan M. Ruiz, Misha Kumar, and Gang Liu 1, /16/$ IEEE 1292 Implemenaion of 3.3-kW Ga-Based DC-DC Converer for EV On-Board Charger wih Series- Resonan Converer ha Employs Combinaion of Variable-Frequency and Delay-Time Conrol ungaek Jang, Milan M. Jovanović, Juan

More information

VOLTAGE DOUBLER BOOST RECTIFIER BASED ON THREE-STATE SWITCHING CELL FOR UPS APPLICATIONS

VOLTAGE DOUBLER BOOST RECTIFIER BASED ON THREE-STATE SWITCHING CELL FOR UPS APPLICATIONS VOLTAGE DOUBLER BOOST RECTIFIER BASED ON THREE-STATE SWITCHING CELL FOR UPS APPLICATIONS Raphael A. da Câmara, Ranoyca N. A. L. Silva, Gusavo A. L. Henn, Paulo P. Praça, Cícero M. T. Cruz, René P. Torrico-Bascopé

More information

A Phase Shift Full Bridge Based Reconfigurable PEV Onboard Charger With Extended ZVS Range and Zero Duty Cycle Loss

A Phase Shift Full Bridge Based Reconfigurable PEV Onboard Charger With Extended ZVS Range and Zero Duty Cycle Loss A Phase Shif Full Bridge Based Reconfigurable PEV Onboard Charger Wih Exended ZVS Range and Zero Duy Cycle Loss Haoyu Wang, Member, IEEE School of Informaion Science and Technology ShanghaiTech Universiy

More information

Comparative Study of Feed Forward and SPWM Control Technique for DC to DC Dual Active Bridge Converter Driving Single Phase Inverter

Comparative Study of Feed Forward and SPWM Control Technique for DC to DC Dual Active Bridge Converter Driving Single Phase Inverter JRST nernaional Journal for nnovaive Research in Science & Technology Volume 3 ssue 1 June 216 SSN (online): 2349-61 Comparaive Sudy of Feed Forward and SPWM Conrol Technique for DC o DC Dual Acive Bridge

More information

WIDE-RANGE 7-SWITCH FLYING CAPACITOR BASED DC-DC CONVERTER FOR POINT-OF-LOAD APPLICATIONS

WIDE-RANGE 7-SWITCH FLYING CAPACITOR BASED DC-DC CONVERTER FOR POINT-OF-LOAD APPLICATIONS WIDE-RANGE 7-SWITCH FLYING CAPACITOR BASED DC-DC CONVERTER FOR POINT-OF-LOAD APPLICATIONS By Parh Jain A hesis submied in conformiy wih he requiremens for he degree of Maser of Applied Science Graduae

More information

Three-Level TAIPEI Rectifier Analysis of Operation, Design Considerations, and Performance Evaluation

Three-Level TAIPEI Rectifier Analysis of Operation, Design Considerations, and Performance Evaluation This aricle has been acceped for publicaion in a fuure issue of his journal, bu has no been fully edied. Conen may change prior o final publicaion. Ciaion informaion: DOI.9/TPEL.6.5437, IEEE Transacions

More information

BOUNCER CIRCUIT FOR A 120 MW/370 KV SOLID STATE MODULATOR

BOUNCER CIRCUIT FOR A 120 MW/370 KV SOLID STATE MODULATOR BOUNCER CIRCUIT FOR A 120 MW/370 KV SOLID STATE MODULATOR D. Gerber, J. Biela Laboraory for High Power Elecronic Sysems ETH Zurich, Physiksrasse 3, CH-8092 Zurich, Swizerland Email: gerberdo@ehz.ch This

More information

EE201 Circuit Theory I Fall

EE201 Circuit Theory I Fall EE1 Circui Theory I 17 Fall 1. Basic Conceps Chaper 1 of Nilsson - 3 Hrs. Inroducion, Curren and Volage, Power and Energy. Basic Laws Chaper &3 of Nilsson - 6 Hrs. Volage and Curren Sources, Ohm s Law,

More information

Proceedings of International Conference on Mechanical, Electrical and Medical Intelligent System 2017

Proceedings of International Conference on Mechanical, Electrical and Medical Intelligent System 2017 on Mechanical, Elecrical and Medical Inelligen Sysem 7 Consan On-ime Conrolled Four-phase Buck Converer via Saw-oohwave Circui and is Elemen Sensiiviy Yi Xiong a, Koyo Asaishi b, Nasuko Miki c, Yifei Sun

More information

A New, Two-Switch, Isolated, Three-Phase AC-DC Converter

A New, Two-Switch, Isolated, Three-Phase AC-DC Converter A ew, Two-Swich, Isolaed, Three-Phase AC-DC Converer Yungaek Jang, Milan M. Jovanovi, Misha Kumar, and Kuris High Power Elecronics Laboraory Dela Producs Corporaion Research Triangle Park, C, USA Yihua

More information

A Four Quadrants HF AC Chopper with no Deadtime

A Four Quadrants HF AC Chopper with no Deadtime Four Quadrans HF hopper wih no Deadime Sam enyaakov,*, Yakir Hadad, and Noam Diamansein Power Elecronics Laboraory, Deparmen of Elecrical and ompuer Engineering engurion Universiy of he Negev, P.O. ox,

More information

Design And Implementation Of Multiple Output Switch Mode Power Supply

Design And Implementation Of Multiple Output Switch Mode Power Supply Inernaional Journal of Engineering Trends and Technology (IJETT) Volume Issue 0-Oc 0 Design And Implemenaion Of Muliple Oupu Swich Mode Power Supply Ami, Dr. Manoj Kumar Suden of final year B.Tech. E.C.E.,

More information

AN5028 Application note

AN5028 Application note Applicaion noe Calculaion of urn-off power losses generaed by an ulrafas diode Inroducion This applicaion noe explains how o calculae urn-off power losses generaed by an ulrafas diode, by aking ino accoun

More information

International Journal of Electronics and Electrical Engineering Vol. 4, No. 2, April Supercapacitors

International Journal of Electronics and Electrical Engineering Vol. 4, No. 2, April Supercapacitors Inernaional Journal of Elecronics and Elecrical Engineering Vol. 4, No., April 16 Equalizaion Chargers Using Parallel- or SeriesParallel-Resonan Inverer for Series-Conneced Supercapaciors Yifan Zhou and

More information

ZVZCS PWM DC-DC CONVERTER WITH CONTROLLED OUTPUT RECTIFIER

ZVZCS PWM DC-DC CONVERTER WITH CONTROLLED OUTPUT RECTIFIER Aca Elecroechnica e Informaica, Vol., o.,, 7 ZVZC PWM DC-DC CVERTER WITH CTRLLED TPT RECTIFIER Jaroslav DDRIK, Vladimír RŠČI Deparmen of Elecrical, Mecharonic and Indusrial Engineering, Faculy of Elecrical

More information

Design Considerations and Performance Evaluation of Single-Stage TAIPEI Rectifier for HVDC Distribution Applications

Design Considerations and Performance Evaluation of Single-Stage TAIPEI Rectifier for HVDC Distribution Applications Design Consideraions and Performance Evaluaion of Single-Sage TAIPEI Recifier for HVDC Disribuion Applicaions Yungaek Jang, Milan M. Jovanović, and Juan M. Ruiz Power Elecronics Laboraory Dela Producs

More information

An Integrated Three-port DC/DC Converter for High- Voltage Bus Based Photovoltaic Systems

An Integrated Three-port DC/DC Converter for High- Voltage Bus Based Photovoltaic Systems An Inegraed Three-por DC/DC Converer for High- Volage Bus Based Phoovolaic Sysems Junyun Deng, Suden Member, IEEE, Haoyu Wang, Member, IEEE, and Ming Shang School of Informaion Science and Technology ShanghaiTech

More information

Bootstrap Gate Driver and Output Filter of An SC-based Multilevel Inverter for Aircraft APU

Bootstrap Gate Driver and Output Filter of An SC-based Multilevel Inverter for Aircraft APU Asian Power Elecronics Journal, Vol. 9, No. 2, Dec. 215 Boosrap Gae Driver and Oupu Filer o An C-based Mulilevel Inverer or Aircra APU Yuanmao YE,K.W.Eric CHENG, N.C. Cheung Power Elecronics Research Cenre,

More information

A New Three-Phase Two-Switch ZVS PFC DCM Boost Rectifier

A New Three-Phase Two-Switch ZVS PFC DCM Boost Rectifier A New Three-Phase Two-Swich ZVS PFC DCM Boos Recifier Yungaek Jang, Milan M. Jovanović, and Juan M. Ruiz Power Elecronics Laboraory Dela Producs Corporaion 5101 Davis Drive, Research Triangle Park, NC,

More information

P. Bruschi: Project guidelines PSM Project guidelines.

P. Bruschi: Project guidelines PSM Project guidelines. Projec guidelines. 1. Rules for he execuion of he projecs Projecs are opional. Their aim is o improve he sudens knowledge of he basic full-cusom design flow. The final score of he exam is no affeced by

More information

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI)

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI) ECMA-373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFC-WI) Sandard ECMA-373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFC-WI) Ecma Inernaional Rue du Rhône 114

More information

A Coupled Inductor Hybrid Quadratic Boost Inverter for DC Microgrid Application

A Coupled Inductor Hybrid Quadratic Boost Inverter for DC Microgrid Application A Coupled Inducor Hybrid Quadraic Boos Inverer for DC Microgrid Applicaion Anish Ahmad, R. K. Singh, and R. Mahany Deparmen of Elecrical Engineering, Indian Insiue of Technology (Banaras Hindu Universiy),Varanasi,India.

More information

A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters Qin, Zian; Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters Qin, Zian; Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede Aalborg Universie A Volage Doubler Circui o Exend he Sof-swiching Range of Dual Acive Bridge Converers Qin, Zian; Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede Published in: Proceedings of he 217 IEEE Applied

More information

= f 8 f 2 L C. i C. 8 f C. Q1 open Q2 close (1+D)T DT 2. i C = i L. Figure 2: Typical Waveforms of a Step-Down Converter.

= f 8 f 2 L C. i C. 8 f C. Q1 open Q2 close (1+D)T DT 2. i C = i L. Figure 2: Typical Waveforms of a Step-Down Converter. Inroducion Oupu Volage ipple in Sep-Down and Sep-Up Swiching egulaors Oupu volage ripple is always an imporan performance parameer wih DC-DC converers. For inducor-based swiching regulaors, several key

More information

AN303 APPLICATION NOTE

AN303 APPLICATION NOTE AN303 APPLICATION NOTE LATCHING CURRENT INTRODUCTION An imporan problem concerning he uilizaion of componens such as hyrisors or riacs is he holding of he componen in he conducing sae afer he rigger curren

More information

Dead Zone Compensation Method of H-Bridge Inverter Series Structure

Dead Zone Compensation Method of H-Bridge Inverter Series Structure nd Inernaional Conference on Elecrical, Auomaion and Mechanical Engineering (EAME 7) Dead Zone Compensaion Mehod of H-Bridge Inverer Series Srucure Wei Li Insiue of Elecrical Engineering and Informaion

More information

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling EE 330 Lecure 24 Amplificaion wih Transisor Circuis Small Signal Modelling Review from las ime Area Comparison beween BJT and MOSFET BJT Area = 3600 l 2 n-channel MOSFET Area = 168 l 2 Area Raio = 21:1

More information

A New Soft-Switched PFC Boost Rectifier with Integrated Flyback Converter for Stand-by Power

A New Soft-Switched PFC Boost Rectifier with Integrated Flyback Converter for Stand-by Power A New SofSwiched PFC Boos Recifier wih Inegraed Flyback Converer for Sandby Power Yungaek Jang, Dave L. Dillman, and Milan M. Jovanović Dela Producs Corporaion Power Elecronics Laboraory P.O. Box 273,

More information

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER INTRODUCTION: Being able o ransmi a radio frequency carrier across space is of no use unless we can place informaion or inelligence upon i. This las ransmier

More information

Design of a Three-Phase Unity Power Factor Single-Stage Telecom Rectifier

Design of a Three-Phase Unity Power Factor Single-Stage Telecom Rectifier Design of a Three-Phase Uniy Power Facor Single-Sage Telecom Recifier Bünyamin Tamyürek Deparmen of Elecrical Engineering, Eskisehir Osmangazi Universiy, Eskisehir, Turkey bamyurek@ogu.edu.r Absrac This

More information

Study on the Wide Gap Dielectric Barrier Discharge Device Gaofeng Wang

Study on the Wide Gap Dielectric Barrier Discharge Device Gaofeng Wang Sudy on he Wide Gap Dielecric Barrier Discharge Device Gaofeng Wang School of Informaion Engineering, Zhengzhou Universiy, Zhengzhou 450001, China 932167312@qq.com Keywords: DBD; Wide air gap; Plasma body;

More information

Implementation of High Voltage Gain RS Cell- Based DC-DC Converter for Offshore Wind

Implementation of High Voltage Gain RS Cell- Based DC-DC Converter for Offshore Wind IJCTA, 1(2), 217, pp. 147-156 Inernaional Science Press Closed Loop Conrol of Sof Swiched Forward Converer Using Inelligen Conroller 147 Implemenaion of High Volage Gain RS Cell- Based DC-DC Converer for

More information

Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles Energies 015, 8, 667-6704; doi:10.3390/en807667 Aricle OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Three-Phase High-Power and Zero-Curren-Swiching OBC for Plug-In Elecric Vehicles

More information

A floating-output interleaved boost DC DC converter with high step-up gain

A floating-output interleaved boost DC DC converter with high step-up gain Auomaika Journal for Conrol, Measuremen, Elecronics, Compuing and Communicaions ISSN: 0005-1144 (Prin) 1848-3380 (Online) Journal homepage: hp://www.andfonline.com/loi/au20 A floaing-oupu inerleaved boos

More information

Aalborg Universitet. Published in: I E E E Journal of Emerging and Selected Topics in Power Electronics. Publication date: 2018

Aalborg Universitet. Published in: I E E E Journal of Emerging and Selected Topics in Power Electronics. Publication date: 2018 Aalborg Universie High Volage Gain Quasi-SEPIC DC-DC Converer Siwakoi, Yam Prasad; Mosaan, Ali; Abdelhakim, Ahmed; Davari, Pooya; Khan, Noman Habib; Li, Li; Blaabjerg, Frede Published in: I E E E Journal

More information

Explanation of Maximum Ratings and Characteristics for Thyristors

Explanation of Maximum Ratings and Characteristics for Thyristors 8 Explanaion of Maximum Raings and Characerisics for Thyrisors Inroducion Daa shees for s and riacs give vial informaion regarding maximum raings and characerisics of hyrisors. If he maximum raings of

More information

Reliability Improvement of FB inverter in HID Lamp Ballast using UniFET II MOSFET family

Reliability Improvement of FB inverter in HID Lamp Ballast using UniFET II MOSFET family Reliabiliy Improvemen of FB inverer in HID Lamp Ballas using UniFET II MOSFET family Won-Seok Kang Sysem & Applicaion Group Fairchild Semiconducor Bucheon, Korea wonseok.kang@fairchildsemi.com Jae-Eul

More information

Synchronization of single-channel stepper motor drivers reduces noise and interference

Synchronization of single-channel stepper motor drivers reduces noise and interference hronizaion of single-channel sepper moor drivers reduces noise and inerference n mos applicaions, a non-synchronized operaion causes no problems. However, in some cases he swiching of he wo channels inerfere,

More information

Bipolar-type Dynamic Voltage Conditioner Using P-Leg and N-Leg Structured AC-AC Converter

Bipolar-type Dynamic Voltage Conditioner Using P-Leg and N-Leg Structured AC-AC Converter 218 Inernaional Conference on Physs, Compuing and Mahemaal Modeling (PCMM 218) ISBN: 978-6595-549- Bipolar-ype Dynam Volage Condiioner Using P-Leg and N-Leg Srucured AC-AC Converer Yue-yue LI 1, Dong-bo

More information

Diodes. Diodes, Page 1

Diodes. Diodes, Page 1 Diodes, Page 1 Diodes V-I Characerisics signal diode Measure he volage-curren characerisic of a sandard signal diode, he 1N914, using he circui shown below. The purpose of he back-o-back power supplies

More information

Figure 1. Active Resonant Commutated Pole Converter (ARCP) Figure 2. Equivalent ARCP Circuit

Figure 1. Active Resonant Commutated Pole Converter (ARCP) Figure 2. Equivalent ARCP Circuit Achieving ZVS in a Two Quadran Converer Using a Simplified Auxiliary Circui wih Novel Conrol Doudousakis, T. and Sirio, C. Lee P.E. TDK-Lambda, Low Power Division Absrac- This paper proposes a new sof-swiching

More information

ECMA-373. Near Field Communication Wired Interface (NFC-WI) 2 nd Edition / June Reference number ECMA-123:2009

ECMA-373. Near Field Communication Wired Interface (NFC-WI) 2 nd Edition / June Reference number ECMA-123:2009 ECMA-373 2 nd Ediion / June 2012 Near Field Communicaion Wired Inerface (NFC-WI) Reference number ECMA-123:2009 Ecma Inernaional 2009 COPYRIGHT PROTECTED DOCUMENT Ecma Inernaional 2012 Conens Page 1 Scope...

More information

EE 40 Final Project Basic Circuit

EE 40 Final Project Basic Circuit EE 0 Spring 2006 Final Projec EE 0 Final Projec Basic Circui Par I: General insrucion 1. The final projec will coun 0% of he lab grading, since i s going o ake lab sessions. All oher individual labs will

More information

Interleaved DC/DC Converter with Coupled Inductor Theory and Application

Interleaved DC/DC Converter with Coupled Inductor Theory and Application American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-7, Issue-5, pp-80-88 www.ajer.org Research Paper Open Access Inerleaved DC/DC Converer wih Coupled Inducor Theory

More information

Analog Circuits EC / EE / IN. For

Analog Circuits EC / EE / IN.   For Analog Circuis For EC / EE / IN By www.hegaeacademy.com Syllabus Syllabus for Analog Circuis Small Signal Equivalen Circuis of Diodes, BJTs, MOSFETs and Analog CMOS. Simple Diode Circuis, Clipping, Clamping,

More information

All Silicon Marx-bank topology for high-voltage, high-frequency rectangular pulses

All Silicon Marx-bank topology for high-voltage, high-frequency rectangular pulses All Silicon Marx-bank opology for high-volage, high-frequency recangular pulses L.M. Redondo Cenro de Física da Universidade de Lisboa Insiuo Superior de Engenharia de Lisboa Rua Conselheiro Emídio Navarro

More information

Power Control of Resonant Converter MPPT by Pulse Density Modulation

Power Control of Resonant Converter MPPT by Pulse Density Modulation Power Conrol of Resonan Converer MPPT by Pulse Densiy Modulaion Akif Karafil 1, Harun Ozbay 2, and Selim Oncu 3 1,2 Bilecik Seyh Edebali Universiy, Bilecik, Turkey akif.karafil@bilecik.edu.r, harun.ozbay@bilecik.edu.r

More information

Power Loss Research on IGCT-applied NPC Three-level Converter

Power Loss Research on IGCT-applied NPC Three-level Converter ELKOMNIKA Indonesian Journal of Elecrical Engineering Vol.2, No.7, July 204, pp. 554 ~ 562 DOI: 0.59/elkomnika.v2i7.5908 554 Power Loss Research on IGC-applied NPC hree-level Converer Dong Xu*, Min-Xiao

More information

4D-Interleaving of Isolated ISOP Multi-Cell Converter Systems for Single Phase AC/DC Conversion

4D-Interleaving of Isolated ISOP Multi-Cell Converter Systems for Single Phase AC/DC Conversion 2016 IEEE Proceedings of he Conference for Power Elecronics, Inelligen Moion, Power Qualiy (PCIM Europe 2016), Nuremberg, Germany, May 10-12, 2016 4D-Inerleaving of Isolaed ISOP Muli-Cell Converer Sysems

More information

SOFT SWITCHING INVERTER POWER SOURCE FOR ARC WELDING

SOFT SWITCHING INVERTER POWER SOURCE FOR ARC WELDING SOFT SWITCHING INVERTER POWER SOURCE FOR ARC WELDING H. Mecke, W. Fischer, F. Werher Oo-von-Guericke-Universiy Magdeburg, Insiue ELE, Germany Absrac. Modern elecronic power sources for arc welding are

More information

A 30nA Quiescent 80nW to 14mW Power Range Shock-Optimized SECE-based Piezoelectric Harvesting Interface. with 420% Harvested Energy Improvement

A 30nA Quiescent 80nW to 14mW Power Range Shock-Optimized SECE-based Piezoelectric Harvesting Interface. with 420% Harvested Energy Improvement A 30nA Quiescen 80nW o 14mW Power Range -Opimized SECE-based Piezoelecric Harvesing Inerface wih 420% Harvesed Energy Improvemen Anhony Quelen, Adrien Morel, Pierre Gasnier, Romain Grézaud, Séphane Monfray,

More information

High-voltage high-frequency Marx-bank type pulse generator using integrated power semiconductor half-bridges

High-voltage high-frequency Marx-bank type pulse generator using integrated power semiconductor half-bridges High-volage high-frequency Marx-bank ype pulse generaor using inegraed power semiconducor half-bridges L.M. Redondo 1,2, J. Fernando Silva 1,3,4, P. Tavares 5, Elmano Margao 1,4 1 Insiuo Superior de Engenharia

More information

Double Tangent Sampling Method for Sinusoidal Pulse Width Modulation

Double Tangent Sampling Method for Sinusoidal Pulse Width Modulation Compuaional and Applied Mahemaics Journal 2018; 4(1): 8-14 hp://www.aasci.org/journal/camj ISS: 2381-1218 (Prin); ISS: 2381-1226 (Online) Double Tangen Sampling Mehod for Sinusoidal Pulse Widh Modulaion

More information

Battery powered high output voltage bidirectional flyback converter for cylindrical DEAP actuator

Battery powered high output voltage bidirectional flyback converter for cylindrical DEAP actuator Downloaded from orbi.du.dk on: Oc 11, 218 Baery powered high oupu volage bidirecional flyback converer for cylindrical acuaor Huang, Lina; Thummala, Prasanh; Zhang, Zhe; Andersen, Michael A. E. Published

More information

Analysis of SiC MOSFETs under Hard and Soft- Switching

Analysis of SiC MOSFETs under Hard and Soft- Switching Analysis of SiC MOSFETs under Hard and Sof- Swiching M. R. Ahmed, R. Todd and A. J. Forsyh School of Elecrical and Elecronic Engineering, Power Conversion Group The Universiy of Mancheser Mancheser, U.K.

More information

v GS D 1 i S i L v D + V O + v S i D

v GS D 1 i S i L v D + V O + v S i D 2 Buck PWM DC DC Converer 2. Inroducion his chaper sudies he PWM buck swiching-mode converer, ofen referred o as a chopper [ 3]. Analysis is given for boh coninuous conducion mode (CCM) and disconinuous

More information

4 20mA Interface-IC AM462 for industrial µ-processor applications

4 20mA Interface-IC AM462 for industrial µ-processor applications Because of he grea number of indusrial buses now available he majoriy of indusrial measuremen echnology applicaions sill calls for he sandard analog curren nework. The reason for his lies in he fac ha

More information

University of Alberta

University of Alberta Universiy of Albera Mulilevel Space Vecor PWM for Mulilevel Coupled Inducor Inverers by Behzad Vafakhah A hesis submied o he Faculy of Graduae Sudies and Research in parial fulfillmen of he requiremens

More information