An Offset Compensated and High-Gain CMOS Current-Feedback Op-Amp

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "An Offset Compensated and High-Gain CMOS Current-Feedback Op-Amp"

Transcription

1 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 1, JANUARY input signal is v(t) =1+0:5sin(!t) [8] J. Valsa and J. Vlach, SWANN A program for analysis of switched analog nonliner networks, Int. J. Circuit Theory and Applications, vol. 23, no. 4, pp , July Aug with f =101=[100 p 2] Hz, the switching frequency is f s = 100 Hz. The choice of values is such that the network will need a long time for the transients to die out. Fig. 3 shows the transient response of v(t) during the first 20 periods of the input signal, starting from zero initial condition. If we apply the steady-state algorithm, only six iterations are needed to get the error below : Fig. 4 shows the dc and the harmonic content of the output. Example 3 is the input circuit of a self-biasing amplitude modulator. It has two input signals e 1(t) = 5 sin(! 1t) e 2(t) = 5 sin(! 2t) with f 1 = p 24 Hz and f 2 = 500 Hz. The original circuit is in Fig. 5(a), its equivalent in Fig. 5(b). The input port of the transistor is modeled as an internally controlled switch (ideal diode), in series with an internal dc voltage source E =0:7V. The nonlinear admittance g represents the diode conductance. For v = v(t) it is defined by g(v) =0:005(v +0:1v 2 ): Computation of the steady-state response via transient analysis is very expensive, because the capacitor is large and makes the time constant of the circuit much larger than the period of the lowest input frequency. Fig. 6 shows the transient of the voltage v(t): When we apply the steady-state algorithm, the convergence, shown in Fig. 7, is fast and the steady state is reached within six iterations. Fig. 8 shows the response of the network in steady state and Fig. 9 is the dc and the harmonic content of the output in steady state. VII. CONCLUSION The paper presented a simple algorithm to calculate the quasiperiodic steady state of switched networks. Conditions for its convergence were derived. Acceleration to the steady state is based on extrapolation and thus avoids the need to calculate derivatives and Jacobians. Illustrative examples show application of the algorithm. REFERENCES [1] K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli, Steady State Methods for Simulating Analog and Microwave Circuits. Norwell, MA: Kluwer Academic, [2] L. Zhu and J. Vlach, Analysis and steady state of nonlinear networks with ideal switches, IEEE Trans. Circuits Syst. I, vol. 42, pp , Apr [3] L. O. Chua and A. Ushida, Algorithms for computing almost periodic steady state response of nonlinear systems to multiple input frequencies, IEEE Trans. Circuits Syst., vol. CAS-28, pp , Oct [4] K. S. Kundert, J. White, and A. Sangiovanni-Vincentelli, A mixed frequency-time approach for distortion analysis of switching filter circuits, IEEE J. Solid-State Circuits, vol. 24, pp , Apr [5] K. S. Kundert, G. B. Sorkin, and A. Sangiovanni-Vincentelli, Applying harmonic balance to almost-periodic circuits, IEEE Trans. Circuits Syst., vol. CAS-36, no. 2, pp , Feb [6] S. Skelboe, Computation of the periodic steady-state response of nonlinear networks by extrapolation methods, IEEE Trans. Circuits Syst., vol. CAS-27, pp , Mar [7], Conditions for quadratic convergence of quick periodic steadystate methods, IEEE Trans. Circuits Syst., vol. CAS-29, pp , Apr An Offset Compensated and High-Gain CMOS Current-Feedback Op-Amp Ali Assi, Mohamad Sawan, and Jieyan Zhu Abstract This brief describes a new CMOS current-feedback operational amplifier (CFOA) with an on-chip continuous-time current-mode input offset voltage compensation circuit. The proposed compensation method is based on a combination of two techniques: the error integration and the current feedback. In addition, this method is irrespective of process and temperature parameters because of its fully symmetrical architecture. HSPICE simulations of the designed CMOS CFOA layout show that the input offset voltage could be reduced to less than 1 mv, and a gain of around 112 db and a power consumption of less than 3 mw are achievable. Index Terms CMOS analog design, current-feedback op-amp, current-mode technique, offset compensation. I. INTRODUCTION The current-feedback operational amplifier (CFOA), also called the transimpedance amplifier, has been described in [1], [2], [6], and [7]. The most important features of CFOA s are wide-band and high slew-rate. CFOA s use a single-stage amplifier architecture; therefore, no compensation capacitance is needed. This type of operational amplifier has found wide use in high-frequency applications since the end of the 1980 s [3]. CFOA s rely on the availability of complementary transistors [3], i.e., very similar NPN transistor and PNP transistor in bipolar or metal oxide semiconductor field effect transistor (Channel N MOSFET) and metal oxide semiconductor field effect transistor Channel P MOSFET in CMOS technology. The offset voltage of CFOA depends heavily upon the difference of V BE s or V T s. This ranges from a few millivolts to as high as 40 mv in most bipolar junction transistor (BJT) CFOA s, as reported in [3] and [4]. To date, most of the research on CFOA s are focusing on bipolar technology. In addition to the consideration of high frequency, another important reason is that the 1V T between Channel N MOSFET and Channel P MOSFET is much bigger than that of V BE s of BJT s. The 1V T could be more than 100 mv even in a modern silicon fabrication process. To overcome input offset voltage in CFOA s, two architectures have been investigated. The most popular one is to insert a diodeconnected transistor in series with each emitter follower in [4] and [6]. This technique does degrade the CFOA s bandwidth because of an increase of the impedance at its negative input (V n ). The other technique is to scale I PNP and I NPN [4] with a proper choice of Manuscript received May 9, 1995; revised November 15, This work was supported by the Canadian Microelectronics Corporation (CMC) and the Natural Sciences and Engineering Research Council of Canada. This paper was recommended by Associate Editor A. Rodriquez-Vazquez. The authors are with the Department of Electrical and Computer Engineering, École Polytechnique de Montréal, Montréal, PQ, Canada H3C 3A7 ( Publisher Item Identifier S (98)01616-X /98$ IEEE

2 86 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 1, JANUARY 1998 (a) (b) Fig. 1. (c) CFOA. (a) Typical architecture. (b) Closed-loop macromodel. (c) CMOS implementation. the emitter areas. This last method is not suitable in CMOS CFOA design because of much more dispersion of parameters in the CMOS process than that in bipolar. In this brief, a new CMOS CFOA with an on-chip current-mode input offset voltage compensation circuit is proposed. The proposed compensation method is based on a combination of two techniques frequently exploited by analog designers in different applications. These techniques are the error integration and the current feedback. However, the compensation method described in this brief is also suitable for BJT CFOA s. In Section II, CFOA s are briefly reviewed. Section III describes the proposed offset compensation method operating on continuoustime current mode. In Section IV, simulation results of the offset compensated CMOS CFOA are presented and discussed. Finally, Section V presents a conclusion. Fig. 2. Block diagram of the CFOA with the compensation circuitry. II. PRINCIPLE OF CFOA S The detailed analysis of CFOA s dc and ac performance has been described in [2] and [6]. However, a brief description of a CFOA will be given in this section. In Fig. 1(a), V p and V n are noninverting inputs of CFOA, respectively. The input stage B1 is a unity-gain buffer forcing V n to follow V p. Under an ideal condition, i.e., a fully symmetrical input buffer, one can have V n = V p. An imbalance at the inputs will cause an imbalance current I n at V n. The current I n is then reflected at the common node Vo, 0 designated In, 0 by current mirror (CM). The output voltage signal, V O, is obtained by a second unity-gain buffer B2. Amplification is produced by a transimpedance stage. Generally, the transimpedance gain Z is very high, therefore, a tiny current I n is needed to obtain a large output voltage magnitude. The C p at node V 0 o is a layout parasitic equivalent capacitance. A simplified macromodel of the CFOA architecture configured in closed-loop op-amp is shown in Fig. 1(b). The output resistance of the input stage buffer R inv is included since it has a significant effect on the bandwidth of the CFOA. The current that flows out from the inverting terminal i n is transferred to the gain node, which is represented by R z and C z, via CM that has a current gain K. The

3 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 1, JANUARY (a) (b) Fig. 3. (c) Compensation circuit. (a) Block diagram of the VC VIC. (b) Schematic of half VC VIC. (c) Schematic of the CIM. voltage at the gain node is transferred to the output in the usual way by a voltage buffer with voltage gain A. The transfer function is given by v o v p = 1+ R 2 R 1 1+j!C z R inv 1+ and the pole frequency is also given by f03db = AK R 2 R 1 +R 2 AK 2C z R inv 1+ R2 R 1 +R 2 A full derivation of this transfer function is given in [8]. (1) : (2) From the technology point of view, it is simple to manufacture a CFOA design in CMOS because of the availability of Channel N MOSFET and Channel P MOSFET transistors in most popular CMOS technologies. A CMOS implementation of a CFOA could be easily derived from an existing bipolar implementation [2], where the PNP and NPN transistors are replaced by Channel P MOSFET and Channel N MOSFET transistors, respectively. This translation yields a CMOS implementation of a CFOA, as shown in Fig. 1(c). In this case, the input offset voltage would be V n 0 V p = jv gsp j0v gsn (3) where V gsp = V Tp + 2I pl p C ox W

4 88 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 1, JANUARY 1998 Fig. 4. DC performance of the VC VIC and the CIM. and the following conditions should be satisfied: V gsn = V Tn + 2I nl n C ox W : (4) V gsp3 = V gsn1 and V gsn4 = V gsp2 (5) All V Tn, V Tp, n, p, and C ox are process- and temperaturedependent parameters. They could cause a significant input offset voltage as high as a few hundreds of a millivolt. Thus to date, it is hard to see a CFOA design in CMOS technology. To overcome the input offset voltage in CFOA s generally and in CMOS CFOA s specifically, we propose in the following section a current-mode offset compensation circuit based on error integration and current feedback. where V gsn1 = V Tn + V gsp2 = V Tp + 2I 1L 1 nc oxw 1 2I 2L 2 pc oxw 2 (6) III. OFFSET COMPENSATION METHOD The bloc diagram of the proposed CMOS CFOA with its currentmode offset voltage compensation circuitry is shown in Fig. 2. The compensation circuit consists of a voltage-comparator and voltage-tocurrent converter (VC VIC) and a current integrator/memory (CIM), are all connected in a closed loop. Any offset between V p and V n of the CFOA will generate a compensation current I cp or I cn. This current, applied in a negative feedback, conversely forces V n to become close to V p. Thus, any offset caused by process or by temperature parameters would be automatically compensated. In Fig. 1(c), the addition of one column (pseudo-negative input) V nr is necessary for offset compensation circuit and does not make any effect on the CFOA s performance, as will be seen later. The V nr voltage, which is generated by M 19 M 22, is almost equal to that of V n under the dc operating condition when a design match is taken between M 19 M 22 and M 1, M 2, M 9, and M 13. The addition of M 17 and M 18 as well as their bias current I bp and I bn, respectively, makes it possible to reduce the supply voltage of the CFOA to 4V T, instead of 6V T without them [4]. The input offset voltage is essentially the offset of the input buffer (M 1 M 4 ) [5]. From Fig. 1(c), it is clear that to let V n = V p, both of V gsp3 = V Tp + V gsn4 = V Tn + 2I cpl 3 pc oxw 3 2I cn L 4 n C ox W 4 : (7) In the balance case, I 1 is equal to I 2 (I n = I 2 0 I 1 = 0). The values of I 1 or I 2 depend upon the difference between the voltages V 1 and V 2 because V gsn1 + jv gsp2 j = V 1 0 V 2 : (8) Thus, V 1 V 2 is considered as a floating biasing voltage. According to (7), the best way to satisfy conditions (5) is by adjusting I cp and/or I cn, respectively, to force V gsp3 = V gsn1 and V gsn4 = V gsp2, and consequently V n = V p. For this purpose, a compensation circuit with accurate differential VC VIC and CIM are required. The block diagram of VC VIC is shown in Fig. 3(a) [6]. Two fully symmetrical source followers BUF 1 and BUF2 are used to detect the difference between V p and V n of the CFOA when this diagram is

5 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 1, JANUARY (a) (b) (c) Fig. 5. Simulation results of the CFOA. (a) Input offset voltage with and without compensation. (b) Open-loop gain and gain bandwidth (GBW) of the CFOA. (c) Closed-loop gain and 03-dB frequency of the CFOA. integrated, as shown in Fig. 2. An imbalance current I imb would be generated if any imbalance caused by an existing offset on those two inputs. I imb is then reflected by two CM s to the output forming I o1 and I o2. The current outputs I o1 and I o2 have identical magnitudes, but opposite directions. Io1 and Io2 are then used to drive the CIM block. The exploitation of symmetrical architecture in this part makes the intrinsic error minimal. The detailed schematic of half VC VIC is shown in Fig. 3(b). The detailed schematic of the CIM is shown in Fig. 3(c) [6]. This circuit is used to supply an additional biasing current (I cp or I cn )to the CFOA s input buffer [Fig. 1(c)] which compensate the CFOA s input offset voltage. In Fig. 3(c), Iin is the integration input current, and I feed is the feedback current. Both of them are summed into the node A. The integrated output current I cp (t) [or I cn (t)] is I cp (t)= g m C 1 0 t I in dt (9) where I in is the output current of the VC VIC, i.e., I o1 (or I o2 ), gm is the transconductance of transistors M 5 or M 6, and C is the equivalent MOS gate capacitances. From (9), we can see that the output currents of the CIM depend upon the magnitude and the direction of Iin as well as the time t. C (C 1 or C 2 ) is used to memorize a stable current in the case of I in =0, therefore, its value is not critical to the output current.

6 90 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 1, JANUARY 1998 Fig. 6. Layout of the CFOA. The previously discussed CFOA, VC VIC, and CIM were combined in one circuit. Using this circuit, any small imbalance between V p and V n would be compensated, consequently reducing the input offset voltage of the CFOA. The addition of V nr in Fig. 1(c) makes it possible to detect an input offset voltage between V p and V nr other than V p and V n. In practical applications, V n is served as a node of feedback connection and any ac variation of V p V n should not be reflected to the offset compensation circuit. Therefore, the quantity of compensation is entirely dependent upon the dispersion of process parameters, and independent of CFOA s operating condition. Once the compensation is completed, a stable output currents I cp and I cn are maintained on the CIM output. The accuracy of the compensation technique is only dependent on the error of the part of voltage comparison, not on the absolute value of currents, because the compensation procedure is executed continuously. Thus, a high accuracy compensation can be achieved by using a fully symmetrical architecture in the VC VIC s input. IV. IMPLEMENTATION AND RESULTS The proposed CMOS CFOA has been simulated with HSPICE using the 0.8-m BiCMOS technology provided by NORTEL. The simulation results of the VC VIC and the CIM are shown in Fig. 4. Even an imbalance of 1 mv at the inputs of VC VIC (V i1 Vi2) would cause a tiny output current I o1 or I o2, which drive the CIM to increase one compensation current, supposing I cp, and to simultaneously decrease the other one, here called I cn. When both the inputs of the CFOA are in balance, the output current of the CIM, I cp and I cn would keep constant, as shown in Fig. 4. The input offset voltage of less than 1 mv with compensation and more than 100 mv without compensation are shown in Fig. 5(a). A few microseconds is needed to stabilize the compensation circuit at the beginning of turn-on CFOA s power supply. In Fig. 5(b), an open-loop frequency response is shown with load capacitance C L =1pF. A maximum gain of around 112 db was obtained without special optimization of the CFOA ac performance design. The power consumption of the compensated CFOA was less than 3 mw. Fig. 5(c) shows the closed-loop gain and the 03-dB frequency of the CFOA. The layout of the CFOA is shown in Fig. 6. The complete design (with pads) occupies m 2. The CFOA occupy only m 2 and the compensation circuit occupy m 2. The layout is now in fabrication process using the 0.8-m BiCMOS technology. consumption of less than 3 mw. The presented continuous-time current mode offset compensation method is independent based upon fabrication process and temperature parameters. ACKNOWLEDGMENT The authors would like to thank the Canadian Microelectronics Corporation (CMC) and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their technical support. REFERENCES [1] J. Zhu, M. Sawan, and K. Arabi, An offset compensated CMOS current feedback operational-amplifier, in Proc. IEEE ISCAS, Seattle, WA, April 30, 1995 May , pp [2] S. Franco, Analytical foundations of current-feedback amplifiers, in Proc. IEEE ISCAS, vol. 2, Chicago, IL May 3 6, 1993, pp [3] B. Harvey, Current-feedback OPAMP limitations: A state-of-the-art review, in Proc. IEEE ISCAS, vol. 2, Chicago, IL, May 3 6, 1993, pp [4] I. A. Koullias, A wide-band low-offset current-feedback OP AMP design, in Proc. IEEE Bipolar Circuits Technol. Meeting, Minnesota, Sept , 1989, pp [5] D. F. Browers, The so-called current-feedback operational amplifiertechnological breakthrough or engineering curiosity, in Proc. IEEE ISCAS, vol. 2, Chicago, IL, May 3 6, 1993, pp [6] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC Design, The Current-Mode Approach. Stevenage, U.K.: Peregrinus, 1990, pp , , [7] W.-K. Chen, The Circuits and Filters Handbook, a CRC handbook published in cooperation with IEEE Press, 1995, pp V. CONCLUSION A compensated offset high-gain CMOS CFOA has been proposed. The offset is reduced to less than 1 mv with gain bandwidth (GBW) = 20 MHz, power supply voltage (VDD) = 5 V, and a power

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

A high-speed CMOS current op amp for very low supply voltage operation

A high-speed CMOS current op amp for very low supply voltage operation Downloaded from orbit.dtu.dk on: Mar 31, 2018 A high-speed CMOS current op amp for very low supply voltage operation Bruun, Erik Published in: Proceedings of the IEEE International Symposium on Circuits

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

IN RECENT years, low-dropout linear regulators (LDOs) are

IN RECENT years, low-dropout linear regulators (LDOs) are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

THE TREND toward implementing systems with low

THE TREND toward implementing systems with low 724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 7, JULY 1995 Design of a 100-MHz 10-mW 3-V Sample-and-Hold Amplifier in Digital Bipolar Technology Behzad Razavi, Member, IEEE Abstract This paper

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department

More information

Voltage Feedback Op Amp (VF-OpAmp)

Voltage Feedback Op Amp (VF-OpAmp) Data Sheet Voltage Feedback Op Amp (VF-OpAmp) Features 55 db dc gain 30 ma current drive Less than 1 V head/floor room 300 V/µs slew rate Capacitive load stable 40 kω input impedance 300 MHz unity gain

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

Operational Amplifier with Two-Stage Gain-Boost

Operational Amplifier with Two-Stage Gain-Boost Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 482 Operational Amplifier with Two-Stage Gain-Boost FRANZ SCHLÖGL

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

New Simple Square-Rooting Circuits Based on Translinear Current Conveyors

New Simple Square-Rooting Circuits Based on Translinear Current Conveyors 10 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.5, NO.1 February 2007 New Simple Square-Rooting Circuits Based on Translinear Current Conveyors Chuachai Netbut 1, Montree Kumngern

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits TANSACTONS ON EECTCA AND EECTONC MATEAS Vol. 1, No. 6, pp. 6-66, December 5, 011 egular Paper pssn: 19-7607 essn: 09-759 DO: http://dx.doi.org/10.4313/teem.011.1.6.6 High Performance Current-Mode DC-DC

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Electronics - PHYS 2371/2 TODAY

Electronics - PHYS 2371/2 TODAY TODAY 4-terminal linear amplifier Op-Amp Basics, Ch-28, 31 Op-Amp Golden Rules for operation Op-amp gain, impedance, frequency response Videos Lab-6 Overview 1 Review Semiconductors Semiconductors Resistivity

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier

Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2

More information

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 281 A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration Tae-Geun Yu, Seong-Ik Cho, and Hang-Geun Jeong

More information

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida An Ultra Low-Voltage CMOS Self-Biased OTA Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida simransinghh386@gmail.com Priyanka Goyal Faculty Associate, School Of ICT Gautam Buddha

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

Basic OpAmp Design and Compensation. Chapter 6

Basic OpAmp Design and Compensation. Chapter 6 Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switched-capacitor

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

2. Single Stage OpAmps

2. Single Stage OpAmps /74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es Integrated

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Analog Integrated Circuits Fundamental Building Blocks

Analog Integrated Circuits Fundamental Building Blocks Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

EE 501 Lab 4 Design of two stage op amp with miller compensation

EE 501 Lab 4 Design of two stage op amp with miller compensation EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a two-stage operational amplifier. Tasks: 1. Build a two-stage

More information

V CC OUT MAX9945 IN+ V EE

V CC OUT MAX9945 IN+ V EE 19-4398; Rev 1; 12/ 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs

More information

A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness

A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness Graduate Theses and Dissertations Graduate College 2009 A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

LM2904AH. Low-power, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances

LM2904AH. Low-power, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances LM2904AH Low-power, dual operational amplifier Datasheet - production data Related products See LM2904WH for enhanced ESD performances Features Frequency compensation implemented internally Large DC voltage

More information

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier 852 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 7, JULY 2002 A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier Ryuichi Fujimoto, Member, IEEE, Kenji Kojima, and Shoji Otaka Abstract A 7-GHz low-noise amplifier

More information

Op Amp Booster Designs

Op Amp Booster Designs Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially

More information

Analogue Electronic Systems

Analogue Electronic Systems Unit 47: Unit code Analogue Electronic Systems F/615/1515 Unit level 5 Credit value 15 Introduction Analogue electronic systems are still widely used for a variety of very important applications and this

More information

EFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS

EFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS EFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS CH. Ganesh and S. Satheesh Kumar Department of SENSE (VLSI Design), VIT University, Vellore India E-Mail: chokkakulaganesh@gmail.com ABSTRACT The conventional

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Design of Low Voltage Low Power CMOS OP-AMPS with Rail-to-Rail Input/Output Swing.

Design of Low Voltage Low Power CMOS OP-AMPS with Rail-to-Rail Input/Output Swing. Design of ow oltage ow Power CMOS OP-AMPS with Rail-to-Rail Input/Output Swing. Mr.S..Gopalaiah Bangalore-56. svg@ece.iisc.ernet.in Prof. A. P. Shivaprasad Bangalore-56. aps@ece.iisc.ernet.in Mr. Sukanta

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

Using LME49810 to Build a High-Performance Power Amplifier Part I

Using LME49810 to Build a High-Performance Power Amplifier Part I Using LME49810 to Build a High-Performance Power Amplifier Part I Panson Poon Introduction Although switching or Class-D amplifiers are gaining acceptance to audiophile community, linear amplification

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron

More information

LF13741 Monolithic JFET Input Operational Amplifier

LF13741 Monolithic JFET Input Operational Amplifier LF13741 Monolithic JFET Input Operational Amplifier General Description The LF13741 is a 741 with BI-FETTM input followers on the same die Familiar operating characteristics those of a 741 with the added

More information

Precision, 16 MHz CBFET Op Amp AD845

Precision, 16 MHz CBFET Op Amp AD845 a FEATURES Replaces Hybrid Amplifiers in Many Applications AC PERFORMANCE: Settles to 0.01% in 350 ns 100 V/ s Slew Rate 12.8 MHz Min Unity Gain Bandwidth 1.75 MHz Full Power Bandwidth at 20 V p-p DC PERFORMANCE:

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps Op Amp Technology Overview Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps 1 Bipolar vs. CMOS / JFET Transistor technologies Bipolar, CMOS and JFET

More information

International Journal of Science and Research (IJSR) ISSN (Online): Impact Factor (2012): Kumar Rishi 1, Nidhi Goyal 2

International Journal of Science and Research (IJSR) ISSN (Online): Impact Factor (2012): Kumar Rishi 1, Nidhi Goyal 2 ISSN (Online): 9- Impact Factor ():.8 Study and Analysis of Small Signal Parameters, Slew Rate and Power Dissipation of Bipolar Junction Transistor and Complementary MOS Amplifiers With and Without Negative

More information

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,

More information

A CMOS current-mode operational amplifier

A CMOS current-mode operational amplifier Downloaded from orbit.dtu.dk on: Apr 27, 2018 A CMOS currentmode operational amplifier Kaulberg, Thomas Published in: I E E E Journal of Solid State Circuits Link to article, DOI: 10.1109/4.222187 Publication

More information

High Accuracy 8-Pin Instrumentation Amplifier AMP02

High Accuracy 8-Pin Instrumentation Amplifier AMP02 a FEATURES Low Offset Voltage: 100 V max Low Drift: 2 V/ C max Wide Gain Range 1 to 10,000 High Common-Mode Rejection: 115 db min High Bandwidth (G = 1000): 200 khz typ Gain Equation Accuracy: 0.5% max

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1 ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/319-323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL

More information

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Design and Layout of Two Stage High Bandwidth Operational Amplifier Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard

More information

LOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS

LOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS LOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS A. Pleteršek, D. Strle, J. Trontelj Microelectronic Laboratory University of Ljubljana, Tržaška 25, 61000 Ljubljana, Slovenia

More information

A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region

A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-03-15 A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region Rishi Pratap

More information

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0 a FEATURES Four High Performance VCAs in a Single Package.2% THD No External Trimming 12 db Gain Range.7 db Gain Matching (Unity Gain) Class A or AB Operation APPLICATIONS Remote, Automatic, or Computer

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

CA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information

CA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information November 99 SEMICONDUCTOR CA, CAA.MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output Features MOSFET Input Stage - Very High Input Impedance (Z IN ) -.TΩ (Typ) - Very Low Input Current (I

More information

A 0.8V, 7A, rail-to-rail input/output, constant Gm operational amplifier in standard digital 0.18m CMOS

A 0.8V, 7A, rail-to-rail input/output, constant Gm operational amplifier in standard digital 0.18m CMOS Downloaded from orbit.dtu.dk on: Feb 12, 2018 A 0.8V, 7A, rail-to-rail input/output, constant Gm operational amplifier in standard digital 0.18m CMOS Citakovic, J; Nielsen, I. Riis; Nielsen, Jannik Hammel;

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

LM6118/LM6218 Fast Settling Dual Operational Amplifiers

LM6118/LM6218 Fast Settling Dual Operational Amplifiers Fast Settling Dual Operational Amplifiers General Description The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ±20 ma output drive capability. The

More information

REDUCING power consumption and enhancing energy

REDUCING power consumption and enhancing energy 548 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 63, NO. 6, JUNE 2016 A Low-Voltage PLL With a Supply-Noise Compensated Feedforward Ring VCO Sung-Geun Kim, Jinsoo Rhim, Student Member,

More information

LM6361/LM6364/LM6365 Fast VIP Op Amps Offer High Speed at Low Power Consumption

LM6361/LM6364/LM6365 Fast VIP Op Amps Offer High Speed at Low Power Consumption LM6361/LM6364/LM6365 Fast VIP Op Amps Offer High Speed at Low Power Consumption The LM6361/LM6364/LM6365 family of op amps are wide-bandwidth monolithic amplifiers which offer improved speed and stability

More information

Examining a New In-Amp Architecture for Communication Satellites

Examining a New In-Amp Architecture for Communication Satellites Examining a New In-Amp Architecture for Communication Satellites Introduction With more than 500 conventional sensors monitoring the condition and performance of various subsystems on a medium sized spacecraft,

More information

ECE 546 Lecture 12 Integrated Circuits

ECE 546 Lecture 12 Integrated Circuits ECE 546 Lecture 12 Integrated Circuits Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Integrated Circuits IC Requirements

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

A DIGITALLY PROGRAMMABLE CURRENT SCHMITT-TRIGGER

A DIGITALLY PROGRAMMABLE CURRENT SCHMITT-TRIGGER A DIGITALLY PROGRAMMABLE CURRENT SCHMITT-TRIGGER W. PRODANOV AND M. C. SCHNEIDER Laboratório de Circuitos Integrados Universidade Federal de Santa Catarina (UFSC) Cx Postal 476 Campus CEP 88040-900 Florianópolis

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

Low-output-impedance BiCMOS voltage buffer

Low-output-impedance BiCMOS voltage buffer Low-output-impedance BiCMOS voltage buffer Johan Bauwelinck, a) Wei Chen, Dieter Verhulst, Yves Martens, Peter Ossieur, Xing-Zhi Qiu, and Jan Vandewege Ghent University, INTEC/IMEC, Gent, 9000, Belgium

More information

OPERATIONAL AMPLIFIERS and FEEDBACK

OPERATIONAL AMPLIFIERS and FEEDBACK Lab Notes A. La Rosa OPERATIONAL AMPLIFIERS and FEEDBACK 1. THE ROLE OF OPERATIONAL AMPLIFIERS A typical digital data acquisition system uses a transducer (sensor) to convert a physical property measurement

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Dual operational amplifier

Dual operational amplifier DESCRIPTION The 77 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of latch-up make the 77 ideal for use

More information

DATASHEET HS-1145RH. Features. Applications. Ordering Information. Pinout

DATASHEET HS-1145RH. Features. Applications. Ordering Information. Pinout DATASHEET HS-45RH Radiation Hardened, High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable FN4227 Rev 2. February 4, 25 The HS-45RH is a high speed, low power current

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune

More information

Constant-Gm, Rail-to-Rail Input Stage Operational Amplifier in 0.35μm CMOS

Constant-Gm, Rail-to-Rail Input Stage Operational Amplifier in 0.35μm CMOS 2011 International Conference on Network and Electronics Engineering IPCSIT vol.11 (2011) (2011) IACSIT Press, Singapore Constant-Gm, Rail-to-Rail Input Stage Operational Amplifier in 0.35μm CMOS Ali Hassanzadeh¹,

More information

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Second-Order Sigma-Delta Modulator in Standard CMOS Technology SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 1, No. 3, November 2004, 37-44 Second-Order Sigma-Delta Modulator in Standard CMOS Technology Dragiša Milovanović 1, Milan Savić 1, Miljan Nikolić 1 Abstract:

More information

OP SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V S = ± V, T A = C, unless otherwise noted.) OPA/E OPF OPG Parameter Symbol Conditions Min Typ Max Min T

OP SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V S = ± V, T A = C, unless otherwise noted.) OPA/E OPF OPG Parameter Symbol Conditions Min Typ Max Min T a FEATURES Excellent Speed:. V/ms Typ Fast Settling (.%): ms Typ Unity-Gain Stable High-Gain Bandwidth: MHz Typ Low Input Offset Voltage: mv Max Low Offset Voltage Drift: mv/ C Max High Gain: V/mV Min

More information

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo-

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo- From July 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques By Andrei Grebennikov M/A-COM Eurotec Figure

More information