Wavelength division multiplexing of chaotic secure and fiber-optic communications

Size: px
Start display at page:

Download "Wavelength division multiplexing of chaotic secure and fiber-optic communications"

Transcription

1 Wavelength division multiplexing of chaotic secure and fiber-optic communications Jian-Zhong Zhang, An-Bang Wang, Juan-Fen Wang, and Yun-Cai Wang Department of Physics, College of Science, Taiyuan University of Technology, Taiyuan , China Corresponding author: Abstract: Wavelength division multiplexing (WDM) transmission of chaotic optical communication (COC) and conventional fiber-optic communication (CFOC) is numerically confirmed and analyzed. For an 80-km-long two-channel communication system, a 1-Gb/s secure message in COC channel and 10-Gb/s digital signal in CFOC channel are simultaneously achieved with 100GHz channel spacing. Our numerical simulations demonstrate that the COC and CFOC can realize no-crosstalk transmission of 80km when the peak power of CFOC channel is less than 8dBm. We also find that the crosstalk between COC and CFOC does not depend on channel spacing when the channel spacing exceeds 100GHz. Moreover, the crosstalk does not limit channel number by comparing the synchronization performance of COC in four- and six-channel WDM systems Optical Society of America OCIS codes: ( ) Semiconductor lasers; ( ) Fiber optics communications; ( ) Mutiplexing. References and links 1. L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64, (1990). 2. T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Observation of synchronization in laser chaos, Phys. Rev. Lett. 72, (1994). 3. G. D. VanWiggeren and R. Roy, Communication with chaotic lasers, Science 279, (1998). 4. P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett. 19, (1994). 5. J. Ohtsubo, Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback, IEEE J. Quantum Electron. 38, (2002). 6. V. Annovazzi-Lodi, S. Donati, and A. Sciré, Synchronization of chaotic lasers by optical feedback for cryptographic applications, IEEE J. Quantum Electron. 33, (1997). 7. H. F. Chen and J. M. Liu, Open-loop chaotic synchronization of injection-locked semiconductor lasers with gigahertz range modulation, IEEE J. Quantum Electron. 36, (2000). 8. V. Annovazzi-Lodi, S. Donati, and A. Sciré, Synchronization of chaotic injected-laser systems and its application to optical cryptography, IEEE J. Quantum Electron. 32, (1996). 9. A. B. Wang, Y. C. Wang, and H. C. He, Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback, IEEE Photon. Technol. Lett. 20, (2008). 10. J. Mørk, B. Tromborg, and J. Mark, Chaos in semiconductor lasers with optical feedback: theory and experiment, IEEE J. Quantum Electron. 28, (1992). 11. S. Sivaprakasam and K. A. Shore, Message encoding and decoding using chaotic external-cavity diode lasers, IEEE J. Quantum Electron. 36, (2000). 12. V. Annovazzi-Lodi, M. Benedetti, S. Merlo, M. Norgia, and B. Provinzano, Optical chaos masking of video signals, IEEE Photon. Technol. Lett. 17, (2005). 13. C. R. Mirasso, P. Colet, and P. García-Fernández, Synchronization of chaotic semiconductor lasers: application to encoded communications, IEEE Photon. Technol. Lett. 8, (1996). 14. A. Sánchez-Díaz, C. R. Mirasso, P. Colet, and P. García-Fernández, Encoded Gbit/s digital (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6357

2 communications with synchronized chaotic semiconductor lasers, IEEE J. Quantum Electron. 35, (1999). 15. A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers, IEEE J. Quantum Electron. 40, (2004). 16. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Chaos-based communications at high bit rates using commercial fibre-optic links, Nature 437, (2005). 17. D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes, J. Lightwave Technol. 22, (2004). 18. Y. L. Li, Y. C. Wang, and A. B. Wang, Message filtering characteristics of semiconductor laser as receiver in optical chaos communication, Opt. Commun. 281, (2008). 19. G. P. Agrawal, Nonlinear fiber optics, 3rd Edition (Academic Press, San Diego, 2001) Chap P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50, (1983). 21. J. Z. Zhang, Y. C. Wang, and A. B. Wang, Improving performance of optical fibre chaotic communication by dispersion compensation techniques, Chin. Phys. B 17, (2008). 1. Introduction Many researches have been devoted to achieving chaotic secure communications since the idea of synchronization between two chaotic oscillators was proposed in early 1990s [1]. Compared with electrical chaos, optical chaos generated from lasers offers higher dimension, broader bandwidth and thus has attracted extensive attention in recent years. Optical chaos synchronizations have been implemented in many laser systems: gas laser [2], fiber laser [3], solid laser [4], semiconductor laser [5-8], and so on. As the chaotic transmitter and receiver, semiconductor lasers with optical feedback [5, 6, 9, 10] or optical injection [7-8] have been enthusiastically studied because they are the main light sources in conventional optical communication systems. Up to now, Chaotic optical communication (COC) based on semiconductor lasers has been successfully demonstrated in a back-to-back configuration [5, 7,8,11] or short fiber transmission [12].To extend the distance of transmission, COC through long-distance optical fiber using semiconductor lasers with optical feedback has been theoretically studied [13, 14]. The effects of fiber transmission characteristics, such as dispersion and nonlinearity, on the performance of COC system are further investigated by a numerical simulation [15]. Although a field COC system was successfully implemented in 120-km commercial fiber-optic channel for 1-Gb/s transmission rate [16], COC sharing the existing fiber networks with conventional fiber-optic communication (CFOC) to realize the wavelength division multiplexing (WDM) transmission has not been reported so far. In this paper, we numerically realize WDM transmission of COC and CFOC in fiber link. In addition, we investigate the inter-channel crosstalk between COC and CFOC and the dependence of COC and CFOC WDM system on channel spacing and channel number. 2. Theoretical model The schematic diagram of COC and CFOC WDM transmission in our study is shown in Fig. 1. Each channel, defined by the wavelength of its carrier wave, is coupled into the same optical fiber in its original data format. The chaos cryptography technique encrypts some important information at a given WDM channel λ C. In COC system, transmitter (LD T ) and receiver (LD R ), both of which are composed of a single-mode semiconductor laser with an external reflector, have the same configuration. Transmitter laser (LD T ) emits a chaotic carrier and an optical isolator (ISO) is used to ensure unidirectional transmission. The original message is superposed on chaotic carrier by chaos masking (CMS). The CMS method is implemented by (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6358

3 simply adding the message to the output chaotic carrier. The chaotic carrier encoded by message and multiple digital optical signals from lasers LD 1, LD 2,, LD N are launched together into the fiber via a WDM multiplexer (MUX), and separated by a WDM demultiplexer (DMUX) after long-haul transmission. An erbium-doped fiber amplifier (EDFA) is placed at the end of the fiber to compensate the fiber loss. The demultiplexed chaotic light is divided into two beams by a beam splitter (BS). One beam is injected into the receiver laser to achieve chaos synchronization. The other beam, as well as the output from the receiver laser, is separately detected by two identical photodiodes. The message can be extracted from the subtraction of the two detected signals. Fig. 1. Schematic diagram of COC and CFOC WDM transmission. The dynamics of the transmitter and receiver in COC system can be described by the following Lang-Kobayashi rate equations with optical feedback and injection terms [17]: d E ( t) T,R 1 1 = (1 + iα )[ G ( t) ] E ( t) + k E ( t τ ) exp( iωτ ) + k E ( t) (1) T,R T,R T,R T,R inj ext dt 2 τ P d N ( t) I 1 T,R T,R 2 = N ( t) G ( t) E ( t) (2) T,R T,R T,R dt qv τ n G G[ N ( t) N ] T,R 0 ( t) = 1 + ε E ( t) T,R 2 T,R, (3) where E and N are the slowly varying complex electrical field amplitude and the carrier density in the laser cavity. Subscripts T and R represent the transmitter and receiver, respectively. ωτ is the round-trip phase shift induced by the external feedback, where ω is the angular frequency of the free-running laser and τ is the external cavity round-trip time. The field E ext is the input signal at the receiver and I is the pump current density of the semiconductor laser. The feedback coefficient k T,R of the semiconductor lasers with optical feedback and the injection coefficient k inj from the transmitter to the receiver are defined as follows: k T,R 2 1 (1 r ) r 0 T,R = (4) τ r in 0 k in j 2 1 (1 r ) r 0 in j =, (5) τ r in 0 (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6359

4 where τ in is the round-trip time in the laser cavity, r 0 and r T,R represent amplitude reflectivity of the laser exit facet and the external reflector respectively, r inj represents the percentage of the transmitter s output electrical field amplitude injected into the receiver laser cavity. All the involved laser parameters and their values used in our numerical model are from [18]. For COC and CFOC parallel transmission, we first consider a two-channel WDM system (each subscript denotes the channel number). The light propagation through the fiber is described in terms of the well-known nonlinear Schrödinger equation [19]. 2 A j α i A j A j + β 2 = iγ ( A 2 ) 2 j + Ak A j z 2 2 T. (6) Here j, k is chosen to be 1, or 2. A j is the slowly varying complex electrical field amplitude, z is the propagation distance, and T is the time measured in a reference frame moving at the group velocity. α,β 2,γ are the fiber attenuation coefficient, the second-order dispersion parameter and the nonlinear coefficient,respectively. The two terms on the right-hand side of Eq. (6) are due to self-phase modulation (SPM) and cross-phase modulation (XPM), respectively. The factor of 2 shows that XPM is twice as effective as SPM for the same intensity. In our numerical simulations, we consider nonzero dispersion-shifted fiber (NZ-DSF) with typical values of α=0.2db/km, β 2 =5.1ps 2 /km and γ=1.5w -1 /km as transmission link. The wavelengths of the emitted signals are set on the International Telecommunication Union (ITU) grid with a spacing of 0.8nm (100GHz). The channel, λ= nm, is viewed as transmission channel of chaotic light, and the channel, λ= nm, as transmission channel of conventional digital optical signal. The optical spectra corresponding to two channels are shown in Fig. 2. Optical spectrum of semiconductor laser is broadened owing to optical feedback. Thus, the linewidth of chaotic optical spectrum is as much as 11.8GHz. However, this value is still smaller than channel spacing, 100GHz. k j Fig. 2. Optical spectra for COC and CFOC WDM system with 2 channels and 0.8nm channel spacing. 3. Numerical results and discussions We first evaluate the system performance of COC and CFOC WDM system. The quality of the recovered message can be quantitatively evaluated by the eye opening penalty (EOP) defined as 10log 10 (a/b), where a and b are the maximum eye opening measured for the decoded message without and with transmission. Value of the EOP smaller than 3dB can be considered fairly good. The synchronization performance of COC system can be evaluated by introducing the correlation coefficient defined as ρ = [ P ( t) P ( t) ][ P ( t) P ( t) ] T T R R [ P ( t) P ( t) ] [ P ( t) P ( t) ] 2 2 T T R R, (7) where P T (t) and P R (t) are the outputs of the transmitter and the receiver, respectively, and (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6360

5 denotes the time average. The correlation coefficient is bounded as -1 ρ 1.A larger value of ρ indicates a higher synchronization quality. 3.1 Numerical realization of COC and CFOC WDM For COC and CFOC WDM transmission, two channels separately including COC and CFOC are launched at the transmitter end. Figure 3(a) shows the chaotic carrier with 4.2GHz bandwidth from the chaotic transmitter. Its correlation dimension is 6.37 according to Grassberger-Procaccia (G-P) algorithm [20], and the largest Lyapunov exponent is 3.6ns -1. The mean optical power of the chaotic carrier is about 7dBm. A 1-Gb/s pseudorandom nonreturn-to-zero (NRZ) bit sequence [Fig. 3(c)] is embedded into the output chaotic carrier by CMS method, as shown in Fig. 3(b). The amplitude of the NRZ sequence is set to 9% of the mean amplitude of chaotic carrier. This small value ensures security, and moreover alleviates destructive influence on the system synchronization. Figure 4(a) shows a pseudorandom NRZ sequence at the OC-192 standard bit rate of 10 Gb/s. The laser LD 1 that functions as an emitter launches the optical carrier of wavelength λ= nm when the current of the laser is biased at 14.4mA. By using the 10-Gb/s NRZ bit stream chosen to encode the optical carrier, the digital optical signal with 8dBm peak power is obtained. Now, chaotic light encoding the message in COC channel and the digital optical signal in CFOC channel are multiplexed together into the fiber for 80-km-long WDM transmission. The fiber dispersion and nonlinearity effects distort chaotic carrier characteristics and degrade the synchronization performance between the transmitter and receiver. So, the decoded 1-Gb/s pseudorandom message of COC has high-frequency noises. Similarly, the received 10-Gb/s pseudorandom signal at the receiver end for CFOC takes on high-frequency noises due to the fiber dispersion and nonlinearity effects, shown in Fig. 4(b). However, the quality of the extracted messages can be effectively improved via a low-pass filter. For COC, a low-pass ChebyshevⅠfilter with 1.5GHz pass-band cut-off frequency is utilized to filter out the high-frequency temporal oscillations and the decoded message after filtering is shown in Fig. 3(d). The corresponding EOP is 2.5dB by calculation. For CFOC, the fast temporal oscillations can be effectively removed by a same type low-pass filter with 11.0 GHz pass-band cut-off frequency. The received signal after filtering is shown in Fig. 4(c). Obviously, the recovered signal at the receiving end is in good agreement with the encoded pseudorandom signal at the transmitter end except for the sharp fast oscillations. Moreover, the corresponding EOP is as low as 2.7dB. We can see that the high-quality pseudorandom messages are separately recovered at the receiver end for COC and CFOC WDM transmission. This indicates that COC and CFOC can simultaneously be realized within the same fiber link. 3.2 Inter-channel crosstalk between COC and CFOC When two-channel lights propagate simultaneously in a single fiber, the XPM-induced crosstalk can degrade the system performance. For COC and CFOC WDM system, if the chaotic carrier from the transmitter is directly fed into the receiver without propagating inside the fiber, the correlation coefficient between the transmitter and receiver outputs is as high as If the chaotic carrier from the transmitter travels through 80-km-long fiber, the corresponding correlation coefficient decreases to However, when the chaotic carrier travels not only through a fiber of 80km but also with the crosstalk of CFOC whose peak power is 14dBm, the corresponding correlation coefficient is as low as Therefore, the interference of CFOC can further deteriorate the synchronization performance of COC system. (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6361

6 Fig. 3. COC numerical realization (a) chaotic carrier (b) chaotic carrier encoding the message (c) pseudorandom NRZ bit sequence at 1Gb/s (d) decoded message after filtering. Fig. 4. CFOC numerical realization (a) pseudorandom NRZ sequence at the OC-192 standard bit rate of 10Gb/s (b) the received pseudorandom signal (c) after filtering. The main reason is that the accumulation of fiber dispersion and nonlinearity effects leads to the widening of chaotic carrier. Figures 5(a)-5(c) show the output chaotic carriers from the transmitter and an 80-km-long fiber without and with the crosstalk of CFOC, respectively. From Figs. 5(b) and 5(c), we can see that chaotic carriers are broadened through a length of fiber. Moreover, when CFOC and COC simultaneously propagate inside the fiber, the nonlinear phase shift of chaotic carrier is induced by another field of CFOC due to XPM effect. Thus, the XPM-induced frequency chirp interacts with the fiber dispersion-induced chirp, not only leading to the broadening of chaotic carrier but also producing the sharp oscillations at the leading and trailing edges of irregular pulses of chaotic carrier. Therefore, the synchronization performance of COC system is further degraded. (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6362

7 Fig. 5. Output chaotic carriers from (a) transmitter (b), (c) 80-km-long fiber without and with the crosstalk of CFOC, respectively. The crosstalk between COC and CFOC is mainly due to the fiber XPM effect. The influence of the XPM effect on system results from the power of optical pulses propagating inside the fiber and the transmission distance. Figure 6 shows that the correlation coefficient of COC system is plotted as a function of the propagation distance under the crosstalk of CFOC. The solid curve denotes the case without parallel transmission of CFOC. The dotted, dash-dotted and dashed curves denote the cases of the crosstalk with digital optical signals of peak power, 8, 14, and 17dBm, respectively. We can see that, regardless of whether or not the crosstalk of CFOC, the correlation coefficient decreases with the increase of the propagated distance due to the accumulation of fiber dispersion and nonlinearity effects. In Fig. 6, the interval between dashed and solid curves is wider than that between dash-dotted and solid curves. This indicates that as the peak power in CFOC channel is increased from 14 to 17dBm, the inter-channel crosstalk between COC and CFOC is enhanced. However, when the peak power of digital optical signal is as low as 8dBm, COC can realize no-crosstalk parallel transmission over the distance range of 80km. Fig. 6. Correlation coefficient of COC system as a function of transmission distance under the crosstalk of digital optical signals of CFOC. (Solid curve denotes no crosstalk; Dotted, dash-dotted, and dashed curves denote the cases of the crosstalk with digital optical signals of peak power, 8, 14, and 17dBm, respectively.) As mentioned before, CFOC can affect COC due to fiber XPM effect. Similarly, COC can in turn have negative effects on CFOC. For investigating the crosstalk induced by COC on CFOC, digital optical signal with peak power of 8dBm and chaotic carrier with mean power of 7dBm are injected into a single fiber for the parallel transmission. Figure 7 shows the eye (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6363

8 diagrams of the received NRZ digital signal at 10Gb/s under the crosstalk of COC when the propagated distance is 20, 80, and 160km, respectively. As the transmission distance is increased to 160km, the eye diagram is almost closed. Figure 8 illustrates the corresponding EOP of CFOC versus the transmission distance. The solid curve denotes the case without the crosstalk, and the dotted and dash-dotted curves denote the cases with the crosstalk of COC and the other CFOC channel, respectively. We can see that when the transmission distance is less than 80km, COC has almost no influence on CFOC. After the transmission distance extends beyond 80km, the effect of COC on CFOC increases with the increase of the propagated distance. Clearly, the influence of COC on CFOC is similar to that of CFOC on COC as previously mentioned. At the same time, we also compare the effects of the crosstalk between COC and the other CFOC channel on the given CFOC channel. For the other CFOC channel, it has the same transmission rate and peak power as the above-mentioned CFOC channel. Channel spacing of these two CFOC channels is still set to 100GHz. For a short transmission length of 80km, the crosstalk of COC on CFOC is similar to the influence of the other CFOC channel on CFOC, as shown in Fig. 8. CFOC can achieve no-crosstalk parallel propagation with COC or the other CFOC channel. However, for the comparatively long distance that exceeds 80km, the communication quality of CFOC under the crosstalk of COC degrades severely compared with the crosstalk of the other CFOC channel. Fig. 7. Eye diagrams of the received NRZ digital signal at 10Gb/s with the crosstalk of COC for transmission distance of 20, 80, and 160km, respectively. Fig. 8. EOP of the received 10-Gb/s NRZ sequence with peak power of 8dBm as a function of transmission distance. (Solid curve denotes no crosstalk; Dotted and dash-dotted curves denote the cases of the crosstalk with COC channel and the other CFOC channel, respectively.) (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6364

9 3.3 Dependence on channel spacing and channel number The channel separation is a very important parameter in WDM system. To investigate the dependence of COC and CFOC WDM transmission on channel separation, we still consider two channels with variable channel separation, that is, COC channel with 7dBm mean power and CFOC channel with 8dBm peak power. Figure 9 and Fig. 10 show that for the 80-km-long transmission distance the correlation coefficient of COC and EOP of CFOC are plotted as functions of channel spacing, respectively. Obviously, the synchronization performance of COC and the communication quality of CFOC increase with the increase of channel spacing. When two channels are closely spaced, the nonlinear crosstalk between COC and CFOC can be enhanced. Moreover, optical filters do not completely eliminate the power input of adjacent channel. On the demultiplexing of these two channels, COC channel is separated by an optical band-pass filter (BW=60GHz) and CFOC channel by another optical band-pass filter (BW=20GHz). Both filters are ChebyshevⅠfilters. So, the crosstalk induced by XPM effect and the filtering characteristics of optical filter can degrade the synchronization performance of COC and the communication quality of CFOC. However, when channel spacing exceeds 100GHz, the influence of channel spacing on COC and CFOC WDM system decreases the lowest level, and moreover, keeps unchangeable as the channel spacing increases. Fig. 9. Correlation coefficient of COC system as a function of channel spacing for an 80-km-long two-channel WDM system. Fig. 10. EOP of CFOC system as a function of channel spacing for an 80-km-long two-channel WDM system. In the previous sections, COC and CFOC WDM system with only two channels is investigated. Now the system performance of a four- and a six-channel WDM system with (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6365

10 100GHz channel spacing is further investigated when channel number is expanded to 4 and 6. Of these channels, one of the two innermost of four or six channels is chosen as the COC channel and other channels as the CFOC channels. Figure 11 shows that the correlation coefficient of COC system is plotted as a function of transmission distance for four- and six-channel WDM systems for the different peak power of CFOC. We can see that the degradation of the six-channel system is no more severe than that of the four-channel system when the peak power of each channel of CFOC is equal and as low as 8dBm. We attribute the similarity of performance of the six- and four-channel systems to the fact that only XPM from neighboring channels degrades the performance of a given channel for the lower peak power so that channels that are farther removed have little or no influence. However, when the peak power per channel for CFOC is increased to 11dBm, the performance of multichannel systems depends somewhat on the power that is carried by each channel. From Fig. 11, it is clear that when the transmission distance is less than 60km, the system performance of a four-channel system is almost similar to that of a six-channel system. However, when the transmission distance exceeds 60km, the synchronization quality of COC system for six-channel WDM system is significantly degraded compared with four-channel WDM system. So, more channels simultaneously travel inside a single fiber for COC and CFOC WDM system only if all channels carry low power signals. 4. Conclusions Fig. 11. Correlation coefficient of COC system is plotted as a function of transmission distance for a four- and a six-channel system with100ghz channel spacing for different value of the peak power of CFOC. In this paper, a theoretical model of COC and CFOC WDM system is proposed, and the parallel transmission of COC and CFOC is numerically confirmed. At the same time, the inter-channel crosstalk of COC and CFOC is further analyzed only considering the fiber XPM effect. The theoretical investigation indicates that for a two-channel WDM system with channel spacing of 100GHz, when the mean power of chaotic channel is 7dBm and the peak power of CFOC channel is less than 17dBm, the synchronization of COC system is very good within 80km. When COC system maintains the high-quality chaos synchronization, for achieving COC and CFOC WDM transmission, CFOC must simultaneously ensure a high communication quality. However, as the peak power of CFOC is set to 17dBm, the corresponding EOP of the received NRZ sequence is as high as 6.2dB at 80km. This value is far higher than 3dB. So, we need to degrade the peak power of digital optical signal of CFOC. The investigations suggest that CFOC with the peak power of 8dBm can realize high-quality parallel transmission together with COC in 80km. In addition, the dependence of COC and CFOC WDM system on channel spacing and channel number is investigated. When the channel spacing exceeds 100GHz, the inter-channel crosstalk between COC and CFOC decreases to the lowest level, and moreover, keeps unchangeable with the increase of channel (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6366

11 spacing. We also find that when all channels carry low power signals, COC and CFOC WDM system can support simultaneous transmission of more channels. In our previous work, the influence of dispersion on COC system has been quantitatively investigated and a symmetrical dispersion compensation scheme has been proposed to improve the performance of COC system [21]. However, the COC and CFOC WDM system discussed above is investigated without carrying out dispersion compensation. If a dispersion compensation scheme is introduced,the transmission distance of COC and CFOC WDM can be further extended. Acknowledgments This work is supported by the National Natural Science Foundation of China under Grant , and the International Cooperation Project of Shanxi Province, China, under the project number (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6367

Performance Characterization of High-Bit-Rate Optical Chaotic Communication Systems in a Back-to-Back Configuration

Performance Characterization of High-Bit-Rate Optical Chaotic Communication Systems in a Back-to-Back Configuration 750 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 3, MARCH 2003 Performance Characterization of High-Bit-Rate Optical Chaotic Communication Systems in a Back-to-Back Configuration Dimitris Kanakidis, Apostolos

More information

Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers

Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers Fan-Yi Lin* and Meng-Chiao Tsai Institute of Photonics Technologies, Department of Electrical

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback S. Tang, L. Illing, J. M. Liu, H. D. I. barbanel and M. B. Kennel Department of Electrical Engineering,

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

Energy Transfer and Message Filtering in Chaos Communications Using Injection locked Laser Diodes

Energy Transfer and Message Filtering in Chaos Communications Using Injection locked Laser Diodes 181 Energy Transfer and Message Filtering in Chaos Communications Using Injection locked Laser Diodes Atsushi Murakami* and K. Alan Shore School of Informatics, University of Wales, Bangor, Dean Street,

More information

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA Songnian Fu, Jianji Dong *, P. Shum, and Liren Zhang (1) Network Technology

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum WDM Transmitter Based on Spectral Slicing of Similariton Spectrum Leila Graini and Kaddour Saouchi Laboratory of Study and Research in Instrumentation and Communication of Annaba (LERICA), Department of

More information

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Hercules Simos * National and Kapodistrian University

More information

Power penalty caused by Stimulated Raman Scattering in WDM Systems

Power penalty caused by Stimulated Raman Scattering in WDM Systems Paper Power penalty caused by Stimulated Raman Scattering in WDM Systems Sławomir Pietrzyk, Waldemar Szczęsny, and Marian Marciniak Abstract In this paper we present results of an investigation into the

More information

OPTICAL chaos-based communications have become

OPTICAL chaos-based communications have become IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 46, NO. 4, APRIL 2010 499 Chaos-Based Optical Communications: Encryption Versus Nonlinear Filtering Adrian Jacobo, Miguel C. Soriano, Claudio R. Mirasso, and Pere

More information

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1 Lecture 8 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 8, Slide Bit error

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Ben Wu, * Zhenxing Wang, Bhavin J. Shastri, Matthew P. Chang, Nicholas A. Frost, and Paul R. Prucnal

More information

All-Optical Signal Processing and Optical Regeneration

All-Optical Signal Processing and Optical Regeneration 1/36 All-Optical Signal Processing and Optical Regeneration Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction Major Nonlinear Effects

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014) All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser Shengxiao

More information

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers Natsuki Fujiwara and Junji Ohtsubo Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Japan

More information

CHAOS synchronization has been a hot topic, since the pioneer

CHAOS synchronization has been a hot topic, since the pioneer 1978 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 13, JULY 1, 2010 Chaos Synchronization and Communication in Mutually Coupled Semiconductor Lasers Driven by a Third Laser Ning Jiang, Wei Pan, Lianshan

More information

Role of distributed amplification in designing high-capacity soliton systems

Role of distributed amplification in designing high-capacity soliton systems Role of distributed amplification in designing high-capacity soliton systems Zhi M. Liao and Govind P. Agrawal The Institute of Optics, University of Rochester, Rochester, New York 1467 gpa@optics.rochester.edu

More information

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings Journal of Applied Sciences Research, 5(10): 1744749, 009 009, INSInet Publication Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings 1 1 1

More information

Numerical Simulation of Chaotic Laser Secure Communication. Qiang Ke

Numerical Simulation of Chaotic Laser Secure Communication. Qiang Ke Advanced Materials Research Online: 013-09-10 ISSN: 166-8985, Vols. 798-799, pp 570-573 doi:10.408/www.scientific.net/amr.798-799.570 013 Trans Tech Publications, Switzerland Numerical Simulation of Chaotic

More information

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS Progress In Electromagnetics Research Letters, Vol. 11, 73 82, 2009 DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS W.-J. Ho, H.-H. Lu, C.-H. Chang, W.-Y. Lin, and H.-S. Su

More information

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier * Journal of Zhejiang University SCIENCE ISSN 9-9 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn A novel -stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

More information

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation Manpreet Singh Student, University College of Engineering, Punjabi University, Patiala, India. Abstract Orthogonal

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

PH-7. Understanding of FWM Behavior in 2-D Time-Spreading Wavelength- Hopping OCDMA Systems. Abstract. Taher M. Bazan Egyptian Armed Forces

PH-7. Understanding of FWM Behavior in 2-D Time-Spreading Wavelength- Hopping OCDMA Systems. Abstract. Taher M. Bazan Egyptian Armed Forces PH-7 Understanding of FWM Behavior in 2-D Time-Spreading Wavelength- Hopping OCDMA Systems Taher M. Bazan Egyptian Armed Forces Abstract The behavior of four-wave mixing (FWM) in 2-D time-spreading wavelength-hopping

More information

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System Manpreet Singh 1, Karamjit Kaur 2 Student, University College of Engineering, Punjabi University, Patiala, India 1. Assistant

More information

Visible to infrared high-speed WDM transmission over PCF

Visible to infrared high-speed WDM transmission over PCF Visible to infrared high-speed WDM transmission over PCF Koji Ieda a), Kenji Kurokawa, Katsusuke Tajima, and Kazuhide Nakajima NTT Access Network Service Systems Laboratories, NTT Corporation, 1 7 1 Hanabatake,

More information

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Sept 2011, Vol. 4 11 Performance Analysis of 32 2.5 Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical

More information

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser PHOTONIC SENSORS / Vol. 7, No. 3, 217: 26 21 Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser Bing ZHANG, Linghao CHENG *, Yizhi LIANG, Long JIN, Tuan GUO, and Bai-Ou GUAN Guangdong

More information

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System The Quarterly Journal of Optoelectronical Nanostructures Islamic Azad University Spring 2016 / Vol. 1, No.1 Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized

More information

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks 363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

More information

FWM Suppression in WDM Systems Using Advanced Modulation Formats

FWM Suppression in WDM Systems Using Advanced Modulation Formats FWM Suppression in WDM Systems Using Advanced Modulation Formats M.M. Ibrahim (eng.mohamed.ibrahim@gmail.com) and Moustafa H. Aly (drmosaly@gmail.com) OSA Member Arab Academy for Science, Technology and

More information

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format Ami R. Lavingia Electronics & Communication Dept. SAL Institute of Technology & Engineering Research Gujarat Technological

More information

Theoretical and Simulation Approaches for Studying Compensation Strategies of Nonlinear Effects Digital Lightwave Links Using DWDM Technology

Theoretical and Simulation Approaches for Studying Compensation Strategies of Nonlinear Effects Digital Lightwave Links Using DWDM Technology Journal of Computer Science (11): 887-89, 007 ISSN 1549-66 007 Science Publications Theoretical and Simulation Approaches for Studying Compensation Strategies of Nonlinear Effects Digital Lightwave Links

More information

ANALYSIS OF DISPERSION COMPENSATION IN A SINGLE MODE OPTICAL FIBER COMMUNICATION SYSTEM

ANALYSIS OF DISPERSION COMPENSATION IN A SINGLE MODE OPTICAL FIBER COMMUNICATION SYSTEM ANAYSIS OF DISPERSION COMPENSATION IN A SINGE MODE OPTICA FIBER COMMUNICATION SYSTEM Sani Abdullahi Mohammed 1, Engr. Yahya Adamu and Engr. Matthew Kwatri uka 3 1,,3 Department of Electrical and Electronics

More information

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 2 Issue 4 Dec - 2012 11-16 TJPRC Pvt. Ltd., PERFORMANCE ENHANCEMENT

More information

Method to identify time delay of chaotic semiconductor laser with optical feedback

Method to identify time delay of chaotic semiconductor laser with optical feedback Method to identify time delay of chaotic semiconductor laser with optical feedback Yuanyuan Guo (À ), Yuan Wu ( Û), and Yuncai Wang ( ) Institute of Optoelectronic Engineering, College of Physics and Optoelectronics,

More information

Suppression of Stimulated Brillouin Scattering

Suppression of Stimulated Brillouin Scattering Suppression of Stimulated Brillouin Scattering 42 2 5 W i de l y T u n a b l e L a s e r T ra n s m i t te r www.lumentum.com Technical Note Introduction This technical note discusses the phenomenon and

More information

CHAOS communication systems require the use of

CHAOS communication systems require the use of IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. XX, NO. YY, JANUARY 2010 1 Effect of Fiber Dispersion on Broadband Chaos Communications Implemented by Electro-Optic Nonlinear Delay Phase Dynamics Romain Modeste

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Analytical Estimation in Differential Optical Transmission Systems Influenced by Equalization Enhanced Phase Noise

Analytical Estimation in Differential Optical Transmission Systems Influenced by Equalization Enhanced Phase Noise Analytical Estimation in Differential Optical Transmission Systems Influenced by Equalization Enhanced Phase Noise Tianhua Xu 1,*,Gunnar Jacobsen 2,3,Sergei Popov 2, Tiegen Liu 4, Yimo Zhang 4, and Polina

More information

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control PHOTONIC SENSORS / Vol. 6, No. 1, 216: 85 89 Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control Qimeng DONG, Bao SUN *, Fushen CHEN, and Jun JIANG

More information

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data Balaji Raobawale P. G. Department M.B.E.S. College of Engineering, Ambajogai, India S. K. Sudhansu P. G. Department M.B.E.S. College of Engineering,

More information

8 10 Gbps optical system with DCF and EDFA for different channel spacing

8 10 Gbps optical system with DCF and EDFA for different channel spacing Research Article International Journal of Advanced Computer Research, Vol 6(24) ISSN (Print): 2249-7277 ISSN (Online): 2277-7970 http://dx.doi.org/10.19101/ijacr.2016.624002 8 10 Gbps optical system with

More information

Coherence length tunable semiconductor laser with optical feedback

Coherence length tunable semiconductor laser with optical feedback Coherence length tunable semiconductor laser with optical feedback Yuncai Wang,* Lingqin Kong, Anbang Wang, and Linlin Fan Department of Physics, College of Science, Taiyuan University of Technology, Taiyuan

More information

REDUCTION OF CROSSTALK IN WAVELENGTH DIVISION MULTIPLEXED FIBER OPTIC COMMUNICATION SYSTEMS

REDUCTION OF CROSSTALK IN WAVELENGTH DIVISION MULTIPLEXED FIBER OPTIC COMMUNICATION SYSTEMS Progress In Electromagnetics Research, PIER 77, 367 378, 2007 REDUCTION OF CROSSTALK IN WAVELENGTH DIVISION MULTIPLEXED FIBER OPTIC COMMUNICATION SYSTEMS R. Tripathi Northern India Engineering College

More information

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA P.P. Hema [1], Prof. A.Sangeetha [2] School of Electronics Engineering [SENSE], VIT University, Vellore

More information

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Utkarsh

More information

Optical spectrum behaviour of a coupled laser system under chaotic synchronization conditions

Optical spectrum behaviour of a coupled laser system under chaotic synchronization conditions J. Europ. Opt. Soc. Rap. Public. 8, 13054 (2013) www.jeos.org Optical spectrum behaviour of a coupled laser system under chaotic synchronization conditions I. R. Andrei ionut.andrei@inflpr.ro National

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Spectral Response of FWM in EDFA for Long-haul Optical Communication

Spectral Response of FWM in EDFA for Long-haul Optical Communication Spectral Response of FWM in EDFA for Long-haul Optical Communication Lekshmi.S.R 1, Sindhu.N 2 1 P.G.Scholar, Govt. Engineering College, Wayanad, Kerala, India 2 Assistant Professor, Govt. Engineering

More information

Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c

Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c ISSN : 2250-3021 Investigation of DWDM System for Different Modulation Formats Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c a B.G.I.E.T. Sangrur, India b G.N.D.E.C. Ludhiana, India c R.I.E.T, Ropar,

More information

Optical Fiber Technology

Optical Fiber Technology Optical Fiber Technology 18 (2012) 29 33 Contents lists available at SciVerse ScienceDirect Optical Fiber Technology www.elsevier.com/locate/yofte A novel WDM passive optical network architecture supporting

More information

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Research Manuscript Title A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Dr.Punal M.Arabi, Nija.P.S PG Scholar, Professor, Department of ECE, SNS College of Technology,

More information

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks International Journal of Optics and Applications 2017, 7(2): 31-36 DOI: 10.5923/j.optics.20170702.01 Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s

More information

Packet clock recovery using a bismuth oxide fiber-based optical power limiter

Packet clock recovery using a bismuth oxide fiber-based optical power limiter Packet clock recovery using a bismuth oxide fiber-based optical power limiter Ch. Kouloumentas 1*, N. Pleros 1, P. Zakynthinos 1, D. Petrantonakis 1, D. Apostolopoulos 1, O. Zouraraki 1, A. Tzanakaki,

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Available online at ScienceDirect. Procedia Computer Science 93 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 93 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 93 (016 ) 647 654 6th International Conference On Advances In Computing & Communications, ICACC 016, 6-8 September 016,

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

Demonstration of Negative Dispersion Fibers for DWDM Metropolitan Area Networks

Demonstration of Negative Dispersion Fibers for DWDM Metropolitan Area Networks IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 7, NO. 3, MAY/JUNE 2001 439 Demonstration of Negative Dispersion Fibers for DWDM Metropolitan Area Networks I. Tomkos, D. Chowdhury, J. Conradi,

More information

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Linear cavity erbium-doped fiber laser with over 100 nm tuning range Linear cavity erbium-doped fiber laser with over 100 nm tuning range Xinyong Dong, Nam Quoc Ngo *, and Ping Shum Network Technology Research Center, School of Electrical & Electronics Engineering, Nanyang

More information

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 34 Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System Meenakshi,

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

Emerging Subsea Networks

Emerging Subsea Networks Optimization of Pulse Shaping Scheme and Multiplexing/Demultiplexing Configuration for Ultra-Dense WDM based on mqam Modulation Format Takanori Inoue, Yoshihisa Inada, Eduardo Mateo, Takaaki Ogata (NEC

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Performance Analysis of WDM/SCM System Using EDFA Mukesh Kumar

More information

Performance Assessment of High Density Wavelength Division Multiplexing Systems with Dispersion Supported Transmission at 10 Gbit/s

Performance Assessment of High Density Wavelength Division Multiplexing Systems with Dispersion Supported Transmission at 10 Gbit/s Performance Assessment of High Density Wavelength Division Multiplexing Systems with Dispersion Supported Transmission at 10 Gbit/s Mário M. Freire Department of Mathematics and Computer Science, University

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Soliton Resonances in Dispersion Oscillating Optical Fibers

Soliton Resonances in Dispersion Oscillating Optical Fibers PIERS ONLINE, VOL. 5, NO. 5, 2009 416 Soliton Resonances in Dispersion Oscillating Optical Fibers Andrey Konyukhov 1, Leonid Melnikov 1, Vladimir Khopin 2, Vladimir Stasuyk 3, and Alexej Sysoliatin 4 1

More information

Photonic devices based on optical fibers for telecommunication applications

Photonic devices based on optical fibers for telecommunication applications Photonic devices based on optical fibers for telecommunication applications Pantelis Velanas * National and Kapodistrian University of Athens, Department of Informatics and Telecommunications, University

More information

Progress In Electromagnetics Research Letters, Vol. 8, , 2009

Progress In Electromagnetics Research Letters, Vol. 8, , 2009 Progress In Electromagnetics Research Letters, Vol. 8, 171 179, 2009 REPEATERLESS HYBRID CATV/16-QAM OFDM TRANSPORT SYSTEMS C.-H. Chang Institute of Electro-Optical Engineering National Taipei University

More information

Department of Electrical and Computer Systems Engineering

Department of Electrical and Computer Systems Engineering Department of Electrical and Computer Systems Engineering Technical Report MECSE-2-2005 MOCSS2004: Monash Optical Communication System Simulator for Optically Amplified DWDM Advanced Modulation Formats

More information

DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTIWAVELENGTH AMPLIFICATION

DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTIWAVELENGTH AMPLIFICATION DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTAVELENGTH AMPLIFICATION Rosen Vanyuhov Peev 1, Margarita Anguelova Deneva 1, Marin Nenchev Nenchev 1,2 1 Dept.

More information

PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS

PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS Mário M. Freire Department of Mathematics and Information

More information

Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter

Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter Downloaded from orbit.dtu.dk on: Oct 27, 2018 Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter Yu, Jianjun; Jeppesen, Palle Published in: Journal

More information

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Performance

More information

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Chien Hung Yeh, 1* Fu Yuan Shih, 2 Chia Hsuan Wang, 3 Chi Wai Chow, 3 and Sien Chi 2, 3 1 Information and Communications

More information

CROSS-PHASE modulation (XPM) has an important impact

CROSS-PHASE modulation (XPM) has an important impact 1018 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 6, JUNE 1999 Cross-Phase Modulation in Multispan WDM Optical Fiber Systems Rongqing Hui, Senior Member, IEEE, Kenneth R. Demarest, Senior Member, IEEE,

More information

Performance Analysis of Multi-format WDM-RoF Links Based on Low Cost Laser and SOA

Performance Analysis of Multi-format WDM-RoF Links Based on Low Cost Laser and SOA Performance Analysis of Multi-format WDM-RoF Links Based on Low Cost Laser and SOA Carlos Almeida 1,2, António Teixeira 1,2, and Mário Lima 1,2 1 Instituto de Telecomunicações, University of Aveiro, Campus

More information

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection Jianji Dong,,* Xinliang Zhang, and Dexiu Huang Wuhan National Laboratory

More information

A review on optical time division multiplexing (OTDM)

A review on optical time division multiplexing (OTDM) International Journal of Academic Research and Development ISSN: 2455-4197 Impact Factor: RJIF 5.22 www.academicsjournal.com Volume 3; Issue 1; January 2018; Page No. 520-524 A review on optical time division

More information

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light Jaspreet Kaur 1, Naveen Dhillon 2, Rupinder Kaur 3 1 Lecturer, ECE, LPU, Punjab, India

More information

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105 Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105 Electronic equalization of 10 Gbit/ s upstream signals for asynchronous-modulation and chromatic-dispersion compensation in a high-speed

More information

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, 51643 Gummersbach, Germany

More information

SINCE the first demonstration of chaos synchronization

SINCE the first demonstration of chaos synchronization 1430 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 46, NO. 10, OCTOBER 2010 Nonlocal Nonlinear Electro-Optic Phase Dynamics Demonstrating 10 Gb/s Chaos Communications Roman Lavrov, Maxime Jacquot, and Laurent

More information

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission Journal of the Optical Society of Korea Vol. 13, No. 1, March 2009, pp. 107-111 DOI: 10.3807/JOSK.2009.13.1.107 Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a

More information

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Gagandeep Singh Walia 1, Kulwinder Singh 2, Manjit Singh Bhamrah 3

More information

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1,

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1, SOLITON DYNAMICS IN THE MULTIPHOTON PLASMA REGIME Chad A. Husko,, Sylvain Combrié, Pierre Colman, Jiangjun Zheng, Alfredo De Rossi, Chee Wei Wong, Optical Nanostructures Laboratory, Columbia University

More information

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, * and Chunlai Xue State Key Laboratory on Integrated Optoelectronics,

More information

Performance Evaluation of Post and Symmetrical DCF Technique with EDFA in 32x10, 32x20 and 32x40 Gbps WDM Systems

Performance Evaluation of Post and Symmetrical DCF Technique with EDFA in 32x10, 32x20 and 32x40 Gbps WDM Systems International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Performance

More information

Table 10.2 Sensitivity of asynchronous receivers. Modulation Format Bit-Error Rate N p. 1 2 FSK heterodyne. ASK heterodyne. exp( ηn p /2) 40 40

Table 10.2 Sensitivity of asynchronous receivers. Modulation Format Bit-Error Rate N p. 1 2 FSK heterodyne. ASK heterodyne. exp( ηn p /2) 40 40 10.5. SENSITIVITY DEGRADATION 497 Table 10.2 Sensitivity of asynchronous receivers Modulation Format Bit-Error Rate N p N p ASK heterodyne 1 2 exp( ηn p /4) 80 40 FSK heterodyne 1 2 exp( ηn p /2) 40 40

More information

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Simarpreet Kaur Gill 1, Gurinder Kaur 2 1Mtech Student, ECE Department, Rayat- Bahra University,

More information

Enabling technology for suppressing nonlinear interchannel crosstalk in DWDM transoceanic systems

Enabling technology for suppressing nonlinear interchannel crosstalk in DWDM transoceanic systems 1/13 Enabling technology for suppressing nonlinear interchannel crosstalk in DWDM transoceanic systems H. Zhang R.B. Jander C. Davidson D. Kovsh, L. Liu A. Pilipetskii and N. Bergano April 2005 1/12 Main

More information

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD 22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD Yu-Sheng Liao a, Yung-Jui Chen b, and Gong-Ru Lin c* a Department of Photonics & Institute

More information

A PIECE WISE LINEAR SOLUTION FOR NONLINEAR SRS EFFECT IN DWDM FIBER OPTIC COMMUNICATION SYSTEMS

A PIECE WISE LINEAR SOLUTION FOR NONLINEAR SRS EFFECT IN DWDM FIBER OPTIC COMMUNICATION SYSTEMS 9 A PIECE WISE LINEAR SOLUION FOR NONLINEAR SRS EFFEC IN DWDM FIBER OPIC COMMUNICAION SYSEMS M. L. SINGH and I. S. HUDIARA Department of Electronics echnology Guru Nanak Dev University Amritsar-005, India

More information