Surge Arrester Placement for Substation Lightning Protection. Qianxue Xia

Size: px
Start display at page:

Download "Surge Arrester Placement for Substation Lightning Protection. Qianxue Xia"

Transcription

1 Surge Arrester Placement for Substation Lightning Protection Qianxue Xia 1

2 Agenda Introduction Modelling Results Conclusions 2

3 Introduction 3

4 Introduction Most utilities install surge arresters at both the entrance of the substation and the terminal of the transformer. Due to the high installation cost of surge arresters, some utilities like Salt River Project (SRP) only install the surge arrester at the transformer side. 4

5 Two major concerns: Critical point Introduction maximum recommended length of the transmission line before an arrester needs to be applied Performance for different surge arrester configurations 5

6 Introduction Definition of critical point Lightning strokes are applied at different distances from the entrance point. The corresponding lightning stroke location of the maximum voltage at the entrance of the substation or the terminal of the transformer is defined as the critical point. X Y Z 6

7 Introduction Four different surge arrester configurations for substation lightning protection are considered: C1: No installed surge arrester on the substation C2: Surge arresters are installed at the entrance of the substation and at the terminal of the transformer respectively. C3: Surge arresters are only mounted at the entrance of the substation; C4: Surge arresters are installed on the terminal of the transformer. 7

8 Modelling 8

9 Modelling Fast front transient model for : a practical SRP kv substation (with real field data) a few spans of the 230kV transmission line This Model is developed using PSCAD SRP denotes Salt River Project which is a utility located in Arizona. 9

10 Modelling Simulation procedures : Step 1. Model 230kV transmission line and the connected substation in PSCAD using the field data. Step 2. Changing the distance from the lightning stroke location to the entrance of the substation. Step 3. repeating step (2) for different protection configurations. X Y Z Peak voltage amplitude (kv) phase A -phase B UY-phase C -phase A -phase B -phase C Distance to Point X (m) (d) C4- One surge arrester on Point Z 10

11 Results 11

12 C2 : surge arresters are installed at both the entrance of the substation and the terminal of the transformer. Direct stroke Phase B is hit by the lightning stroke Voltage (kv) Phase A Phase B Phase C Voltage (kv) Phase A Phase B Phase C Arrester Voltage Energy (kj) Time (µs) Phase A Phase B Phase C (i) Energy (kj) Time (µs) Phas e A Phas e B Phas e C (i) Arrester Energy duties Current (ka) Time ( µs) (ii) Phase A Phase B Phase C Curren t (ka) Time (µs) (ii) Phase A Phase B Phase C Arrester Current Time (µs) (iii) (a) Entrance of the substation Time (µs) (iii) (b) Terminal of the transformer Lightning stroke distance = 20m 12

13 Voltage-distance curves Peak voltage amplitude (kv) Peak voltage amplitude (kv) Critical Point Distance to Point X (m) -phase A -phase B UY -phase C -phase A -phase B -phase C (a) C1-No installed surge arrester UY-phase A -phase B -phase C - phas e A - phas e B UZ- phas e C Distance to Point X (m) (c) C 3- One surge ar rester on P oint Y Peak voltage amplitude (kv) Peak voltage amplitude (kv) Distance to Point X (m) - phas e A - phas e B - phas e C UZ-phase A UZ-phase B -phase C (b) C2- Two surge arrester on both Point Y and Z -phase A -phase B UY-phase C -phase A -phase B -phase C Distance to Point X (m) (d) C4- One surge arrester on Point Z X The voltages on phase A and phase C are far less than the voltage on phase B. Most critical points are the closest point to the line entrance of the substation Y 13 Z

14 U max / BIL (%) U max / BIL (%) CP=920 m 28% 15% CP=160m 183% 70% CP=920mCP=700m 31% 25% 15% 12% CP=20 m 194% 85% CP=840m 27% U A,Y U B,Y U C,Y U A,Z U B,Z U C,Z (a) C1 CP=20 m U A,Y U B,Y U C,Y U A,Z U B,Z U C,Z (c) C3 U max / BIL (%) U max / BIL (%) CP=2 0M 19% 14% 16% 0 Results 73% 79% 19% 12% 16% 12% 71% 70% 15% U A,Y U B,Y U C,Y U A,Z U B, Z U C,Z (b) C2 CP=2 0m 15% U A,Y U B,Y U C,Y U A,Z U B, Z U C,Z (d) C4 Phase A and phase C voltages can only reach up to 31% of the BIL value Without surge arrester, the voltage at the transformer can reach up to 194% of the BIL value. C3 has the highest voltage at the transformer terminal among C2, C3, C4 14

15 Voltage-distance curve for Phase B Peak voltage amplitude (kv) ,800 1,500 1, P 1 P C1 -C1 -C2 -C2 -C3 -C3 -C4 -C Distance to Point X (m) C3: UY < UZ C4: UY > UZ UY - voltage at the entrance of the substation UZ - voltage at the terminal of the transformer C3: Surge arresters are only mounted at the entrance of the substation; C4: Surge arresters are installed on the terminal of the transformer. 15

16 Voltage-distance curve for Phase B Peak voltage amplitude (kv) ,800 1,500 1, P 1 P C1 -C1 -C2 -C2 -C3 -C3 -C4 -C Distance to Point X (m) C3: UY < UZ C4: UY > UZ PP 1 is the point of intersection of UZ C3 aaaaaa UY CCC UY denotes the voltage at the entrance of the substation UZ denotes the voltage at the terminal of the transformer C3: Surge arresters are only mounted at the entrance of the substation; C4: Surge arresters are installed on the terminal of the transformer. 16

17 Voltage-distance curve for Phase B Peak voltage amplitude (kv) ,800 1,500 1, P 1 P C1 -C1 -C2 -C2 -C3 -C3 -C4 -C Distance to Point X (m) C3: UY < UZ C4: UY > UZ PP 1 is the point of intersection of UZ C3 aaaaaa UY CCC PP 2 is the point of intersection of UZ C3 aaaaaa UZ CCC UY denotes the voltage at the entrance of the substation UZ denotes the voltage at the terminal of the transformer C3: Surge arresters are only mounted at the entrance of the substation; C4: Surge arresters are installed on the terminal of the transformer. 17

18 Peak voltage amplitude (kv) 1,800 1,500 1, Voltage-distance curve for Phase B P 1 P C1 -C1 -C2 -C2 -C3 -C3 -C4 -C Distance to Point X (m) C3: Surge arresters are only mounted at the entrance of the substation; C4: Surge arresters are installed on the terminal of the transformer. C3: UY < UZ C4: UY > UZ PP 1 is the point of intersection of UZ C3 aaaaaa UY CCC PP 2 is the point of intersection of UZ C3 aaaaaa UZ CCC UY C4 is always high UY denotes the voltage at the entrance of the substation UZ denotes the voltage at the terminal of the transformer 18

19 Conclusions 19

20 Conclusions The voltage distance curve provides a good visual depiction of the simulation results. For most cases, the overvoltage increases when the distance from the lightning stroke location to the line entrance of the substation decreases. Critical points are typically close to the line entrance of the substation. Installing surge arresters either on the entrance of the substation or at the terminal of the transformer are sufficient for lighting protection Installing surge arrester only at the terminal of the transformer in the SRP kV substation is proved to be both adequate and efficient with respect to the lightning performance. 20

21 Qianxue Xia 21

Analysis of Major Changes to Arrester Standards IEC STEVE BREWER

Analysis of Major Changes to Arrester Standards IEC STEVE BREWER Analysis of Major Changes to Arrester Standards IEC 60099-4 STEVE BREWER Analysis of Major Changes to Arrester Standard IEC 60099-4 Steve Brewer- Senior Product Manager - HPS Arrester Business Unit Agenda

More information

MODIFICATION OF THE ARRESTER ARRANGEMENT WHEN CONVERTING THE METHOD OF NEUTRAL TREATMENT

MODIFICATION OF THE ARRESTER ARRANGEMENT WHEN CONVERTING THE METHOD OF NEUTRAL TREATMENT MODIFICATION OF THE ARRESTER ARRANGEMENT WHEN CONVERTING THE METHOD OF NEUTRAL TREATMENT Claus NEUMANN Darmstadt University of Technology Germany claus.neumann@amprion.net Klaus WINTER Swedish Neutral

More information

The relationship between operating maintenance and lightning overvoltage in distribution networks based on PSCAD/EMTDC

The relationship between operating maintenance and lightning overvoltage in distribution networks based on PSCAD/EMTDC The relationship between operating maintenance and lightning overvoltage in distribution networks based on PSCAD/EMTDC Xiaojun Chena *, Wenjie Zhengb, Shu Huangc, Hui Chend Electric Power Research Institute

More information

Lightning performance of a HV/MV substation

Lightning performance of a HV/MV substation Lightning performance of a HV/MV substation MAHMUD TAINBA, LAMBOS EKONOMOU Department of Electrical and Electronic Engineering City University London Northampton Square, London EC1V HB United Kingdom emails:

More information

Modeling insulation in high-voltage substations

Modeling insulation in high-voltage substations 38 ABB REVIEW DESIGNED FOR SAFETY DESIGNED FOR SAFETY Modeling insulation in high-voltage substations The goal of insulation coordination is to determine the dielectric strength of transformers and other

More information

Analysis of lightning performance of 132KV transmission line by application of surge arresters

Analysis of lightning performance of 132KV transmission line by application of surge arresters Analysis of lightning performance of 132KV transmission line by application of surge arresters S. Mohajer yami *, A. Shayegani akmal, A.Mohseni, A.Majzoobi High Voltage Institute,Tehran University,Iran

More information

Lightning Protection of Distribution Substations by Using Metal Oxide Gapless Surge Arresters Connected in Parallel

Lightning Protection of Distribution Substations by Using Metal Oxide Gapless Surge Arresters Connected in Parallel International Journal of Power and Energy Research, Vol. 1, No. 1, April 2017 https://dx.doi.org/10.22606/ijper.2017.11001 1 Lightning Protection of Distribution Substations by Using Metal Oxide Gapless

More information

PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS

PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS 29 th International Conference on Lightning Protection 23 rd 26 th June 2008 Uppsala, Sweden PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS Ivo Uglešić Viktor Milardić Božidar

More information

TECHNICAL NOTE 2.0. Overvoltages origin and magnitudes Overvoltage protection

TECHNICAL NOTE 2.0. Overvoltages origin and magnitudes Overvoltage protection ECHNICAL NOE 2.0 Overvoltages origin and magnitudes Overvoltage protection he ECHNICAL NOES (N) are intended to be used in conjunction with the APPLICAION GIDELINES Overvoltage protection Metaloxide surge

More information

Transmission of Electrical Energy

Transmission of Electrical Energy Transmission of Electrical Energy Electrical energy is carries by conductors such as overhead transmission lines and underground cables. The conductors are usually aluminum cable steel reinforced (ACSR),

More information

Utility System Lightning Protection

Utility System Lightning Protection Utility System Lightning Protection Many power quality problems stem from lightning. Not only can the high-voltage impulses damage load equipment, but the temporary fault that follows a lightning strike

More information

Maximum Lightning Overvoltage along a Cable due to Shielding Failure

Maximum Lightning Overvoltage along a Cable due to Shielding Failure Maximum Lightning Overvoltage along a Cable due to Shielding Failure Thor Henriksen Abstract--This paper analyzes the maximum lightning overvoltage due to shielding failure along a cable inserted in an

More information

Lightning overvoltage and protection of power substations

Lightning overvoltage and protection of power substations Lightning overvoltage and protection of power substations Mahmud Trainba 1, Christos A. Christodoulou 2, Vasiliki Vita 1,2, Lambros Ekonomou 1,2 1 Department of Electrical and Electronic Engineering, City,

More information

University of Zagreb Faculty of Electrical Engineering and Computing

University of Zagreb Faculty of Electrical Engineering and Computing Journal of Energy VOLUME 64 2015 journal homepage: http://journalofenergy.com/ Viktor Milardić viktor.milardic@fer.hr Ivica Pavić ivica.pavic@fer.hr University of Zagreb Faculty of Electrical Engineering

More information

Tab 8 Surge Arresters

Tab 8 Surge Arresters s en em Tab 8 Surge Arresters Si Distribution System Engineering Course Unit 10 2017 Industry Inc., All Rights Reserved Surge Arresters The main protective devices against system transient overvoltages.

More information

Insulation Co-ordination For HVDC Station

Insulation Co-ordination For HVDC Station Insulation Co-ordination For HVDC Station Insulation Co-ordination Definitions As per IEC 60071 Insulation Coordination is defined as selection of dielectric strength of equipment in relation to the operating

More information

Tab 2 Voltage Stresses Switching Transients

Tab 2 Voltage Stresses Switching Transients Tab 2 Voltage Stresses Switching Transients Distribution System Engineering Course Unit 10 2017 Industry, Inc. All rights reserved. Transient Overvoltages Decay with time, usually within one or two cycles

More information

ABSTRACTS of SESSION 6

ABSTRACTS of SESSION 6 ABSTRACTS of SESSION 6 Paper n 1 Lightning protection of overhead 35 kv lines by antenna-module long flashover arresters Abstract: A long-flashover arrester (LFA) of a new antenna-module type is suggested

More information

Overvoltage Protection of Light Railway Transportation Systems

Overvoltage Protection of Light Railway Transportation Systems Overvoltage Protection of Light Railway Transportation Systems F. Delfino, R. Procopio, Student Member, IEEE, and M. Rossi, Student Member, IEEE Abstract In this paper the behavior of the power supply

More information

Transformers connected via a cable Overvoltage protection

Transformers connected via a cable Overvoltage protection A P P L I C AT I O N N OT E 2. 1 Transformers connected via a cable Overvoltage protection The APPLICATION NOTES (AN) are intended to be used in conjunction with the APPLICATION GUIDELINES Overvoltage

More information

2000 Mathematics Subject Classification: 68Uxx/Subject Classification for Computer Science. 281, 242.2

2000 Mathematics Subject Classification: 68Uxx/Subject Classification for Computer Science. 281, 242.2 ACTA UNIVERSITATIS APULENSIS Special Issue SIMULATION OF LIGHTNING OVERVOLTAGES WITH ATP-EMTP AND PSCAD/EMTDC Violeta Chiş, Cristina Băla and Mihaela-Daciana Crăciun Abstract. Currently, several offline

More information

Effective Elimination Factors to the Generated Lightning Flashover in High Voltage Transmission Network

Effective Elimination Factors to the Generated Lightning Flashover in High Voltage Transmission Network International Journal on Electrical Engineering and Informatics - Volume 9, Number, September 7 Effective Elimination Factors to the Generated Lightning Flashover in High Voltage Transmission Network Abdelrahman

More information

Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters

Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters IEEE PES General Meeting June 23-27, 27, 2007, Tampa Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters Juan A. Martinez Univ. Politècnica Catalunya Barcelona, Spain

More information

How To Ground Electronic Equipment In Southern Company? Imagination at work

How To Ground Electronic Equipment In Southern Company? Imagination at work How To Ground Electronic Equipment In Southern Company? Imagination at work Surge Protection of Capacitor Feeder Controllers Robert Cheney Alabama Power John Skliutas GE Digital Energy Don Guinn Progress

More information

Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models

Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:03 39 Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models Shen-Wen Hsiao, Shen-Jen

More information

A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid

A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid 1 Arpan K. Rathod, 2 Chaitanya H. Madhekar Students Electrical Engineering, VJTI, Mumbai, India

More information

X International Symposium on Lightning Protection

X International Symposium on Lightning Protection X International Symposium on Lightning Protection 9 th -13 th November, 2009 Curitiba, Brazil LIGHTNING SURGES TRANSFERRED TO THE SECONDARY OF DISTRIBUTION TRANSFORMERS DUE TO DIRECT STRIKES ON MV LINES,

More information

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages Session Four: ractical Insulation Co-ordination Session Four: ractical Insulation Co-ordination for Lightning Induced Overvoltages Jason Mayer Technical Director, Energy Services, Aurecon Introduction

More information

Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers

Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers Voltage (kv) Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers Li-Ming Zhou, Senior Member, IEEE and Steven Boggs, Fellow, IEEE Abstract: The high frequency attenuation

More information

CLU Arrester. Certified Test Report. IEEE Standard C

CLU Arrester. Certified Test Report. IEEE Standard C CP No.: CP0605 Page 1 of 8 CLU Arrester Certified Test Report IEEE Standard C62.11-1999 CERTIFICATION Statements made and data shown are, to the best of our knowledge and belief, correct and within the

More information

INSTALLATION OF LSA ON A 400 KV DOUBLE-CIRCUIT LINE IN RUSSIA

INSTALLATION OF LSA ON A 400 KV DOUBLE-CIRCUIT LINE IN RUSSIA Application of Line Surge Arresters in Power Distribution and Transmission Systems COLLOQUIUM Cavtat 2008 INSTALLATION OF LSA ON A 400 KV DOUBLE-CIRCUIT LINE IN RUSSIA L. STENSTRÖM 1), J. TAYLOR, N.T.

More information

New Modeling of Metal Oxide Surge Arresters

New Modeling of Metal Oxide Surge Arresters Signal Processing and Renewable Energy September 2017, (pp.27-37) ISSN: 2588-7327 New Modeling of Metal Oxide Surge Arresters Seyed Mohammad Hassan Hosseini 1 *, Younes Gharadaghi 1 1 Electrical Engineering

More information

Type DMX-N Surge Arresters Maximum System Voltage 2 to 36 kv

Type DMX-N Surge Arresters Maximum System Voltage 2 to 36 kv Type DMX-N Surge Arresters Maximum System Voltage 2 to 36 kv DMX-N gapless metal oxide surge arresters DMX-N surge arresters are used for the protection of switchgear, transformers and other equipment

More information

VariSTAR Type AZU heavy-duty distribution-class under-oil MOV surge arrester

VariSTAR Type AZU heavy-duty distribution-class under-oil MOV surge arrester Surge Arresters Catalog Data CA235016EN Supersedes TD235001EN September 2014 COOPER POWER SERIES VariSTAR Type AZU heavy-duty distribution-class under-oil MOV surge arrester General Eaton's Cooper Power

More information

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables J Electr Eng Technol Vol. 9, No. 2: 628-634, 2014 http://dx.doi.org/10.5370/jeet.2014.9.2.628 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 A Study on Lightning Overvoltage Characteristics of Grounding

More information

In order to minimise distribution (11 and 22 kv) feeder breaker

In order to minimise distribution (11 and 22 kv) feeder breaker Lightning protection for equipment on MV feeders By WJD van Schalkwyk and M du Preez, Eskom This article presents the influence of lightning on MV feeders supplying small power users (400/230 V) with focus

More information

OVERVOLTAGE PROTECTION OF POLE MOUNTED DISTRIBUTION TRANSFORMERS

OVERVOLTAGE PROTECTION OF POLE MOUNTED DISTRIBUTION TRANSFORMERS PERODCA POLYTECHNCA SER. EL. ENG. VOL. 41, NO. 1, PP. 27-40 (1997) OVERVOLTAGE PROTECTON OF POLE MOUNTED DSTRBUTON TRANSFORMERS Attila SOMOGY and Lasz16 VZ Department of Electric Power Systems Technical

More information

EVALUATION OF LIGHTNING-INDUCED VOLTAGES ON LOW-VOLTAGE DISTRIBUTION NETWORKS

EVALUATION OF LIGHTNING-INDUCED VOLTAGES ON LOW-VOLTAGE DISTRIBUTION NETWORKS IX International Symposium on Lightning Protection 6 th - th November 7 Foz do Iguaçu, Brazil EVALUATION OF LIGHTNING-INDUCED VOLTAGES ON LOW-VOLTAGE DISTRIBUTION NETWORKS Fernando H. Silveira Silvério

More information

Investigation of Transmission Line Overvoltages and their Deduction Approach

Investigation of Transmission Line Overvoltages and their Deduction Approach Investigation of Transmission Line Overvoltages and their Deduction Approach A. Hayati Soloot, A. Gholami, E. Agheb, A. Ghorbandaeipour, and P. Mokhtari Abstract The two significant overvoltages in power

More information

Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines

Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines 7th Asia-Pacific International Conference on Lightning, November 1-4, 2011, Chengdu, China Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines Zihui Zhao, Dong Dang,

More information

Substation Insulation Coordination Study

Substation Insulation Coordination Study [Type the document title] Substation nsulation Coordination Study MEG Energy Christina Lake Regional Project nsulation Coordination Schematic X0057 15km Lines TWR3 TWR2 TWR1 Afrm1 16 230k Source CCT 100

More information

High voltage engineering

High voltage engineering High voltage engineering Overvoltages power frequency switching surges lightning surges Overvoltage protection earth wires spark gaps surge arresters Insulation coordination Overvoltages power frequency

More information

INFLUENCE FACTORS ON THE TRANSMITTED OVERVOLTAGES FROM HIGH VOLTAGE TO LOW VOLTAGE NETWORKS

INFLUENCE FACTORS ON THE TRANSMITTED OVERVOLTAGES FROM HIGH VOLTAGE TO LOW VOLTAGE NETWORKS U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 1, 21 ISSN 1454-234x INFLUENCE FACTORS ON THE TRANSMITTED OVERVOLTAGES FROM HIGH VOLTAGE TO LOW VOLTAGE NETWORKS Marian COSTEA 1, Bogdan NICOARĂ 2 În reţelele

More information

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation J. W. Woo, J. S. Kwak, H. J. Ju, H. H. Lee, J. D. Moon Abstract--To meet increasing power demand,

More information

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems)

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) The establishment of a potential difference between the conductors of an overhead transmission line is accompanied by the production

More information

Electric Stresses on Surge Arrester Insulation under Standard and

Electric Stresses on Surge Arrester Insulation under Standard and Chapter 5 Electric Stresses on Surge Arrester Insulation under Standard and Non-standard Impulse Voltages 5.1 Introduction Metal oxide surge arresters are used to protect medium and high voltage systems

More information

SMF Series. Transient Voltage Suppression Diodes. Surface Mount 200W > SMF Series. Description. Uni-directional

SMF Series. Transient Voltage Suppression Diodes. Surface Mount 200W > SMF Series. Description. Uni-directional SMF Series RoHS Pb e3 Uni-directional Description The SMF series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other transient voltage

More information

What is the Value of a Distribution Arrester

What is the Value of a Distribution Arrester ArresterWorks What is the Value of a Distribution Arrester 9/14/2012 Jonathan Woodworth ArresterFacts 038 Introduction A question I get quite frequently is: How much is a Distribution Arrester worth? I

More information

Modeling of overhead transmission lines with line surge arresters for lightning overvoltages. Poland

Modeling of overhead transmission lines with line surge arresters for lightning overvoltages. Poland Application of Line Surge Arresters in Power Distribution and Transmission Systems COLLOQUIUM Cavtat 2008 Modeling of overhead transmission lines with line surge arresters for lightning overvoltages M.

More information

Lightning Overvoltage Performance of 110 kv Air-Insulated Substation

Lightning Overvoltage Performance of 110 kv Air-Insulated Substation Lightning Overvoltage Performance of 11 kv Air-Insulated Substation B. Filipović-Grčić, B. Franc, I. glešić, V. Milardić, A. Tokić Abstract--This paper presents the analysis of lightning overvoltage performance

More information

RESULTS OF EXPERIMENTAL HIGH CURRENT IMPULSE 4/10 s OF METAL OXIDE VARISTORS ZINC IN THE HIGH VOLTAGE 220KV SURGE ARRESTER

RESULTS OF EXPERIMENTAL HIGH CURRENT IMPULSE 4/10 s OF METAL OXIDE VARISTORS ZINC IN THE HIGH VOLTAGE 220KV SURGE ARRESTER RESULTS OF EXPERIMENTAL HIGH CURRENT IMPULSE 4/10 s OF METAL OXIDE VARISTORS ZINC IN THE HIGH VOLTAGE 220KV SURGE ARRESTER PhD. Nguyen Huu Kien National Key Laboratory for High Voltage Techniques - Institute

More information

Performance of Surge Arrester to Multiple Lightning Strokes on Nearby Distribution Transformer

Performance of Surge Arrester to Multiple Lightning Strokes on Nearby Distribution Transformer Proceedings of the 7th WSEAS International Conference on Power Systems, Beijing, China, September 1-17, 27 9 Performance of Surge Arrester to Multiple Lightning Strokes on Nearby Distribution Transformer

More information

TRIGGERED by energy transition towards sustainability,

TRIGGERED by energy transition towards sustainability, Lightning Overvoltages in a HVDC Transmission System comprising Mixed Overhead-Cable Lines M. Goertz, S. Wenig, S. Gorges, M. Kahl, S. Beckler, J. Christian, M. Suriyah, T. Leibfried Abstract This paper

More information

Analysis of current distribution among long-flashover arresters for 10 kv overhead line protection against direct lightning strikes

Analysis of current distribution among long-flashover arresters for 10 kv overhead line protection against direct lightning strikes 2014 International onference on Lightning Protection (ILP), Shanghai, hina nalysis of current distribution among long-flashover arresters for 10 kv overhead line protection against direct lightning strikes

More information

Lightning current field measurement on a transmission line, comparison with electromagnetic transient calculations

Lightning current field measurement on a transmission line, comparison with electromagnetic transient calculations Lightning current field measurement on a transmission line, comparison with electromagnetic transient calculations A. Xemard, M. Mesic, T. Sadovic, D. Marin, S. Sadovic Abstract- A lightning experiment

More information

Simulation of Short Circuit and Lightning Transients on 110 kv Overhead and Cable Transmission Lines Using ATP-EMTP

Simulation of Short Circuit and Lightning Transients on 110 kv Overhead and Cable Transmission Lines Using ATP-EMTP Simulation of Short Circuit and Lightning Transients on 110 kv Overhead and Cable Transmission Lines Using ATP-EMTP Predrag Maric 1, Srete Nikolovski 1, Laszlo Prikler 2 Kneza Trpimira 2B 1 Faculty of

More information

COOPER POWER. UltraSIL Polymer-Housed VariSTAR Type U2Surge Arrester for Systems through 275 kv IEC 10-kA; Line Discharge Class 2 SERIES

COOPER POWER. UltraSIL Polymer-Housed VariSTAR Type U2Surge Arrester for Systems through 275 kv IEC 10-kA; Line Discharge Class 2 SERIES Surge Arresters CA235033EN Supersedes February 2012 (I235-92) COOPER POWER SERIES UltraSIL Polymer-Housed VariSTAR Type U2Surge Arrester for Systems through 275 kv IEC 10-kA; Line Discharge General Eaton

More information

EE 1402 HIGH VOLTAGE ENGINEERING

EE 1402 HIGH VOLTAGE ENGINEERING EE 1402 HIGH VOLTAGE ENGINEERING Unit 5 TESTS OF INSULATORS Type Test To Check The Design Features Routine Test To Check The Quality Of The Individual Test Piece. High Voltage Tests Include (i) Power frequency

More information

DIFFERENCE BETWEEN SWITCHING OF MOTORS & GENERATORS WITH VACUUM TECHNOLOGY

DIFFERENCE BETWEEN SWITCHING OF MOTORS & GENERATORS WITH VACUUM TECHNOLOGY DIFFERENCE BETWEEN SWITCHING OF MOTORS & GENERATORS WITH VACUUM TECHNOLOGY Dr. Karthik Reddy VENNA Hong URBANEK Nils ANGER Siemens AG Germany Siemens AG Germany Siemens AG Germany karthikreddy.venna@siemens.com

More information

Energy Division. Bowthorpe LV/MV Surge Arresters

Energy Division. Bowthorpe LV/MV Surge Arresters Energy Division Bowthorpe LV/MV Surge Arresters Bowthorpe EMP LV/MV surge arresters OCP, Open Cage Polymeric series Bowthorpe pioneered the development of polymeric housed surge arresters in the early

More information

Simulation of Lightning Transients on 110 kv overhead-cable transmission line using ATP-EMTP

Simulation of Lightning Transients on 110 kv overhead-cable transmission line using ATP-EMTP Simulation of Lightning Transients on 110 kv overhead-cable transmission line using ATP-EMTP Kresimir Fekete 1, Srete Nikolovski 2, Goran Knezević 3, Marinko Stojkov 4, Zoran Kovač 5 # Power System Department,

More information

Lightning Overvoltage performance of 132kV GIS Substation in Malaysia

Lightning Overvoltage performance of 132kV GIS Substation in Malaysia 21 International Conference on Power Sstem Technolog 1 Lightning Overvoltage performance of 132kV GIS Substation in Malasia Ab. Halim Abu Bakar, Hazlie Mokhlis, Lim Ai Ling, Hew Wooi Ping Abstract- Over

More information

Parameters Affecting the Back Flashover across the Overhead Transmission Line Insulator Caused by Lightning

Parameters Affecting the Back Flashover across the Overhead Transmission Line Insulator Caused by Lightning Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 111. Parameters Affecting the Back Flashover across the

More information

Computer Based Model for Design Selection of Lightning Arrester for 132/33kV Substation

Computer Based Model for Design Selection of Lightning Arrester for 132/33kV Substation IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 05 (May. 2014), V2 PP 32-36 www.iosrjen.org Computer Based Model for Design Selection of Lightning Arrester

More information

SURGE PROPAGATION AND PROTECTION OF UNDERGROUND DISTRIBUTION CABLES

SURGE PROPAGATION AND PROTECTION OF UNDERGROUND DISTRIBUTION CABLES SURGE PROPAGATION AND PROTECTION OF UNDERGROUND DISTRIBUTION CABLES Jae-bong LEE, Korea Electric Power Research Institute(KEPRI), (Korea), jbonglee@kepco.co.kr Ju-yong KIM, Korea Electric Power Research

More information

Effective February 2017 Supersedes January 2012 (CP1122)

Effective February 2017 Supersedes January 2012 (CP1122) File Ref: Cat. Sec. CA235013EN CT235003EN Supersedes January 2012 (CP1122) COOPER POWER SERIES UltraSIL Polymer-Housed VariSTAR Type US, UH, and UX Station Class Surge Arresters Certified Test Report Certification

More information

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION Andreas SUMPER sumper@citcea.upc.es Antoni SUDRIÀ sudria@citcea.upc.es Samuel GALCERAN galceran@citcea.upc.es Joan RULL rull@citcea.upc.es

More information

Computation of Lightning Impulse Backflashover Outages Rates on High Voltage Transmission Lines

Computation of Lightning Impulse Backflashover Outages Rates on High Voltage Transmission Lines www.ijape.org International Journal of Automation and Power Engineering (IJAPE) Volume Issue, January DOI:./ijape... omputation of Lightning Impulse Backflashover Outages Rates on High Voltage Transmission

More information

ABSTRACT 1.0 INTRODUCTION LIST OF SYMBOLS

ABSTRACT 1.0 INTRODUCTION LIST OF SYMBOLS Lightning protection of pole-mounted transformers and its applications in Sri Lanka Prof. J R Lucas* and D A J Nanayakkara # *University of Moratuwa, # Lanka Transformers Limited ABSTRACT This paper presents

More information

Insulation Coordination Study of 275kV AIS Substation in Malaysia

Insulation Coordination Study of 275kV AIS Substation in Malaysia Insulation Coordination Study of 275kV AIS Substation in Malaysia Hazlie Mokhlis, Ab.Halim Abu Bakar, Hazlee Azil Illias, Mohd.Fakrolrazi Shafie University of Malaya Power nergy Dedicated Advanced Center

More information

Substation Design Volume VII

Substation Design Volume VII PDHonline Course E474 (5 PDH) Substation Design Volume VII Other Major Equipment Instructor: Lee Layton, P.E 2015 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information

II Design Criteria for Electrical Facilities Connected to the PJM 765 kv, 500 kv, 345 kv, 230 kv, 138 kv, 115 kv, & 69 kv Transmission Systems

II Design Criteria for Electrical Facilities Connected to the PJM 765 kv, 500 kv, 345 kv, 230 kv, 138 kv, 115 kv, & 69 kv Transmission Systems II Design Criteria for Electrical Facilities Connected to the PJM 765 kv, 500 kv, 345 kv, 230 kv, 138 kv, 115 kv, & 69 kv Transmission Systems These design criteria have been established to assure acceptable

More information

ArresterFacts 024. Separation Distance for Substations. ArresterFacts 024 Separation Distance for Substations. September 2014 Rev 7 Jonathan Woodworth

ArresterFacts 024. Separation Distance for Substations. ArresterFacts 024 Separation Distance for Substations. September 2014 Rev 7 Jonathan Woodworth ArresterWorks ArresterFacts 024 Separation Distance for Substations Separation Distance for Substations September 2014 Rev 7 Jonathan Woodworth ArresterFacts 024 Copyright ArresterWorks 2014 Page 1 for

More information

Transient Voltage Suppressors (TVS) Data Sheet

Transient Voltage Suppressors (TVS) Data Sheet Transient Suppressors (TVS) Data Sheet Features For surface mounted applications in order to optimize board space Low profile package Built-in strain relief Glass passivated junction Low inductance Excellent

More information

Comparison of switching surges and basic lightning impulse surges at transformer in MV cable grids

Comparison of switching surges and basic lightning impulse surges at transformer in MV cable grids Comparison of switching surges and basic lightning impulse surges at transformer in MV cable grids Tarik Abdulahović #, Torbjörn Thiringer # # Division of Electric Power Engineering, Department of Energy

More information

Secondary Arresters. Figure 1. Type L secondary surge arrester rated 175 Vac, 125 Vdc.

Secondary Arresters. Figure 1. Type L secondary surge arrester rated 175 Vac, 125 Vdc. Surge Arresters Secondary Arresters and Protective Gaps Electrical Apparatus 235-10 GENERAL INFORMATION The necessity of providing surge arrester protection on low-voltage circuits is fundamentally the

More information

Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet

Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet ArresterWorks Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet 6/23/2012 Jonathan Woodworth Transient overvoltages are a fact of life on power systems. Arresters can

More information

Sensitivity Analysis of Maximum Overvoltage on Cables with Considering Forward and Backward Waves

Sensitivity Analysis of Maximum Overvoltage on Cables with Considering Forward and Backward Waves Sensitivity Analysis of Maximum Overvoltage on Cables with Considering Forward and Backward Waves Hamed Touhidi 1,Mehdi Shafiee 2, Behrooz Vahidi 3, Seyed Hossein Hosseinian 4 1 Islamic Azad University,

More information

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY 9. INTRODUCTION Control Cabling The protection and control equipment in power plants and substations is influenced by various of environmental conditions. One of the most significant environmental factor

More information

Study of Tower Grounding Resistance Effected Back Flashover to 500 kv Transmission Line in Thailand by using ATP/EMTP

Study of Tower Grounding Resistance Effected Back Flashover to 500 kv Transmission Line in Thailand by using ATP/EMTP Study of Tower Grounding Resistance Effected Back Flashover to 500 kv Transmission Line in Thailand by using ATP/EMTP B. Marungsri, S. Boonpoke, A. Rawangpai, A. Oonsivilai, and C. Kritayakornupong Abstract

More information

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS TRANSFORMER IN GRID When surge arres t ers are installed close to a power transformer, they provide protection against lightning overvoltage ABSTRACT The aim of this research article is to determine the

More information

Shunt Reactor Switching

Shunt Reactor Switching Shunt Reactor Switching Dielectric stresses produced by circuit-breakers to shunt reactors. Presentation made during the IEEE Transformers Committee meeting, Amsterdam, Netherlands, April 2001 Presented

More information

Protection against unacceptable voltages in railway systems

Protection against unacceptable voltages in railway systems Bernhard Richter*, Alexander Bernhard*, Nick Milutinovic** SUMMERY Based on the system voltages for AC and DC railway systems the required voltage ratings for modern gapless MO surge arresters are given.

More information

Hazard of Induced Overvoltage to Power Distribution Lines Jiang Jun, Zhao Rui, Chen Jingyang, Tian Hua, Han Lin

Hazard of Induced Overvoltage to Power Distribution Lines Jiang Jun, Zhao Rui, Chen Jingyang, Tian Hua, Han Lin 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016) Hazard of Induced Overvoltage to Power Distribution Lines Jiang Jun, Zhao Rui, Chen Jingyang, Tian Hua, Han Lin

More information

Surface Mount TRANSZORB Transient Voltage Suppressors

Surface Mount TRANSZORB Transient Voltage Suppressors Surface Mount TRANSZORB Transient Voltage Suppressors esmp Series PRIMARY CHARACTERISTICS V BR uni-directional 4. V to 44.2 V V WM 3.3 V to 36 V P PPM 400 W I FSM 40 A T J max. 150 C Polarity Uni-directional

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 6545(Print), ISSN 0976 6545(Print) ISSN 0976 6553(Online)

More information

VariSTAR Type AZL heavy-duty distribution-class MOV arrester

VariSTAR Type AZL heavy-duty distribution-class MOV arrester Surge s Catalog Data CA235006EN Supersedes TD235007EN September 2014 COOPER POWER SERIES VariSTAR Type AZL heavy-duty distribution-class MOV arrester General Eaton incorporates the latest in metal oxide

More information

Harmonic filter design for electrified railways

Harmonic filter design for electrified railways filter design for electrified railways DIgSILENT USER GROUP Sydney 5 September 2013 M Jansen, S Hagaman, T George Railway electrification project Adds significant unbalanced non-linear load to the grid

More information

ANALYSIS OF A FLASHOVER OPERATION ON TWO 138KV TRANSMISSION LINES

ANALYSIS OF A FLASHOVER OPERATION ON TWO 138KV TRANSMISSION LINES ANALYSIS OF A FLASHOVER OPERATION ON TWO 138KV TRANSMISSION LINES Authors: Joe Perez, P.E.: SynchroGrid, College Station, Texas Hung Ming Chou, SynchroGrid, College Station, Texas Mike McMillan, Bryan

More information

INTRODUCTION. General Design Criteria o (include charts from Section 2 of TSS) Functional Criteria o (from TSS section 3) Accessibility and Layout

INTRODUCTION. General Design Criteria o (include charts from Section 2 of TSS) Functional Criteria o (from TSS section 3) Accessibility and Layout Substation Subgroup Members: Please update the sections below you volunteered to review using the track changes option or highlight your changes. Once done, email your updated document to Scott Herb (SEHerb@pplweb.com)

More information

SMBJ5.0 THRU SMBJ440CA

SMBJ5.0 THRU SMBJ440CA SMBJ5.0 THRU SMBJ440CA SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR Stand-off : 5.0-440 Volts Peak pulse power: 600 Watts 0.087 (2.20) 0.071 (1.80) 0.096(2.44) 0.084(2.13) SMB/DO-214AA 0.180(4.57) 0.160(4.06)

More information

Metal-Oxide Surge Arresters Integrated in High-Voltage AIS Disconnectors An Economical Solution for Overvoltage Protection in Substations

Metal-Oxide Surge Arresters Integrated in High-Voltage AIS Disconnectors An Economical Solution for Overvoltage Protection in Substations Metal-Oxide Surge Arresters Integrated in High-Voltage AIS Disconnectors An Economical Solution for Overvoltage Protection in Substations Volker Hinrichsen, Reinhard Göhler Helmut Lipken Wolfgang Breilmann

More information

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 2 August 216 ISSN (online): 2349-784X Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

More information

WORLD MEETING ON LIGHTNING Lightning Performance Research on Mexican High Voltage Transmission Lines

WORLD MEETING ON LIGHTNING Lightning Performance Research on Mexican High Voltage Transmission Lines WORLD MEETING ON LIGHTNING 2016 Lightning Performance Research on Mexican High Voltage Transmission Lines Carlos ROMUALDO-TORRES, PhD (Eng) Instituto de Investigaciones Eléctricas MEXICO This paper describes:

More information

Electromagnetic Shielding Analysis of Buildings Under Power Lines Hit by Lightning

Electromagnetic Shielding Analysis of Buildings Under Power Lines Hit by Lightning Electromagnetic Shielding Analysis of Buildings Under Power Lines Hit by Lightning S. Ladan, A. Aghabarati, R. Moini, S. Fortin and F.P. Dawalibi Safe Engineering Services and Technologies ltd. Montreal,

More information

A Study of Lightning Surge on Underground Cables in a Cable Connection Station

A Study of Lightning Surge on Underground Cables in a Cable Connection Station Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 1517, 2007 198 A Study of Lightning Surge on Under Cables in a Cable Connection

More information

Eaton s Cooper Power Series DEADFRONT ARRESTERS

Eaton s Cooper Power Series DEADFRONT ARRESTERS File Ref: 235-65, 235-68, 235-97, 235-101 Effective June 2015 CT235001EN Supersedes CP9314 May 2011 CERTIFIED TEST REPORT Eaton s Cooper Power Series DEADFRONT ARRESTERS CT235001EN Supersedes CP9314 May

More information

400W, 5V - 188V Surface Mount Transient Voltage Suppressor

400W, 5V - 188V Surface Mount Transient Voltage Suppressor 400W, 5V - 188V Surface Mount Transient Voltage Suppressor FEATURES Low profile package Ideal for automated placement Glass passivated junction Built-in strain relief Excellent clamping capability Fast

More information

Our experience. Our products

Our experience. Our products Our experience With 20 years know-how in the field of Medium Voltage network protection, DERVASIL designs and manufactures lightning arresters with zinc oxide varistors and synthetic housings. Our products

More information

Great Northern Transmission Line: Behind the (Electrical) Design

Great Northern Transmission Line: Behind the (Electrical) Design Great Northern Transmission Line: Behind the (Electrical) Design November 8, 2017 Christian Winter, P.E. Minnesota Power Sivasis Panigrahi, P.E. POWER Engineers, Inc. What is the Great Northern Transmission

More information