# Logic signal voltage levels

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Logic signal voltage levels Logic gate circuits are designed to input and output only two types of signals: "high" (1) and "low" (0), as represented by a variable voltage: full power supply voltage for a "high" state and zero voltage for a "low" state. In a perfect world, all logic circuit signals would exist at these extreme voltage limits, and never deviate from them (i.e., less than full voltage for a "high," or more than zero voltage for a "low"). However, in reality, logic signal voltage levels rarely attain these perfect limits due to stray voltage drops in the transistor circuitry, and so we must understand the signal level limitations of gate circuits as they try to interpret signal voltages lying somewhere between full supply voltage and zero. TTL gates operate on a nominal power supply voltage of 5 volts, +/ volts. Ideally, a TTL "high" signal would be 5.00 volts exactly, and a TTL "low" signal 0.00 volts exactly. However, real TTL gate circuits cannot output such perfect voltage levels, and are designed to accept "high" and "low" signals deviating substantially from these ideal values. "Acceptable" input signal voltages range from 0 volts to 0.8 volts for a "low" logic state, and 2 volts to 5 volts for a "high" logic state. "Acceptable" output signal voltages (voltage levels guaranteed by the gate manufacturer over a specified range of load conditions) range from 0 volts to 0.5 volts for a "low" logic state, and 2.7 volts to 5 volts for a "high" logic state: If a voltage signal ranging between 0.8 volts and 2 volts were to be sent into the input of a TTL gate, there would be no certain response from the gate. Such a signal would be considered uncertain, and no logic gate manufacturer would guarantee how their gate circuit would interpret such a signal. As you can see, the tolerable ranges for output signal levels are narrower than for input signal levels, to ensure that any TTL gate outputting a digital signal into the

2 input of another TTL gate will transmit voltages acceptable to the receiving gate. The difference between the tolerable output and input ranges is called the noise margin of the gate. For TTL gates, the low-level noise margin is the difference between 0.8 volts and 0.5 volts (0.3 volts), while the high-level noise margin is the difference between 2.7 volts and 2 volts (0.7 volts). Simply put, the noise margin is the peak amount of spurious or "noise" voltage that may be superimposed on a weak gate output voltage signal before the receiving gate might interpret it wrongly: CMOS gate circuits have input and output signal specifications that are quite different from TTL. For a CMOS gate operating at a power supply voltage of 5 volts, the acceptable input signal voltages range from 0 volts to 1.5 volts for a "low" logic state, and 3.5 volts to 5 volts for a "high" logic state. "Acceptable" output signal voltages (voltage levels guaranteed by the gate manufacturer over a specified range of load conditions) range from 0 volts to 0.05 volts for a "low" logic state, and 4.95 volts to 5 volts for a "high" logic state:

3 It should be obvious from these figures that CMOS gate circuits have far greater noise margins than TTL: 1.45 volts for CMOS low-level and high-level margins, versus a maximum of 0.7 volts for TTL. In other words, CMOS circuits can tolerate over twice the amount of superimposed "noise" voltage on their input lines before signal interpretation errors will result. CMOS noise margins widen even further with higher operating voltages. Unlike TTL, which is restricted to a power supply voltage of 5 volts, CMOS may be powered by voltages as high as 15 volts (some CMOS circuits as high as 18 volts). Shown here are the acceptable "high" and "low" states, for both input and output, of CMOS integrated circuits operating at 10 volts and 15 volts, respectively:

4 The margins for acceptable "high" and "low" signals may be greater than what is shown in the previous illustrations. What is shown represents "worst-case" input signal performance, based on manufacturer's specifications. In practice, it may be found that a gate circuit will tolerate "high" signals of considerably less voltage and "low" signals of considerably greater voltage than those specified here. Conversely, the extremely small output margins shown -- guaranteeing output states for "high" and "low" signals to within 0.05 volts of the power supply "rails" -- are optimistic. Such "solid" output voltage levels will be true only for conditions of minimum loading. If the gate is sourcing or sinking substantial current to a load, the output voltage will not be able to maintain these optimum levels, due to internal channel resistance of the gate's final output MOSFETs.

5 Within the "uncertain" range for any gate input, there will be some point of demarcation dividing the gate's actual "low" input signal range from its actual "high" input signal range. That is, somewhere between the lowest "high" signal voltage level and the highest "low" signal voltage level guaranteed by the gate manufacturer, there is a threshold voltage at which the gate will actually switch its interpretation of a signal from "low" or "high" or vice versa. For most gate circuits, this unspecified voltage is a single point: In the presence of AC "noise" voltage superimposed on the DC input signal, a single threshold point at which the gate alters its interpretation of logic level will result in an erratic output: If this scenario looks familiar to you, its because you remember a similar problem with (analog) voltage comparator op-amp circuits. With a single threshold point at

6 which an input causes the output to switch between "high" and "low" states, the presence of significant noise will cause erratic changes in the output: The solution to this problem is a bit of positive feedback introduced into the amplifier circuit. With an op-amp, this is done by connecting the output back around to the noninverting (+) input through a resistor. In a gate circuit, this entails redesigning the internal gate circuitry, establishing the feedback inside the gate package rather than through external connections. A gate so designed is called a Schmitt trigger. Schmitt triggers interpret varying input voltages according to two threshold voltages: a positive-going threshold (V T+ ), and a negativegoing threshold (V T- ):

7 Schmitt trigger gates are distinguished in schematic diagrams by the small "hysteresis" symbol drawn within them, reminiscent of the B-H curve for a ferromagnetic material. Hysteresis engendered by positive feedback within the gate circuitry adds an additional level of noise immunity to the gate's performance. Schmitt trigger gates are frequently used in applications where noise is expected on the input signal line(s), and/or where an erratic output would be very detrimental to system performance. The differing voltage level requirements of TTL and CMOS technology present problems when the two types of gates are used in the same system. Although operating CMOS gates on the same 5.00 volt power supply voltage required by the TTL gates is no problem, TTL output voltage levels will not be compatible with CMOS input voltage requirements. Take for instance a TTL NAND gate outputting a signal into the input of a CMOS inverter gate. Both gates are powered by the same 5.00 volt supply (V cc ). If the TTL gate outputs a "low" signal (guaranteed to be between 0 volts and 0.5 volts), it will be properly interpreted by the CMOS gate's input as a "low" (expecting a voltage between 0 volts and 1.5 volts):

8 However, if the TTL gate outputs a "high" signal (guaranteed to be between 5 volts and 2.7 volts), it might not be properly interpreted by the CMOS gate's input as a "high" (expecting a voltage between 5 volts and 3.5 volts):

9 Given this mismatch, it is entirely possible for the TTL gate to output a valid "high" signal (valid, that is, according to the standards for TTL) that lies within the "uncertain" range for the CMOS input, and may be (falsely) interpreted as a "low" by the receiving gate. An easy "fix" for this problem is to augment the TTL gate's "high" signal voltage level by means of a pullup resistor:

10 Something more than this, though, is required to interface a TTL output with a CMOS input, if the receiving CMOS gate is powered by a greater power supply voltage:

11 There will be no problem with the CMOS gate interpreting the TTL gate's "low" output, of course, but a "high" signal from the TTL gate is another matter entirely. The guaranteed output voltage range of 2.7 volts to 5 volts from the TTL gate output is nowhere near the CMOS gate's acceptable range of 7 volts to 10 volts for a "high" signal. If we use an open-collector TTL gate instead of a totem-pole output gate, though, a pullup resistor to the 10 volt V dd supply rail will raise the TTL gate's "high" output voltage to the full power supply voltage supplying the CMOS gate. Since an open-collector gate can only sink current, not source current, the "high" state voltage level is entirely determined by the power supply to which the pullup resistor is attached, thus neatly solving the mismatch problem:

12 Due to the excellent output voltage characteristics of CMOS gates, there is typically no problem connecting a CMOS output to a TTL input. The only significant issue is the current loading presented by the TTL inputs, since the CMOS output must sink current for each of the TTL inputs while in the "low" state. When the CMOS gate in question is powered by a voltage source in excess of 5 volts (V cc ), though, a problem will result. The "high" output state of the CMOS gate, being greater than 5 volts, will exceed the TTL gate's acceptable input limits for a "high" signal. A solution to this problem is to create an "open-collector" inverter circuit using a discrete NPN transistor, and use it to interface the two gates together:

13 The "R pullup " resistor is optional, since TTL inputs automatically assume a "high" state when left floating, which is what will happen when the CMOS gate output is "low" and the transistor cuts off. Of course, one very important consequence of implementing this solution is the logical inversion created by the transistor: when the CMOS gate outputs a "low" signal, the TTL gate sees a "high" input; and when the CMOS gate outputs a "high" signal, the transistor saturates and the TTL gate sees a "low" input. So long as this inversion is accounted for in the logical scheme of the system, all will be well. Source:

### DIGITAL ELECTRONICS INTRODUCTION. August 2012

AM 5-401 DIGITAL ELECTRONICS INTRODUCTION August 2012 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA

### Shown here is a schematic diagram for a real inverter circuit, complete with all necessary components for efficient and reliable operation:

The NOT gate The single-transistor inverter circuit illustrated earlier is actually too crude to be of practical use as a gate. Real inverter circuits contain more than one transistor to maximize voltage

### Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories.

Logic Families Characterizing Digital ICs Digital ICs characterized several ways Circuit Complexity Gives measure of number of transistors or gates Within single package Four general categories SSI - Small

### + power. V out. - power +12 V -12 V +12 V -12 V

Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

### CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is

### Transistor Design & Analysis (Inverter)

Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

### Fig 1: The symbol for a comparator

INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

### DO NOT COPY DO NOT COPY

184 hapter 3 Digital ircuits Table 3-13 Manufacturers logic data books. Manufacturer Order Number Topics Title Year Texas Instruments SDLD001 74, 74S, 74LS TTL TTL Logic Data Book 1988 Texas Instruments

### Physics 335 Lab 1 Intro to Digital Logic

Physics 33 Lab 1 Intro to Digital Logic We ll be introducing you to digital logic this quarter. Some things will be easier for you than analog, some things more difficult. Digital is an all together different

### Low Cost 10-Bit Monolithic D/A Converter AD561

a FEATURES Complete Current Output Converter High Stability Buried Zener Reference Laser Trimmed to High Accuracy (1/4 LSB Max Error, AD561K, T) Trimmed Output Application Resistors for 0 V to +10 V, 5

### CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits both analog and digital The versatility of a TTL Schmitt is

### Unit 1 Session - 3 TTL Parameters

Objectives Understanding various TTL Parameters Floating Inputs Worst-Case Input Voltages & Output Voltages Profiles and Windows Compatibility Sourcing and Sinking Noise Immunity Standard Loading and Loading

### ANALOG TO DIGITAL CONVERTER

Final Project ANALOG TO DIGITAL CONVERTER As preparation for the laboratory, examine the final circuit diagram at the end of these notes and write a brief plan for the project, including a list of the

### Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input

Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input signals and produce a digital or logic level output based

### CMOS the Ideal Logic Family

CMOS the Ideal Logic Family National Semiconductor Application Note 77 Stephen Calebotta January 1983 INTRODUCTION Let s talk about the characteristics of an ideal logic family It should dissipate no power

### Logic families (TTL, CMOS)

Logic families (TTL, CMOS) When you work with digital IC's, you should be familiar, not only with their logical operation, but also with such operational properties as voltage levels, noise immunity, power

### Schmitt trigger. V I is converted from a sine wave into a square wave. V O switches between +V SAT SAT and is in phase with V I.

When you have completed this exercise, you will be able to operate a sine wave to square wave converter. You will verify your results with an oscilloscope. Schmitt trigger. V I is converted from a sine

### +15 V 10k. !15 V Op amp as a simple comparator.

INDIANA UNIVESITY, DEPT. OF PHYSICS, P400/540 LABOATOY FALL 2008 Laboratory #7: Comparators, Oscillators, and Intro. to Digital Gates Goal: Learn how to use special-purpose op amps as comparators and Schmitt

### Use the fixed 5 volt supplies for your power in digital circuits, rather than the variable outputs.

Physics 33 Lab 1 Intro to Digital Logic We ll be introducing you to digital logic this quarter. Some things will be easier for you than analog, some things more difficult. Digital is an all together different

### Abu Dhabi Men s College, Electronics Department. Logic Families

bu Dhabi Men s College, Electronics Department Logic Families There are several different families of logic gates. Each family has its capabilities and limitations, its advantages and disadvantages. The

### LP265 LP365 Micropower Programmable Quad Comparator

LP265 LP365 Micropower Programmable Quad Comparator General Description The LP365 consists of four independent voltage comparators The comparators can be programmed four at the same time for various supply

### Electronic PRINCIPLES

MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 22 Nonlinear Op-Amp Circuits Topics Covered in Chapter 22 Comparators with zero reference Comparators with non-zero references Comparators

### Figure 1: Basic Relationships for a Comparator. For example: Figure 2: Example of Basic Relationships for a Comparator

Cornerstone Electronics Technology and Robotics I Week 16 Voltage Comparators Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit: To

### Exercise 1: DC Operation of a NOT and an OR-TIE

Open Collector and Other TTL Gates Digital Logic Fundamentals Exercise 1: DC Operation of a NOT and an OR-TIE EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the

### Exercise 2: Source and Sink Current

Digital Logic Fundamentals Tri-State Output Exercise 2: Source and Sink Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate how a tri-state buffer output can

### B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

### INTEGRATED CIRCUITS. AN179 Circuit description of the NE Dec

TEGRATED CIRCUITS AN79 99 Dec AN79 DESCPTION The NE564 contains the functional blocks shown in Figure. In addition to the normal PLL functions of phase comparator, CO, amplifier and low-pass filter, the

### Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Learning Outcome: an ability to analyze and design CMOS logic gates Learning Objectives: 1-1. convert numbers from one base (radix) to another:

### Interfacing the isppac-powr1208 with Modular DC-to-DC Converters

with Modular s January 2003 Application Note AN6046 Introduction The isppac -POWR1208 is a single-chip, fully integrated solution to supervisory and control problems encountered when implementing on-board

### LM340 Series Three Terminal Positive Regulators

LM340 Series Three Terminal Positive Regulators Introduction The LM340-XX are three terminal 1.0A positive voltage regulators, with preset output voltages of 5.0V or 15V. The LM340 regulators are complete

### Fast IC Power Transistor with Thermal Protection

Fast IC Power Transistor with Thermal Protection Introduction Overload protection is perhaps most necessary in power circuitry. This is shown by recent trends in power transistor technology. Safe-area,

### CONVERTING 1524 SWITCHING POWER SUPPLY DESIGNS TO THE SG1524B

LINEAR INTEGRATED CIRCUITS PS-5 CONVERTING 1524 SWITCHING POWER SUPPLY DESIGNS TO THE SG1524B Stan Dendinger Manager, Advanced Product Development Silicon General, Inc. INTRODUCTION Many power control

### Operational Amplifiers

Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

### ELT 215 Operational Amplifiers (LECTURE) Chapter 5

CHAPTER 5 Nonlinear Signal Processing Circuits INTRODUCTION ELT 215 Operational Amplifiers (LECTURE) In this chapter, we shall present several nonlinear circuits using op-amps, which include those situations

### 4-bit counter circa bit counter circa 1990

Digital Logic 4-bit counter circa 1960 8-bit counter circa 1990 Logic gates Operates on logical values (TRUE = 1, FALSE = 0) NOT AND OR XOR 0-1 1-0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0

### LM139/LM239/LM339 A Quad of Independently Functioning Comparators

LM139/LM239/LM339 A Quad of Independently Functioning Comparators Introduction The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the

Physics 364, Fall 2014, reading due 2014-10-05. Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: (a) First

### Type Ordering Code Package TLE 4226 G Q67000-A9118 P-DSO-24-3 (SMD) New type

Intelligent Sixfold -Side Switch TLE 4226 G Bipolar-IC Features Quad 50 outputs Dual 500 outputs Operating range S = 5 ± 5 % Output stages with power limiting Open-collector outputs Shorted load protected

### Microprocessor-Compatible 12-Bit D/A Converter AD667*

a FEATURES Complete 12-Bit D/A Function Double-Buffered Latch On Chip Output Amplifier High Stability Buried Zener Reference Single Chip Construction Monotonicity Guaranteed Over Temperature Linearity

### ET 438B Sequential Digital Control and Data Acquisition Laboratory 4 Analog Measurement and Digital Control Integration Using LabVIEW

ET 438B Sequential Digital Control and Data Acquisition Laboratory 4 Analog Measurement and Digital Control Integration Using LabVIEW Laboratory Learning Objectives 1. Identify the data acquisition card

### Chapter 1: Digital logic

Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

### Switched capacitor circuitry

Switched capacitor circuitry This worksheet and all related files are licensed under the reative ommons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### 4-bit counter circa bit counter circa 1990

Digital Logic 4-bit counter circa 1960 8-bit counter circa 1990 Logic gates Operates on logical values (TRUE = 1, FALSE = 0) NOT AND OR XOR 0-1 1-0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0

### Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32

a FEATURES High Linearity 0.01% max at 10 khz FS 0.05% max at 100 khz FS 0.2% max at 500 khz FS Output TTL/CMOS Compatible V/F or F/V Conversion 6 Decade Dynamic Range Voltage or Current Input Reliable

### IC Logic Families. Wen-Hung Liao, Ph.D. 5/16/2001

IC Logic Families Wen-Hung Liao, Ph.D. 5/16/2001 Digital IC Terminology Voltage Parameters: V IH (min): high-level input voltage, the minimum voltage level required for a logic 1 at an input. V IL (max):

### DESIGN TIP DT Managing Transients in Control IC Driven Power Stages 2. PARASITIC ELEMENTS OF THE BRIDGE CIRCUIT 1. CONTROL IC PRODUCT RANGE

DESIGN TIP DT 97-3 International Rectifier 233 Kansas Street, El Segundo, CA 90245 USA Managing Transients in Control IC Driven Power Stages Topics covered: By Chris Chey and John Parry Control IC Product

### Basic Characteristics of Digital ICs

ECEN202 Section 2 Characteristics of Digital IC s Part 1: Specification of characteristics An introductory look at digital IC s: Logic families Basic construction and operation Operating characteristics

### EE 435 Switched Capacitor Amplifiers and Filters. Lab 7 Spring 2014 R 2 V OUT V IN. (a) (b)

EE 435 Switched Capacitor Amplifiers and Filters Lab 7 Spring 2014 Amplifiers are widely used in many analog and mixed-signal applications. In most discrete applications resistors are used to form the

### EE301 Electronics I , Fall

EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

### BICMOS Technology and Fabrication

12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

### DC Electrical Characteristics of MM74HC High-Speed CMOS Logic

DC Electrical Characteristics of MM74HC High-Speed CMOS Logic The input and output characteristics of the MM74HC high-speed CMOS logic family were conceived to meet several basic goals. These goals are

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008

Name MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.09 Hands-On Introduction to EE Lab Skills Laboratory No. BJT, Op Amps IAP 008 Objective In this laboratory, you will become familiar with a simple bipolar junction

### DC Solid State Power Controller Module

DC Solid State Power Controller Module Description: These Solid State Power Controller (SSPC) Modules are designed to operate without any heatsink requirements. They are microcontroller-based Solid State

### Lecture 3: Transistors

Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

### Chapter 6: Transistors and Gain

I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

### Chapter 6 Digital Circuit 6-6 Department of Mechanical Engineering

MEMS1082 Chapter 6 Digital Circuit 6-6 TTL and CMOS ICs, TTL and CMOS output circuit When the upper transistor is forward biased and the bottom transistor is off, the output is high. The resistor, transistor,

### REV. B. NOTES 1 At Pin 1. 2 Calculated as average over the operating temperature range. 3 H = Hermetic Metal Can; N = Plastic DIP.

SPECIFICATIONS (@ V IN = 15 V and 25 C unless otherwise noted.) Model AD584J AD584K AD584L Min Typ Max Min Typ Max Min Typ Max Unit OUTPUT VOLTAGE TOLERANCE Maximum Error 1 for Nominal Outputs of: 10.000

### Atypical op amp consists of a differential input stage,

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

### ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

### Classification of Digital Circuits

Classification of Digital Circuits Combinational logic circuits. Output depends only on present input. Sequential circuits. Output depends on present input and present state of the circuit. Combinational

### Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

### Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

### MIC4421/4422. Bipolar/CMOS/DMOS Process. General Description. Features. Applications. Functional Diagram. 9A-Peak Low-Side MOSFET Driver

9A-Peak Low-Side MOSFET Driver Micrel Bipolar/CMOS/DMOS Process General Description MIC4421 and MIC4422 MOSFET drivers are rugged, efficient, and easy to use. The MIC4421 is an inverting driver, while

### University of Pittsburgh

University of Pittsburgh Experiment #7 Lab Report Analog-Digital Applications Submission Date: 08/01/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

### Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage)

Explore More! Points awarded: Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Name: Net ID: Laboratory Outline A voltage comparator considers two voltage waveforms,

### Lecture 9 Transistors

Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301-graphenetransistors-based-on-negative-resistance-could-spell-theend-of-silicon-and-semiconductors

### AD557 SPECIFICATIONS. T A = 25 C, V CC = 5 V unless otherwise noted) REV. B

SPECIFICATIONS Model Min Typ Max Unit RESOLUTION 8 Bits RELATIVE ACCURACY 0 C to 70 C ± 1/2 1 LSB Ranges 0 to 2.56 V Current Source 5 ma Sink Internal Passive Pull-Down to Ground 2 SETTLING TIME 3 0.8

### Lab 2 Revisited Exercise

Lab 2 Revisited Exercise +15V 100k 1K 2N2222 Wire up led display Note the ground leads LED orientation 6.091 IAP 2008 Lecture 3 1 Comparator, Oscillator +5 +15 1k 2 V- 7 6 Vin 3 V+ 4 V o Notice that power

### Field Effect Transistors

Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

### Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

### CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible FEATURES FOUR-QUADRANT MULTIPLICATION LOW GAIN TC: 2ppm/ C typ MONOTONICITY GUARANTEED OVER TEMPERATURE SINGLE 5V TO 15V SUPPLY

### BLOCK DIAGRAM OF THE UC3625

U-115 APPLICATION NOTE New Integrated Circuit Produces Robust, Noise Immune System For Brushless DC Motors Bob Neidorff, Unitrode Integrated Circuits Corp., Merrimack, NH Abstract A new integrated circuit

### MIC4451/4452. General Description. Features. Applications. Functional Diagram V S. 12A-Peak Low-Side MOSFET Driver. Bipolar/CMOS/DMOS Process

12A-Peak Low-Side MOSFET Driver Bipolar/CMOS/DMOS Process General Description MIC4451 and MIC4452 CMOS MOSFET drivers are robust, efficient, and easy to use. The MIC4451 is an inverting driver, while the

### ML4818 Phase Modulation/Soft Switching Controller

Phase Modulation/Soft Switching Controller www.fairchildsemi.com Features Full bridge phase modulation zero voltage switching circuit with programmable ZV transition times Constant frequency operation

### High Current MOSFET Toggle Switch with Debounced Push Button

Set/Reset Flip Flop This is an example of a set/reset flip flop using discrete components. When power is applied, only one of the transistors will conduct causing the other to remain off. The conducting

### POWER SUPPLY CIRCUITS HEAD FOR SIMPLICITY BY INTEGRATION

LINEAR INTEGRATED CIRCUITS PS-10 POWER SUPPLY CIRCUITS HEAD FOR SIMPLICITY BY INTEGRATION Stan Dendinger Manager, Advanced Product Development Silicon General, Inc. SUMMARY The benefits obtained from switching

### Applying Analog Techniques in Digital CMOS Buffers to Improve Speed and Noise Immunity

C Analog Integrated Circuits and Signal Processing, 27, 275 279, 2001 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Applying Analog Techniques in Digital CMOS Buffers to Improve Speed

### Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

### Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

### Schmitt Trigger Inputs, Decoders

Schmitt Trigger, Decoders Page 1 Schmitt Trigger Inputs, Decoders TTL Switching In this lab we study the switching of TTL devices. To do that we begin with a source that is unusual for logic circuits,

### The Basics Digital Input

C H A P T E R 4 The Basics Digital Input After Chapter 3 s examination of the output mode, we ll now turn to PIC pins used as digital input devices. Many PICs include analog-to-digital converters and we

### Transistor Digital Circuits

Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

### Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No # 05 FETS and MOSFETS Lecture No # 06 FET/MOSFET Amplifiers and their Analysis In the previous lecture

### Radivoje Đurić, 2015, Analogna Integrisana Kola 1

OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

### Embedded Systems. Oscillator and I/O Hardware. Eng. Anis Nazer First Semester

Embedded Systems Oscillator and I/O Hardware Eng. Anis Nazer First Semester 2016-2017 Oscillator configurations Three possible configurations for Oscillator (a) using a crystal oscillator (b) using an

### Testing Power Sources for Stability

Keywords Venable, frequency response analyzer, oscillator, power source, stability testing, feedback loop, error amplifier compensation, impedance, output voltage, transfer function, gain crossover, bode

### Multiple input gates. The AND gate

Multiple input gates Inverters and buffers exhaust the possibilities for single-input gate circuits. What more can be done with a single logic signal but to buffer it or invert it? To explore more logic

### Lecture #4 Basic Op-Amp Circuits

Summer 2015 Ahmad El-Banna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Some

### INTRODUCTION TO DIGITAL CONCEPT

COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) INTRODUCTION TO DIGITAL CONCEPT Digital and Analog Quantities Digital relates to data in the form of digits,

### EE223 Laboratory #4. Comparators

EE223 Laboratory #4 Comparators Objectives 1) Learn how to design using comparators 2) Learn how to breadboard circuits incorporating integrated circuits (ICs) 3) Learn how to obtain and read IC datasheets

### Op-amp characteristics Operational amplifiers have several very important characteristics that make them so useful:

Operational Amplifiers A. Stolp, 4/22/01 rev, 2/6/12 An operational amplifier is basically a complete high-gain voltage amplifier in a small package. Op-amps were originally developed to perform mathematical

### Dynamic Threshold for Advanced CMOS Logic

AN-680 Fairchild Semiconductor Application Note February 1990 Revised June 2001 Dynamic Threshold for Advanced CMOS Logic Introduction Most users of digital logic are quite familiar with the threshold

Amplifiers Table of Contents Lesson One Lesson Two Lesson Three Introduction to Amplifiers...3 Single-Stage Amplifiers...19 Amplifier Performance and Multistage Amplifiers...35 Lesson Four Op Amps...51

### AN increasing number of video and communication applications

1470 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 9, SEPTEMBER 1997 A Low-Power, High-Speed, Current-Feedback Op-Amp with a Novel Class AB High Current Output Stage Jim Bales Abstract A complementary

### LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters

LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters General Description The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits

### PLASTIC SILICON OPTOLOGIC PHOTOSENSOR

PACKAGE DIMENSIONS 0.75 (.) Ø 0.065 (.65) 0.00 (.5) 0.00 (5.08) Ø 0.095 (.) 0.00 (.5) 0.500 (.7) MIN 0.00 (0.5) SQ. 3X 0.075 (.90) X 0.05 (0.6) Part Number Definitions Color Code QSE56 Totem-Pole, buffer