Lab VIII Photodetectors ECE 476

Size: px
Start display at page:

Download "Lab VIII Photodetectors ECE 476"

Transcription

1 Lab VIII Photodetectors ECE 476 I. Purpose The electrical and optical properties of various photodetectors will be investigated. II. Background Photodiode A photodiode is a standard diode packaged so that light can shine on the p-n junction. The standard diode equation is: I = I o exp qv 1 (1) kt where I 0, is the saturation current and V is the applied voltage (negative for reverse bias and positive for forward bias). The current-voltage characteristic for the diode is shown in figure 1. The current that flows when no light is shining is called the dark current. Figure 1: I-V curve of diode with no light. The presence of light being absorbed by the p-n junction produces the current-voltage characteristic shown in figure 2. The equation describing the current-voltage characteristics includes both a dark current term and a light generated term. Figure 2: Photodiode characteristic.

2 This equation is I = I o exp qv 1 I kt λ (2) where I λ is the current due to the light. This light current is constant versus voltage, so the light produced curve in Figure 2 is simply the dark current curve shifted straight down. The light current I λ is linear with respect to the light intensity absorbed. Three regions of operation can be identified in Fig. 2. Region one is the photovoltaic mode of photodetector operation where the diode is operated as an open circuit (I = 0). The voltage measured is related to the intensity of the light. To determine this relationship the current is set to zero in Eq. 2 and the voltage is solved for giving V = kt q ln I λ +1 (3) I o where V=V OC is called the open circuit voltage. Region two is the photoconductive mode (Quadrant III) where the diode is reversed biased. In this mode typically the photocurrent I λ is larger in magnitude than the dark current I 0 so the current measured is directly proportional to the light intensity. Region three is the solar cell mode (Quadrant IV in figure 2) where the diode generates a net power out. Photoconductor A photoconductor is simply a piece of semiconductor as shown in Fig. 3. The resistance of the semiconductor is Figure 3: Photoconductor. R = ρd (4) A where ρ is the resistivity, d is the length and A is the cross-sectional area. The resistivity for a semiconductor is given by 1 ρ = σ = q ( μ nn + μ p p) (5) where σ is called the conductivity. The other terms include the mobilities of the electron and the hole carriers (μ n and μ p ), the electron density (n) and the hole density (p). The quantities n and p increase linearly with increases in the light absorbed. Hence the photoconductor resistance is expected to be related to light intensity as

3 R ~ l/(light intensity). III. Procedure Preliminary 1. Measure the light output power for the high-efficiency red LED for the following currents: 2ma, 5mA, 10mA, 15mA, 20mA, and 25mA. If you have accurate measurements from the LED lab, you may reuse them. You will be using these powers for parts A-D. 2. The photodetectors used in this lab are in a small parts cabinet on the counter. Part A: Photodiode in the photovoltaic mode 1. Measure the external voltage versus input light intensity for the photodiode operating in the photovoltaic mode where the diode is open circuited. Use the high-output red LED as the light source. Vary the light source intensity by taking measurements at each current reading of the LED (2mA, 5mA,, 25mA). Plot the photodiode voltage measured versus the input light intensity. Use the planar photodiode. It has a flat surface. Make sure that the LED is directly pointing at the photodiode. Keep the LED and the photodiode in fixed positions, free of using your hands. Tilt the LED board on its side and bend the photodiode leads to have it face the LED. Slight movement in distance or angle can greatly affect the readings and the precision of your results. Before taking measurements, line up the diode such that you get the maximum possible reading you can when 25mA is flowing through the HE-red LED. Doing this will help you achieve the expected results. 2. Measure the I 0, of your photodiode. Recall I 0, is the current through the diode when a reverse bias is applied and no light is shining on the diode. Set up a circuit with the diode and a large resistance (1 MΩ) in series. Apply a reverse bias and measure the voltage across the resistor with the diode in complete darkness. Calculate the current flow I 0. Use a reverse bias of 5 volts. Note: The measured voltage across the 1 MΩ resistor should be very small when the circuit is in darkness (<<1V). If you are obtaining voltages > 1V, you probably connected the diode in the wrong direction. 3. On the plot done in part 1 above, show a curve for equation 3. For equation 3 select a value for the saturation current I 0, as measured in part 2. Assume I λ = C(P opt ) where C is a constant and P opt is the light source intensity shining on the diode as determined in part 1 above. Fit one experimental data point to equation 3 to determine the constant C. Then plot Equation 3 using this C on the same curve as the experimental data plotted in part 1 above. Note: Assume T=300 K.

4 Part B: Photodiode in the photoconductive mode 1. Connect the photodiode in series with a resistor (10 kω). Reverse bias the circuit and measure the current flow versus LED light intensity. Plot the photocurrent versus light intensity. Is the relation linear as expected from equation 2? Note: Keep the LED and the photodiode in fixed positions. Part C: Phototransistor Set-up 1. A phototransistor is an npn bipolar transistor in which connections are provided to the emitter and the collector. No connection is provided to the base. The light being absorbed serves to generate carriers (holes and electrons) in the base region which produces base current. This base current generated by the light then controls the flow of a larger current between the emitter and collector terminals. The phototransistor then operates with a gain so that a small amount of light generates a large current. 2. Connect the circuit shown in figure 4. Figure 4: Phototransistor test schematic. 1. Measure the current through the transistor versus input light power. Use the LED as the light source. Plot the current measured versus light intensity. Do you get an expected result? The voltage across the 10 kω resistor should be close to 0V in darkness. If it is not, check your circuit setup.

5 Keep the LED and the phototransistor in fixed positions, free of using your hands. Tilt the LED board on its side and bend the phototransistor leads to have it face the LED. Part D: Photoconductor 1. Measure the resistance of the photoconductor versus light input intensity. Use the LED as your light source. Plot the resistance versus light intensity. Do you get the expected result? Keep the LED and the photoconductor in fixed positions If you can, place the face of the photoconductor directly on top of the LED Part E: Solar Cell Set-up 1. Using the solar cell provided, you will measure the I-V characteristics at two light illumination levels. You will use the desk lamp at each lab station as your light source. 2. Connect the terminals of the decade resistor box to the terminals of the solar cell. 3. Connect a multimeter (in voltage read mode) across the terminals of the solar cell. 4. Place solar cell directly under the lamp. Try to angle the direction of the lamp to directly face the angle of the solar cell to get the best readings. Be sure that the solar cell is not resting on a metal surface, otherwise the terminals will short and you will get no readings. Make sure that your setup is stationary and be careful not to move the solar cell during the experiment. If you change the position of the solar cell, your readings will change greatly and you will have to repeat this experiment. 1. Make sure the decade resistor box is at 0Ω. You should read 0V across the solar cell. Using the knobs of the decade resistor box, adjust the voltage to the next increment of 0.2V. Record the resistance as determined by the knob positions. Do this for 0.2V to 2.0V (10 measurements) 2. Place the neutral density filter on top of the solar cell and repeat step Plot I versus V for the solar cell. Also calculate and plot power output versus load resistance. What is the maximum power in watts that the solar cell generates at each illumination level? IV. Conclusion Draw conclusions on the various types of photodetectors and solar cells.

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1 Part I Diodes Purpose PHYS 3152 Methods of Experimental Physics I E2. In this experiment, you will investigate the current-voltage characteristic of a semiconductor diode and examine the applications of

More information

Bipolar Junction Transistor (BJT)

Bipolar Junction Transistor (BJT) Bipolar Junction Transistor (BJT) - three terminal device - output port controlled by current flow into input port Structure - three layer sandwich of n-type and p-type material - npn and pnp transistors

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Measure the roll-off frequency of an acousto-optic modulator

Measure the roll-off frequency of an acousto-optic modulator Slide 1 Goals of the Lab: Get to know some of the properties of pin photodiodes Measure the roll-off frequency of an acousto-optic modulator Measure the cut-off frequency of a pin photodiode as a function

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices Unit 2 Semiconductor Devices Lecture_2.5 Opto-Electronic Devices Opto-electronics Opto-electronics is the study and application of electronic devices that interact with light. Electronics (electrons) Optics

More information

Introduction to Photovoltaics

Introduction to Photovoltaics Introduction to Photovoltaics PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 24, 2015 Only solar energy Of all the possible sources

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Solar-energy conversion and light emission in an atomic monolayer p n diode

Solar-energy conversion and light emission in an atomic monolayer p n diode Solar-energy conversion and light emission in an atomic monolayer p n diode Andreas Pospischil, Marco M. Furchi, and Thomas Mueller 1. I-V characteristic of WSe 2 p-n junction diode in the dark The Shockley

More information

14.2 Photodiodes 411

14.2 Photodiodes 411 14.2 Photodiodes 411 Maximum reverse voltage is specified for Ge and Si photodiodes and photoconductive cells. Exceeding this voltage can cause the breakdown and severe deterioration of the sensor s performance.

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

BJT Characteristics & Common Emitter Transistor Amplifier

BJT Characteristics & Common Emitter Transistor Amplifier LAB #07 Objectives 1. To graph the collector characteristics of a transistor. 2. To measure AC and DC voltages in a common-emitter amplifier. Theory BJT A bipolar (junction) transistor (BJT) is a three-terminal

More information

When you have completed this exercise, you will be able to determine ac operating characteristics of a

When you have completed this exercise, you will be able to determine ac operating characteristics of a When you have completed this exercise, you will be able to determine ac operating characteristics of a multimeter and an oscilloscope. A sine wave generator connected between the transistor base and ground

More information

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation ELEC 3908, Physical Electronics, Lecture 16 Bipolar Transistor Operation Lecture Outline Last lecture discussed the structure and fabrication of a double diffused bipolar transistor Now examine current

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8 Bipolar Junction Transistor Aim: The aim of this experiment is to investigate the DC behavior

More information

7. Bipolar Junction Transistor

7. Bipolar Junction Transistor 41 7. Bipolar Junction Transistor 7.1. Objectives - To experimentally examine the principles of operation of bipolar junction transistor (BJT); - To measure basic characteristics of n-p-n silicon transistor

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT) EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

EXPERIMENT #3 TRANSISTOR BIASING

EXPERIMENT #3 TRANSISTOR BIASING EXPERIMENT #3 TRANSISTOR BIASING Bias (operating point) for a transistor is established by specifying the quiescent (D.C., no signal) values of collector-emitter voltage V CEQ and collector current I CQ.

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

2nd Asian Physics Olympiad

2nd Asian Physics Olympiad 2nd Asian Physics Olympiad TAIPEI, TAIWAN Experimental Competition Thursday, April 26, 21 Time Available : 5 hours Read This First: 1. Use only the pen provided. 2. Use only the front side of the answer

More information

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit Common Collector Circuit When you have completed this exercise, you will be able to determine the dc operating conditions of a common collector (CC) transistor circuit by using a typical CC circuit. You

More information

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design ECE 5900/6900: Fundamentals of Sensor Design Lecture 8 Optical Sensing 1 Optical Sensing Q: What are we measuring? A: Electromagnetic radiation labeled as Ultraviolet (UV), visible, or near,mid-, far-infrared

More information

Transistor Characteristics

Transistor Characteristics Transistor Characteristics Topics covered in this presentation: Transistor Construction Transistor Operation Transistor Characteristics 1 of 15 The Transistor The transistor is a semiconductor device that

More information

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS)

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) SOLUTIONS ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) Problem 1 (20 points) We know that a pn junction diode has an exponential I-V behavior when forward biased. The diode equation relating

More information

Made of semiconducting materials: silicon, gallium arsenide, indium phosphide, gallium nitride, etc. (EE 332 stuff.)

Made of semiconducting materials: silicon, gallium arsenide, indium phosphide, gallium nitride, etc. (EE 332 stuff.) Diodes Simple two-terminal electronic devices. Made of semiconducting materials: silicon, gallium arsenide, indium phosphide, gallium nitride, etc. (EE 332 stuff.) Semiconductors are interesting because

More information

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) EE40 Lec 17 PN Junctions Prof. Nathan Cheung 10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) Slide 1 PN Junctions Semiconductor Physics of pn junctions (for reference

More information

The Semiconductor Diode

The Semiconductor Diode Physics Topics The Semiconductor Diode If necessary, review the following topics and relevant textbook sections from Neamen Semiconductor Physics and Devices, 4th Ed. Section 8.1.5, especially equation

More information

(Refer Slide Time: 01:33)

(Refer Slide Time: 01:33) Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 31 Bipolar Junction Transistor (Contd ) So, we have been discussing

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Wallace Hall Academy. CfE Higher Physics. Unit 3 - Electricity Notes Name

Wallace Hall Academy. CfE Higher Physics. Unit 3 - Electricity Notes Name Wallace Hall Academy CfE Higher Physics Unit 3 - Electricity Notes Name 1 Electrons and Energy Alternating current and direct current Alternating current electrons flow back and forth several times per

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics Name & Surname: ID: Date: EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics Objectives: 1. To determine transistor type (npn, pnp),terminals, and material using a DMM 2. To graph the

More information

Chap14. Photodiode Detectors

Chap14. Photodiode Detectors Chap14. Photodiode Detectors Mohammad Ali Mansouri-Birjandi mansouri@ece.usb.ac.ir mamansouri@yahoo.com Faculty of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) Design

More information

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current H7. Photovoltaics: Solar Power I. INTRODUCTION The sun is practically an endless source of energy. Most of the energy used in the history of mankind originated from the sun (coal, petroleum, etc.). The

More information

EE 43 Smart Dust Lab: Experiment Guide

EE 43 Smart Dust Lab: Experiment Guide Smart Dust Motes EE 43 Smart Dust Lab: Experiment Guide The motes that you ll use are contained in translucent plastic boxes that measure 1.5 x 2.5 x 0.6 cubic inches. There is an insulated antenna (inside

More information

4 Transistors. 4.1 IV Relations

4 Transistors. 4.1 IV Relations 4 Transistors Due date: Sunday, September 19 (midnight) Reading (Bipolar transistors): HH sections 2.01-2.07, (pgs. 62 77) Reading (Field effect transistors) : HH sections 3.01-3.03, 3.11-3.12 (pgs. 113

More information

Experiment 9 Bipolar Junction Transistor Characteristics

Experiment 9 Bipolar Junction Transistor Characteristics Experiment 9 Bipolar Junction Transistor Characteristics W.T. Yeung, W.Y. Leung, and R.T. Howe UC Berkeley EE 105 Fall 2005 1.0 Objective In this lab, you will determine the I C - V CE characteristics

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING ARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING Eric J Newman Sr. Applications Engineer in the Advanced Linear Products Division, Analog Devices, Inc., email: eric.newman@analog.com Optical power

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 1-Defintion & Mechanisms of photodetection It is a device that converts the incident light into electrical current External photoelectric effect: Electrons are

More information

Chapter 3. Bipolar Junction Transistors

Chapter 3. Bipolar Junction Transistors Chapter 3. Bipolar Junction Transistors Outline: Fundamental of Transistor Common-Base Configuration Common-Emitter Configuration Common-Collector Configuration Introduction The transistor is a three-layer

More information

Diode as a Temperature Sensor

Diode as a Temperature Sensor M.B. Patil, IIT Bombay 1 Diode as a Temperature Sensor Introduction A p-n junction obeys the Shockley equation, I D = I s e V a/v T 1 ) I s e Va/V T for V a V T, 1) where V a is the applied voltage, V

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you are to measure I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). The emission intensity as a function of the diode

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng. Laboratory No. 01: Small & Large Signal Diode Circuits Electrical Enginnering Departement By: Dr. Awad Al-Zaben Instructor: Eng. Tamer Shahta Electronics Laboratory EE 3191 February 23, 2014 I. OBJECTIVES

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 2

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 2 Mechatronics and Measurement Lecturer:Dung-An Wang Lecture 2 Lecture outline Reading:Ch3 of text Today s lecture Semiconductor 2 Diode 3 4 Zener diode Voltage-regulator diodes. This family of diodes exhibits

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline COE/EE152: Basic Electronics Lecture 5 Andrew Selasi Agbemenu 1 Outline Physical Structure of BJT Two Diode Analogy Modes of Operation Forward Active Mode of BJTs BJT Configurations Early Effect Large

More information

Diode and Bipolar Transistor Circuits

Diode and Bipolar Transistor Circuits Diode and Bipolar Transistor Circuits 2 2.1 A Brief Review of Semiconductors Semiconductors are crystalline structures in which each atom shares its valance electrons with the neighboring atoms. The simple

More information

ECE 310 Microelectronics Circuits

ECE 310 Microelectronics Circuits ECE 310 Microelectronics Circuits Bipolar Transistors Dr. Vishal Saxena (vishalsaxena@boisetstate.edu) Jan 20, 2014 Vishal Saxena 1 Bipolar Transistor n the chapter, we will study the physics of bipolar

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

Exercise 2: Collector Current Versus Base Current

Exercise 2: Collector Current Versus Base Current Exercise 2: Collector Current Versus Base Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the relationship of collector current to base current by using

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley Lecture 4 OUTLNE Bipolar Junction Transistor (BJT) General considerations Structure Operation in active mode Large-signal model and - characteristics Reading: Chapter 4.1-4.4.2 EE105 Fall 2007 Lecture

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

ECE321 Electronics I Fall 2006

ECE321 Electronics I Fall 2006 ECE321 Electronics I Fall 2006 Professor James E. Morris Lecture 11 31 st October, 2006 Bipolar Junction Transistors (BJTs) 5.1 Device Structure & Physics 5.2 I-V Characteristics Convert 5.1 information

More information

Laboratory 6 Diodes and Transistors

Laboratory 6 Diodes and Transistors Laboratory 6 page 1 of 6 Laboratory 6 Diodes and Transistors Introduction In this lab, you will build and test circuits using diodes and transistors. You will use a number of different types of diodes,

More information

Performance and Characteristics of Silicon Avalanche Photodetectors in

Performance and Characteristics of Silicon Avalanche Photodetectors in Performance and Characteristics of Silicon Avalanche Photodetectors in the C5 Process Paper Authors: Dennis Montierth 1, Timothy Strand 2, James Leatham 2, Lloyd Linder 3, and R. Jacob Baker 1 1 Dept.

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes Lab 1 Transistor Biasing and Operational amplifier fundamentals Experiment 1.1 Experiment 1.2 BJT biasing OP-amp Fundamentals and its DC characteristics BJT biasing schemes 1.1 Objective 1. To sketch potential

More information

2-Terminal Device Characteristics and Diode Characterization

2-Terminal Device Characteristics and Diode Characterization Laboratory-1 2-Terminal Device Characteristics and Diode Characterization Introduction The objectives of this experiment are to learn methods for characterizing 2- terminal devices, such as diodes, observe

More information

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor.

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor. Exercise 1: EXERCISE OBJECTIVE When you have completed this exercise, you will be able to test a transistor by forward biasing and reverse biasing the junctions. You will verify your results with an ohmmeter.

More information

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process 330 Lecture 18 haracteristics of Finer Feature Size Processes ipolar Process How does the inverter delay compare between a 0.5u process and a 0.13u process? DD IN OUT IN OUT SS How does the inverter

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005 An Introduction to Bipolar Junction Transistors Transistors Transistors are three port devices used in most integrated circuits such as amplifiers. Non amplifying components we have seen so far, such as

More information

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias voltage on a photodiode can vary as a function of the incident

More information

ECE U401/U211-Introduction to Electrical Engineering Lab. Lab 4

ECE U401/U211-Introduction to Electrical Engineering Lab. Lab 4 ECE U401/U211-Introduction to Electrical Engineering Lab Lab 4 Preliminary IR Transmitter/Receiver Development Introduction: In this lab you will design and prototype a simple infrared transmitter and

More information

Lecture (09) Bipolar Junction Transistor 3

Lecture (09) Bipolar Junction Transistor 3 Lecture (09) Bipolar Junction Transistor 3 By: Dr. Ahmed ElShafee ١ I THE BJT AS AN AMPLIFIER Amplification is the process of linearly increasing the amplitude of an electrical signal and is one of the

More information

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

More information

S2014, BME 101L: Applied Circuits Lab 7: Optical Pulse Monitor

S2014, BME 101L: Applied Circuits Lab 7: Optical Pulse Monitor S2014, BME 101L: Applied Circuits Lab 7: Optical Pulse Monitor Kevin Karplus May 13, 2014 1 Design Goal For this lab we ll be designing and building an optical pulse monitor to detect pulse by shining

More information

The preferred Exercise is shown in Exercises 5B or 5C.

The preferred Exercise is shown in Exercises 5B or 5C. ECE 231 Laboratory Exercise 5A The preferred Exercise is shown in Exercises 5B or 5C. Laboratory Group (Names) OBJECTIVES Validate the Schottky diode equation. Calculate the dc and dynamic (ac) resistance

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Experiment # 4: BJT Characteristics and Applications

Experiment # 4: BJT Characteristics and Applications ENGR 301 Electrical Measurements Experiment # 4: BJT Characteristics and Applications Objective: To characterize a bipolar junction transistor (BJT). To investigate basic BJT amplifiers and current sources.

More information

EE 330 Lecture 19. Bipolar Devices

EE 330 Lecture 19. Bipolar Devices 330 Lecture 19 ipolar Devices Review from last lecture n-well n-well n- p- Review from last lecture Metal Mask A-A Section - Section Review from last lecture D A A D Review from last lecture Should now

More information

CHAPTER 8 The pn Junction Diode

CHAPTER 8 The pn Junction Diode CHAPTER 8 The pn Junction Diode Consider the process by which the potential barrier of a pn junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

Chapter Two "Bipolar Transistor Circuits"

Chapter Two Bipolar Transistor Circuits Chapter Two "Bipolar Transistor Circuits" 1.TRANSISTOR CONSTRUCTION:- The transistor is a three-layer semiconductor device consisting of either two n- and one p-type layers of material or two p- and one

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 20 Photo-Detectors and Detector Noise Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

14. Transistor Characteristics Lab

14. Transistor Characteristics Lab 1 14. Transistor Characteristics Lab Introduction Transistors are the active component in various devices like amplifiers and oscillators. They are called active devices since transistors are capable of

More information

UNIT 4 BIASING AND STABILIZATION

UNIT 4 BIASING AND STABILIZATION UNIT 4 BIASING AND STABILIZATION TRANSISTOR BIASING: To operate the transistor in the desired region, we have to apply external dec voltages of correct polarity and magnitude to the two junctions of the

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan Carleton University ELEC 3509 Lab 1 L2 Friday 2:30 P.M. Student Number: 100977570 Operation of a BJT Author: Adam Heffernan October 13, 2017 Contents 1 Transistor DC Characterization 3 1.1 Calculations

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information