Improving spatial resolution and contrast in ultrasound modulated optical tomography

Size: px
Start display at page:

Download "Improving spatial resolution and contrast in ultrasound modulated optical tomography"

Transcription

1 Improving spatial resolution and contrast in ultrasound modulated optical tomography NT Huynh, H Ruan, ML Mather, BR Hayes-Gill, SP Morgan* Electrical Systems and Optics Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. Steve.morgan@nottingham.ac.uk ABSTRACT Ultrasound imaging has benefited from non-linear approaches to improve image resolution and reduce the effects of side-lobes. A system for performing second harmonic ultrasound modulated optical tomography is demonstrated which incorporates both pulsed optical illumination and acoustic excitation. A pulse acoustic inversion scheme is employed which allows the second harmonic ultrasound modulated optical signal to be obtained while still maintaining a short pulse length of the acoustic excitation. For the experiments carried out the method demonstrates a reduction in the effective line spread function from 4mm for the fundamental to 2.4mm for the second harmonic. The first use of pulsed ultrasound modulated optical tomography in imaging fluorescent targets is also discussed. Simple experiments show that by changing the length of the acoustic pulse the image contrast can be optimized. The modulation depth of the detected signal is greatest when the length of the object along the acoustic axis is an odd number of half wavelengths and is weakest when the object is an integer multiple of an acoustic wavelength. Preliminary ultrasound modulated imaging results are also presented where the target generates light within the medium without the use of an external light source. Although signal to noise ratio is likely to be a major challenge, this result highlights a potentially useful application of ultrasound modulated optical tomography in bio- or chemi-luminescence imaging. Keywords: ultrasound modulated optical tomography, pulse inversion, fluorescence, bioluminescence, chemiluminescence 1. INTRODUCTION Ultrasound modulated optical tomography (USMOT) is a hybrid imaging technique that can reduce the effects of light scattering and improve the resolution of optical imaging systems by tagging light that passes through the ultrasound (US) column. The technique has potential for imaging and spectroscopy of tissue based on the absorption of coherent light by chromophores such as oxy- and deoxy-hemoglobin. It also has the potential to image fluorescence, although in this case incoherent light is used and the signal to noise ratio (SNR) is 2-3 orders of magnitude 1 lower than in the case when coherent light is detected. It is therefore of interest to investigate techniques to improve both imaging resolution and contrast. US imaging has benefited from non-linear approaches to improve image resolution and reduce side-lobes 2. Second harmonic imaging can also be applied in USMOT, for example, Selb et al 3 demonstrated a technique based on a lock-in CCD method to extract the second harmonic signal and improve imaging resolution. To improve axial resolution pulsed US can be employed, however, short pulses correspond to broad spectral bands and results in overlapping fundamental and second harmonic spectra. In conventional US, this can be overcome by employing a pulse inversion technique 4. In this paper we describe how pulse inversion can be employed to perform second harmonic USMOT. This results in high resolution pulsed USMOT imaging with ideally no overlapping fundamental and second harmonic spectra. The use of USMOT in imaging fluorescent targets is also discussed. This is challenging because the modulated light signal is much smaller than when coherent light is detected. A fundamental understanding of the factors that affect image contrast is therefore important. A system is described that is based upon, to our knowledge, the first use of pulsed acoustic excitation in an ultrasound modulated fluorescence tomography (USMFT) system. Simple experiments and

2 simulations show that image contrast depends upon the relative size of the fluorescent target and the acoustic wavelength. Finally this system is used to generate a line-scan of a chemi-luminescent object which generates light without requiring an external light source. This is an application where photoacoustic imaging cannot be applied and so offers an interesting area of research for USMOT in bio- and chemi-luminescence imaging. 2.1 Pulse Inversion 2. THEORY Pulse inversion involves exciting an ultrasound transducer consecutively with a pulse and then an inverted pulse. Summing the detected pulses allows the second harmonic signal to be extracted. Figure 1 shows the principle of the pulse inversion technique. The top row of the figure shows the case where no harmonics are generated (in practice this occurs when low acoustic intensities are applied). In the absence of harmonic distortion, the summation of a pulse followed by an inverted pulse results in zero output. In the presence of harmonic distortion (second row) the summation of two distorted pulses results in the cancellation of the fundamental while maintaining the second harmonic component. As discussed, the advantage of this approach is that the second harmonic signal can be obtained while still maintaining a short pulse length of the acoustic excitation. Figure 1 With no harmonic distortion (top row) a pulse (column 1) summed with an inverted pulse (column 2) results in zero output (column 3). In the presence of harmonic distortion (bottom row) the summation of a pulse and an inverted pulse removes the fundamental component but retains the second harmonic component. A speckle detection algorithm has been developed to perform pulse inversion USMOT based on previous algorithms Error! Reference source not found., Error! Reference source not found.. Pairs of ultrasound pulses (in this case tone bursts at 0 and ) are applied to a scattering sample and at a time corresponding to the propagation of the pulse to the ultrasound focus, strobe illumination extracts the contribution of a portion of the tone burst to the detected phase modulated speckle pattern. To allow a phase stepping algorithm to be applied in order to obtain the amplitude of the second harmonic, a phase shift is applied to the pairs of ultrasound pulses in the next detector frame (in this case tone bursts at /2 and 3 /2). Similar to previous algorithms 5,6, multiple pairs (~1000) of optical pulses are summed at the detector over the image acquisition time of the camera. The following derivation assumes that the fundamental frequency is completely cancelled by adding tone bursts of 0 and phase, the second harmonic frequency signal remains; and the modulated light intensity on the th pixel that is sampled by a short laser pulse (assumed to be a delta function in this derivation) is;, (1)

3 where is the second harmonic ultrasound modulated laser light intensity; is the fundamental ultrasound frequency; is the time delay due to the ultrasound pulse travelling from the transducer to its focal point; is the initial phase of an individual speckle. Summing tone bursts of phase /2 and 3 /2 within the next camera frame, the second harmonic frequency modulated speckle intensity sampled by the short pulse laser at is; The difference of these two pixels from each image;. (2). (3) As is random over the whole speckle pattern, taking the average of the square of the sin function is 6 ;, (4), (5) where denotes the averaging over the detected speckle pattern. The modulation depth is defined as;, (6) where is the mean intensity of the speckle pattern image, therefore;. (7) is the detected signal used to obtain images. 2.2 Ultrasound modulated fluorescence tomography We have previously demonstrated 7 that the shape of the temporal signal produced in a pulsed USMOT experiment can be simply modelled by a convolution of the optical profile along the optical axis with the acoustic pulse that propagates along the axis (figure 2). As an ultrasonic pulse propagates through the sample, at a particular time, it introduces a pressure change (compression or rarefaction) at a particular volumetric element of the medium, which contains the ultrasonic pressure at a given point in time (defined as a layer ). This modulates the sample s optical properties (scattering coefficient, absorption coefficient and refractive index) within that layer. Light emerging from the layer is phase modulated by the ultrasound which generates an optical pulse. When the ultrasonic pulse reaches the next layer of the sample, it produces another optical pulse, which is similar to the temporal pulse from the previous layer but with a phase delay due to the time taken for the ultrasonic pulse to propagate between the two consecutive layers. The speed of sound v a in water and in gel phantoms is approximately 1500m/s at room temperature. The speed of light v in such v c n media is expressed as, where c 3x10 8 m/s is the light velocity in vacuum, and n 1.33 is the refractive index of water or tissue. We assume that the US is focused immediately in front of the fluorescent target, on the same side as the laser, as this is consistent with our experiment (section 3) and other work 8 which demonstrates that the largest modulation depth is obtained with this configuration. As the speed of light is much higher than the speed of sound, the time taken for the modulated light to reach the fluorescent region (placed next to the US focal region) is neglected. Hence, the phase difference between the pulses from each layer depends only on the transit time of the ultrasonic pulse. Pulsed excitation light (to the fluorescent target) may be expressed as a summation of many phase shifted optical pulses.

4 Given that the US column is composed of many such layers, each of width z=v a t, the detected pulsed fluorescence light can be written as, I fluor ( t) m j 1 P( z). O( t j t) where z = v a jδt, Δt is a time delay of the acoustic field, related to the number of steps m along the US column. O(t) is an optical pulse from a given layer whose temporal profile is imposed by the ultrasonic excitation pulse. The profile P(z) represents the optical intensity distribution along the acoustic axis as a result of the combined acoustical and optical characteristics along the ultrasonic column. In a pulsed/tone burst USMFT experiment, as the US is focussed immediately in front of the target, the length of the target along the acoustic axis can be considered as an aperture placed at the same position. One can therefore consider the profile P(z) that contributes to the detected fluorescent signal as a combination of the acoustic and optical profiles and the size of the fluorescent target. We propose a simple expression relating the optical and acoustic properties to the profile P(z) which can be expressed as, (8) P( z) P ( z). P ( z). P ( z) us ex where P us (z) is the axial pressure profile of the US, P ex (z) the scattered light intensity profile along the ultrasonic column, and P fluor (z) is the fluorescent profile. In this simple model, we assume that the profiles can be treated separately although inevitably there will be some dependence. To demonstrate the trends of experiments, such as the relationship between object size and acoustic wavelength, this model has been shown to be reliable 7. In a simplified form, P us (z) and P ex (z) can be represented as a Gaussian distribution as a focused US transducer is usually used, and a narrow light beam illuminates the scattering medium. Profile P fluor (z) is related to the fluorophore distribution in the target. For example, in figure 2, the fluorescent target is represented as a top-hat profile. fluor (9) U/S column Fluorescent target and its profile Photodetector Pulsed USMFT signal Scattered light 1 U/S pulse travelling direction 0 Figure 2 A pulsed USMFT model showing a target with a flat fluorescent profile 3. EXPERIMENT SET UP 3.1 Pulse Inversion A system for performing second harmonic ultrasound modulated optical tomography is demonstrated which incorporates both pulsed optical illumination and acoustic excitation (figure 3). A function generator (Tektronix AFG3252) generates

5 the signals to drive both the ultrasound transducer (Olympus A304S, 2.25 MHz) via an RF amplifier (ENI A300) and the laser diode (λ = 638 nm, P = 40 mw). A 10 mm diameter aperture is placed 35 mm behind the scattering medium and 80 mm in front of the CCD camera (Hamamatsu ORCA C ERG) to control the speckle size. The ultrasound signal is a sinusoid pulse tone burst with interleaved inversed pulses. After the delay due to the ultrasound pulse propagation time to the focus ( in this case), the laser is strobed for a time ( ) which is much shorter than the ultrasound period (440ns). The exposure time of the camera = 204 ms to ensure that sufficient light is detected. With this configuration, each camera frame detects thousands of pairs of optical signals modulated by inverted and non-inverted acoustic pulses (interval time between pulses ). Figure 3 Pulse inversion USMOT system. A function generator drives both the ultrasound transducer (via a power amplifier) and the laser. The synchronization of the light and ultrasound drive signals means that lock-in detection is implemented at each pixel of the camera. The scattering sample is a 90 mm wide (x), 50 mm high (y) and 16 mm thick (z) agarose gel mixed with 1.6µm diameter microspheres (scattering coefficient, anisotropy factor. An absorbing half plane is embedded at the mid-plane of the gel to obtain the edge response function. The gel is placed inside a water tank which is scanned in the x direction with a 0.2 mm step size. At each step, the fundamental frequency, second harmonic modulated and average light intensity are averaged four times. 3.2 Ultrasound modulated fluorescence tomography The pulsed USFMT experimental setup is shown in figure 4. A collimated laser (λ = 632.8nm, P = 20mW) illuminates the sample and a photomultiplier tube (PMT, Hamamatsu H ) detects the scattered light emerging from the sample. Filters from a fluorescent filter kit (Edmunds Optics NT67-010) are used as an excitation filter (604nm 644nm) and an emission filter (672nm-712nm). A signal generator (Tektronix AFG3022B) and an RF power amplifier (Amplifier Research 150A100B) drive a focussed 1MHz US transducer (Olympus Panametrics V314 NDT). The US is focused at a position close to, but not at the fluorescent object. A 15cm x 10cm x 12cm (XYZ) water tank sits on a computer controlled XYZ motorized stage (Standa 8MT175-50). The signal from the PMT is fed into an amplifier, before going to an oscilloscope (Tektronix TDS2024B 8-bit ADC) and subsequent storage on a PC. The fluorescent target contains Alexa633 fluorophore (Invitrogen concanavalin A, Alexa Fluor 633 conjugate).

6 Laser Excitation filter and 2D adjustable slits Water tank Fluorescent target Driver U/S transducer Emission filter Motorized stages Photodetector Figure 4 USMFT Experimental setup z x Amplifier + Oscilloscope y 6mm 16mm z Laser source US focus x y Fluorescent tube Figure 5 The fluorescent target is a 10mm long conical tube with the longest diameter of 1.8mm and the shortest diameter of 0.4mm which is embedded in a (22mm x 16mm x 30mm) (XYZ) scattering agarose gel containing polystyrene microspheres (1.6µm diameter, µ s ~12cm -1 ). The system is used to investigate the effect that object length along the acoustic axis has on the modulation depth of the detected signal. The fluorescent target (figure 5) is a conical tube with the largest diameter of 1.8mm and the smallest diameter of 0.4mm which is embedded in a (X=22mm, Y=16mm, Z=30mm) scattering agarose gel containing polystyrene microspheres (1.6µm diameter, µ s ~15cm -1 ). Each detected pulse is averaged by the maximum x128 setting on the oscilloscope and further averaging (x400) is carried out on the PC. The same detection system is also used to carry out an experiment where the light is generated within the medium without requiring an external light source. A commercially available chemi-luminescent target (a glow stick ) is embedded within a relatively weakly scattering sample (figure 6). The object is masked with a 2mm square aperture to produce a relatively small light source within the sample.

7 20mm Glow stick with 2mm mask 40mm US focus PMT Scattering medium (µ s ~4cm -1 ) Figure 6 Imaging configuration (no external light source) for imaging a chemi-luminescent target 4.1 Pulse Inversion 4. RESULTS X (mm) Figure 7 Line scans of an absorbing edge embedded at the mid-plane of a scattering medium using DC, 1 st and 2 nd harmonic ultrasound modulated light The edge response function shown in figure 7 was obtained in the experiment and then used to estimate the line spread function by a least squares fitting 9. The full width half maximum of these line spread functions are 4.02 mm for the fundamental, 2.43 mm for the second harmonic and 9.26 mm for the DC light. The line spread functions for the US alone have also been obtained by scanning a needle hydrophone (Precision Acoustics, 0.2 mm diameter) through the US focus. The full width half maximum of these scans (not shown here) are 1.83 mm for the fundamental and 1.12 mm for the second harmonic which are lower than those obtained by USMOT. 4.2 Ultrasound modulated fluorescence tomography For the scan of the conical fluorescent object (figure 8), the DC light level gradually increases with increasing x and then decreases as the US focus reaches the edge of the object and moves away. The US modulated fluorescence signal depends on the size of the fluorescent object and the modulation frequency of the US. The number and position of the peaks show good agreement between experiment and simulation.

8 Normalized magnitude Normalized signal AC DC x (mm) (a) AC DC x (mm) (b) Figure 8 Ultrasound modulated and DC light line scans of a fluorescent target embedded in a scattering medium a) simulated b) experiment 4.3 Ultrasound modulated chemi- and bio-luminescence tomography A line-scan of an edge obtained using by modulating the light emerging from the chemi-luminescent target is shown in figure 9. In comparison to the DC light response the modulated light response is much sharper, demonstrating an improvement in resolution obtained through ultrasound modulated optical tomography.

9 normalized signal DC AC x (mm) Figure 9 Edge response from a chemi-luminescent target obtained by modulating the light emerging from the target using ultrasound. 5. DISCUSSION AND CONCLUSIONS 5.1 Pulse Inversion One of the possible causes of the lower resolution in USMOT is due to multiple scattering of light in the region of the US focus. This reduces the effective USMOT focal zone and also produces second harmonic signals due to interference effects as suggested in 3. Another potential problem is that the algorithm, like all speckle based methods is susceptible to the effects of speckle decorrelation between consecutive frames. Although this is reduced for the cases of individual pulses as they are summed within the same frame, the method still requires a shift in the US phase and detection in the next frame. The axial resolution can be improved further by reducing the length of the US pulse as any spectral overlap between fundamental and second harmonic can be overcome using the pulse inversion method. Such improvements cannot be achieved using a filtering approach such as lock-in detection. Future work will involve shortening the pulse length to improve axial resolution and the use of microbubbles which have been used to improve image contrast in conventional non-linear acoustic imaging. Pulse inversion parallel detection USMOT is introduced in this paper which demonstrates a reduction in the effective line spread function from 4.02mm to 2.43mm. Previous second harmonic USMOT imaging [Error! Reference source not found.] has used continuous wave US to achieve a comparable improvement in lateral resolution. However, the use of pulsed US in this case allows axial resolution to be achieved by time gating along the ultrasound propagation axis and is also more compatible with clinical diagnostic US. 5.2 Ultrasound modulated fluorescence tomography The effect of fluorescent object size and US frequency on the images obtained in pulsed USFMT has been investigated. All systems to date have implemented CW US and so the effect of using pulsed US has not yet been considered. Pulsed

10 US offers advantages in terms of allowing high peak pressures while remaining within safety limits and also enabling axial resolution along the acoustic axis to be obtained using time gating. A range of results (to be published at a later date) show that the USMFT signal depends upon the size of the fluorescent target and the frequency of the US. If the object is of the order of an acoustic wavelength then the US modulated fluorescent pulses that propagate to the detector are likely to cancel at the detector plane and produce a signal of relatively low amplitude. If the object is an odd number of half wavelengths wide then the pulses will produce a larger detected signal due to more constructive interference occurring. The simple convolution model employed is able predict the detected signal. The simulation is simple because it neglects the effects of optical speckle and treats the fluorescent object as a planar object with different widths. More accurate quantitative results could be obtained by implementing a Monte Carlo simulation of light propagation 1, however, the simulation allows the trends of USMFT to be predicted. SNR is still very low and the acquisition time is high. This is a disadvantage as the safety threshold cannot be exceeded in practical applications and also photo bleaching of the fluorophore needs to be considered. In order to increase the SNR, micro-bubbles could be used to produce a bigger change in the optical properties within the insonified region. Nevertheless, the first pulsed USMFT system has been demonstrated and the effects of fluorescent target size and acoustic frequency on the detected signals have been investigated. As the acoustic pulse propagates through the medium, fluorescent pulses are generated which propagate to the detector. Depending on the size of the object and the acoustic frequency, these pulses can sum either constructively or destructively at the detector. When the object is an integer number of acoustic wavelengths wide the pulses sum destructively. When the object is an odd number of half wavelengths wide the pulses sum constructively and produce a comparatively higher signal. This has been demonstrated experimentally and using a simple simulation of the pulsed USMFT process. This effect needs to be taken into account as it will produce image artefacts. 5.3 Ultrasound modulated chemi- and bio-luminescence tomography Photoacoustic tomography has provided superior performance to USMOT in absorption imaging. There have also been applications of photoacoustic tomography in fluorescence imaging 10 although this relates the absorption of light at the fluorescence event to the fluorescent signal. Ultrasound modulated optical tomography offers the potential to directly modulate the fluorescence signal. The application of ultrasound modulated optical tomography to imaging chemi- and bio-luminescent targets offers an interesting challenge for USMOT as no external light source is required and photoacoustic tomography cannot be applied. We have demonstrated a simple experiment in a relatively weakly scattering medium which shows that the imaging resolution can be improved by modulating the light emitted from the target. In practical situations both the modulation depth and DC light levels will be much lower than in this experiment which will provide a significant challenge. Low noise detection and novel contrast particles are likely to play a role in its successful implementation. ACKNOWLEDGEMENTS This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) UK (BB/F004826/1 and BB/F004923/1). HR was supported by China Scholarship Council. We thank Dr D He for useful discussions. REFERENCES [1] Q. Liu, S. Norton, and T. Vo-Dinh, "Modeling of nonphase mechanisms in ultrasonic modulation of light propagation," Appl. Opt. 47, (2008) [2] F.A. Duck, Nonlinear Acoustics In Diagnostic Ultrasound, Ultrasound in Med. & Biol. 28, 1-18 (2002). [3] J. Selb, L. Pottier, and A. C. Boccara, Nonlinear effects in acousto-optic imaging, Opt. Lett. 27, (2002). [4] D. H. Simpson, C. T. Chin, and P. N. Burns, Pulse Inversion Doppler: A New Method for Detecting Nonlinear Echoes from Microbubbles Contrast Agents, IEEE Transaction On Ultrasound, Ferroelectrics and Frequency Control, 46, (1999).

11 [5] S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing, Opt. Lett. 24, (1999). [6] J. Li and L. V. Wang, Methods for parallel detection based ultrasound modulated optical tomography, Appl. Opt. 41, (2002). [7] NT Huynh, D He, B R Hayes-Gill, J A Crowe, J G Walker, M L Mather, F RAJ Rose, N G Parker, M JW Povey, S P Morgan, Application of a maximum likelihood algorithm to ultrasound modulated optical tomography, accepted for publication in Journal of Biomedical Optics (2012). [8] B. Yuan, J. Gamelin and Q. Zhu, Mechanisms of the ultrasonic modulation of fluorescence in turbid media, Appl. Phys.104, (2008) [9] S. M. Bentzen, Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function, Med. Phys. 10, (1983). [10] D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R.W. Köster, V. Ntziachristos, Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo, Nature Photonics 3, (2009).

Acousto-optic imaging of tissue. Steve Morgan

Acousto-optic imaging of tissue. Steve Morgan Acousto-optic imaging of tissue Steve Morgan Electrical Systems and Optics Research Division, University of Nottingham, UK Steve.morgan@nottingham.ac.uk Optical imaging is useful Functional imaging of

More information

Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues

Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues Jun Li, Sava Sakadžić, Geng Ku, and Lihong V. Wang Ultrasound-modulated optical tomography

More information

Methods for parallel-detection-based ultrasound-modulated optical tomography

Methods for parallel-detection-based ultrasound-modulated optical tomography Methods for parallel-detection-based ultrasound-modulated optical tomography Jun Li and Lihong V. Wang The research reported here focuses on ultrasound-modulated optical tomography based on parallel speckle

More information

Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media

Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media Lihong Wang and Xuemei Zhao Continuous-wave ultrasonic modulation of scattered laser light was

More information

Ultrasound Beamforming and Image Formation. Jeremy J. Dahl

Ultrasound Beamforming and Image Formation. Jeremy J. Dahl Ultrasound Beamforming and Image Formation Jeremy J. Dahl Overview Ultrasound Concepts Beamforming Image Formation Absorption and TGC Advanced Beamforming Techniques Synthetic Receive Aperture Parallel

More information

Non-contact Photoacoustic Tomography using holographic full field detection

Non-contact Photoacoustic Tomography using holographic full field detection Non-contact Photoacoustic Tomography using holographic full field detection Jens Horstmann* a, Ralf Brinkmann a,b a Medical Laser Center Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany; b Institute of

More information

Acoustic resolution. photoacoustic Doppler velocimetry. in blood-mimicking fluids. Supplementary Information

Acoustic resolution. photoacoustic Doppler velocimetry. in blood-mimicking fluids. Supplementary Information Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids Joanna Brunker 1, *, Paul Beard 1 Supplementary Information 1 Department of Medical Physics and Biomedical Engineering, University

More information

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS T. Stepinski P. Wu Uppsala University Signals and Systems P.O. Box 528, SE- 75 2 Uppsala Sweden ULTRASONIC IMAGING of COPPER MATERIAL USING

More information

COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES

COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES Paper presented at the 23rd Acoustical Imaging Symposium, Boston, Massachusetts, USA, April 13-16, 1997: COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES Jørgen Arendt Jensen and Peter

More information

Ihor TROTS, Andrzej NOWICKI, Marcin LEWANDOWSKI

Ihor TROTS, Andrzej NOWICKI, Marcin LEWANDOWSKI ARCHIVES OF ACOUSTICS 33, 4, 573 580 (2008) LABORATORY SETUP FOR SYNTHETIC APERTURE ULTRASOUND IMAGING Ihor TROTS, Andrzej NOWICKI, Marcin LEWANDOWSKI Institute of Fundamental Technological Research Polish

More information

Single-photon excitation of morphology dependent resonance

Single-photon excitation of morphology dependent resonance Single-photon excitation of morphology dependent resonance 3.1 Introduction The examination of morphology dependent resonance (MDR) has been of considerable importance to many fields in optical science.

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Physical Acoustics Session 2pPA: Material Characterization 2pPA9. Experimental

More information

Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect

Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect Lei Sui, Ronald A. Roy, Charles A. DiMarzio, and Todd W. Murray Acousto-optic imaging in diffuse media is

More information

A New Imaging Technique Combining Diffusive Photon Density Waves

A New Imaging Technique Combining Diffusive Photon Density Waves A New Imaging Technique Combining Diffusive Photon Density Waves and Focussed Ultrasound by Charles A. DiMarzio Richard J. Gaudette Center for Electromagnetics Research Northeastern University Boston,

More information

Photoacoustic imaging with coherent light

Photoacoustic imaging with coherent light Photoacoustic imaging with coherent light Emmanuel Bossy Institut Langevin, ESPCI ParisTech CNRS UMR 7587, INSERM U979 Workshop Inverse Problems and Imaging Institut Henri Poincaré, 12 February 2014 Background:

More information

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound Ultrasound Physics History: Ultrasound Ultrasound 1942: Dr. Karl Theodore Dussik transmission ultrasound investigation of the brain 1949-51: Holmes and Howry subject submerged in water tank to achieve

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 2D imaging 3D imaging Resolution

More information

Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report. Introduction and Background

Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report. Introduction and Background Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report Introduction and Background Two-photon microscopy is a type of fluorescence microscopy using two-photon excitation. It

More information

Ultrasound physical principles in today s technology

Ultrasound physical principles in today s technology Education Ultrasound physical principles in today s technology Brian Starkoff M.App.Sc.(Med. Ultrasound), AMS Holland Park Brisbane Queensland Australia Correspondence to email starkoff@optusnet.com.au

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Photomultiplier Tube

Photomultiplier Tube Nuclear Medicine Uses a device known as a Gamma Camera. Also known as a Scintillation or Anger Camera. Detects the release of gamma rays from Radionuclide. The radionuclide can be injected, inhaled or

More information

12/26/2017. Alberto Ardon M.D.

12/26/2017. Alberto Ardon M.D. Alberto Ardon M.D. 1 Preparatory Work Ultrasound Physics http://www.nysora.com/mobile/regionalanesthesia/foundations-of-us-guided-nerve-blockstechniques/index.1.html Basic Ultrasound Handling https://www.youtube.com/watch?v=q2otukhrruc

More information

Dual-frequency insonation of single microbubbles

Dual-frequency insonation of single microbubbles Dual-frequency insonation of single microbubbles M. Emmer a, H. J. Vos b and N. De Jong c,d a Erasmus MC, Ee22, P.O. Box 24, CA Rotterdam, Netherlands b Biomedical Engineering, Erasmus MC, P.O. Box 24,

More information

Ultrasonic Testing using a unipolar pulse

Ultrasonic Testing using a unipolar pulse Ultrasonic Testing using a unipolar pulse by Y. Udagawa* and T. Shiraiwa** *Imaging Supersonic Laboratories Co.,Ltd. 12-7 Tezukayamanakamachi Nara Japan 63163 1. Abstract Krautkramer Japan Co.,Ltd. 9-29

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

A Real-time Photoacoustic Imaging System with High Density Integrated Circuit

A Real-time Photoacoustic Imaging System with High Density Integrated Circuit 2011 3 rd International Conference on Signal Processing Systems (ICSPS 2011) IPCSIT vol. 48 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V48.12 A Real-time Photoacoustic Imaging System

More information

Imaging obscured subsurface inhomogeneity using laser speckle

Imaging obscured subsurface inhomogeneity using laser speckle Imaging obscured subsurface inhomogeneity using laser speckle Ralph Nothdurft, Gang Yao Department of Biological Engineering, University of Missouri-Columbia, Columbia, MO 65211 renothdurft@mizzou.edu,

More information

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging Nonlinear microscopy I: Two-photon fluorescence microscopy Multiphoton Microscopy What is multiphoton imaging? Applications Different imaging modes Advantages/disadvantages Scattering of light in thick

More information

Optical coherence tomography

Optical coherence tomography Optical coherence tomography Peter E. Andersen Optics and Plasma Research Department Risø National Laboratory E-mail peter.andersen@risoe.dk Outline Part I: Introduction to optical coherence tomography

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

PCS-150 / PCI-200 High Speed Boxcar Modules

PCS-150 / PCI-200 High Speed Boxcar Modules Becker & Hickl GmbH Kolonnenstr. 29 10829 Berlin Tel. 030 / 787 56 32 Fax. 030 / 787 57 34 email: info@becker-hickl.de http://www.becker-hickl.de PCSAPP.DOC PCS-150 / PCI-200 High Speed Boxcar Modules

More information

Where m is an integer (+ or -) Thus light will be spread out in colours at different angles

Where m is an integer (+ or -) Thus light will be spread out in colours at different angles Diffraction Gratings Recall diffraction gratings are periodic multiple slit devices Consider a diffraction grating: periodic distance a between slits Plane wave light hitting a diffraction grating at angle

More information

Session: 1E CONTRAST AGENTS II Chair: K. Ferrara University of California-Davis. 1E-1 10:30 a.m.

Session: 1E CONTRAST AGENTS II Chair: K. Ferrara University of California-Davis. 1E-1 10:30 a.m. Session: 1E CONTRAST AGENTS II Chair: K. Ferrara University of California-Davis 1E-1 10:30 a.m. PULSE INVERSION DOPPLER FOR BLOOD FLOW DETECTION IN THE MACRO- AND MICRO-VASCULATURE WITH ULTRASOUND CONTRAST

More information

Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki and Marcin Lewandowski

Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki and Marcin Lewandowski Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki and Marcin Lewandowski Abstract The paper presents the multi-element synthetic

More information

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonic Microscopy of Semiconductor Nanostructures Thomas J GRIMSLEY

More information

Resolution Enhancement and Frequency Compounding Techniques in Ultrasound.

Resolution Enhancement and Frequency Compounding Techniques in Ultrasound. Resolution Enhancement and Frequency Compounding Techniques in Ultrasound. Proposal Type: Innovative Student PI Name: Kunal Vaidya PI Department: Chester F. Carlson Center for Imaging Science Position:

More information

Wideband Focused Transducer Array for Optoacoustic Tomography

Wideband Focused Transducer Array for Optoacoustic Tomography 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Wideband Focused Transducer Array for Optoacoustic Tomography Varvara A. SIMONOVA

More information

Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement

Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement CONFOCAL MICROSCOPY BioVis Uppsala, 2017 Jeremy Adler Matyas Molnar Dirk Pacholsky Widefield & Confocal Microscopy

More information

Ultrasound Bioinstrumentation. Topic 2 (lecture 3) Beamforming

Ultrasound Bioinstrumentation. Topic 2 (lecture 3) Beamforming Ultrasound Bioinstrumentation Topic 2 (lecture 3) Beamforming Angular Spectrum 2D Fourier transform of aperture Angular spectrum Propagation of Angular Spectrum Propagation as a Linear Spatial Filter Free

More information

Reflecting optical system to increase signal intensity. in confocal microscopy

Reflecting optical system to increase signal intensity. in confocal microscopy Reflecting optical system to increase signal intensity in confocal microscopy DongKyun Kang *, JungWoo Seo, DaeGab Gweon Nano Opto Mechatronics Laboratory, Dept. of Mechanical Engineering, Korea Advanced

More information

BEAM DISTORTION IN DOPPLER ULTRASOUND FLOW TEST RIGS: MEASUREMENT USING A STRING PHANTOM

BEAM DISTORTION IN DOPPLER ULTRASOUND FLOW TEST RIGS: MEASUREMENT USING A STRING PHANTOM BEAM DISTORTION IN DOPPLER ULTRASOUND FLOW TEST RIGS: MEASUREMENT USING A STRING PHANTOM R. Steel, P. J. Fish School of Informatics, University of Wales, Bangor, UK Abstract-The tube in flow rigs used

More information

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging Imaging Retreat - UMASS 2012 Customized real-time confocal and 2-photon imaging Mike Sanderson Department of Microbiology and Physiological Systems University of Massachusetts Medical School Thanks for

More information

Confocal Microscopy. Kristin Jensen

Confocal Microscopy. Kristin Jensen Confocal Microscopy Kristin Jensen 17.11.05 References Cell Biological Applications of Confocal Microscopy, Brian Matsumoto, chapter 1 Studying protein dynamics in living cells,, Jennifer Lippincott-Schwartz

More information

Multi-spectral acoustical imaging

Multi-spectral acoustical imaging Multi-spectral acoustical imaging Kentaro NAKAMURA 1 ; Xinhua GUO 2 1 Tokyo Institute of Technology, Japan 2 University of Technology, China ABSTRACT Visualization of object through acoustic waves is generally

More information

Ultrasonic Linear Array Medical Imaging System

Ultrasonic Linear Array Medical Imaging System Ultrasonic Linear Array Medical Imaging System R. K. Saha, S. Karmakar, S. Saha, M. Roy, S. Sarkar and S.K. Sen Microelectronics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064.

More information

Light emitting diodes as an excitation source for biomedical photoacoustics

Light emitting diodes as an excitation source for biomedical photoacoustics Light emitting diodes as an excitation source for biomedical photoacoustics. J. llen and P.C. eard Department of Medical Physics and ioengineering, University College London, Malet Place Engineering uilding,

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

Photoacoustic imaging using an 8-beam Fabry-Perot scanner

Photoacoustic imaging using an 8-beam Fabry-Perot scanner Photoacoustic imaging using an 8-beam Fabry-Perot scanner Nam Huynh, Olumide Ogunlade, Edward Zhang, Ben Cox, Paul Beard Department of Medical Physics and Biomedical Engineering, University College London,

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Lesson 06: Pulse-echo Imaging and Display Modes. These lessons contain 26 slides plus 15 multiple-choice questions.

Lesson 06: Pulse-echo Imaging and Display Modes. These lessons contain 26 slides plus 15 multiple-choice questions. Lesson 06: Pulse-echo Imaging and Display Modes These lessons contain 26 slides plus 15 multiple-choice questions. These lesson were derived from pages 26 through 32 in the textbook: ULTRASOUND IMAGING

More information

Kirchhoff migration of ultrasonic images

Kirchhoff migration of ultrasonic images Kirchhoff migration of ultrasonic images Young-Fo Chang and Ren-Chin Ton Institute of Applied Geophysics, Institute of Seismology, National Chung Cheng University, Min-hsiung, Chiayi 621, Taiwan, R.O.C.

More information

Improving the Quality of Photoacoustic Images using the Short-Lag Spatial Coherence Imaging Technique

Improving the Quality of Photoacoustic Images using the Short-Lag Spatial Coherence Imaging Technique Improving the Quality of Photoacoustic Images using the Short-Lag Spatial Coherence Imaging Technique Behanz Pourebrahimi, Sangpil Yoon, Dustin Dopsa, Michael C. Kolios Department of Physics, Ryerson University,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Signal Processing in Acoustics Session 1pSPa: Nearfield Acoustical Holography

More information

Basics of confocal imaging (part I)

Basics of confocal imaging (part I) Basics of confocal imaging (part I) Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Lateral resolution BioImaging &Optics Platform Light

More information

An 8-Channel Parallel Multispectral TCSPC FLIM System

An 8-Channel Parallel Multispectral TCSPC FLIM System An 8-Channel Parallel Multispectral TCSPC FLIM System Abstract. We describe a TCSPC FLIM system that uses 8 parallel TCSPC channels to record FLIM data at a peak count rate on the order of 50 10 6 s -1.

More information

TCSPC at Wavelengths from 900 nm to 1700 nm

TCSPC at Wavelengths from 900 nm to 1700 nm TCSPC at Wavelengths from 900 nm to 1700 nm We describe picosecond time-resolved optical signal recording in the spectral range from 900 nm to 1700 nm. The system consists of an id Quantique id220 InGaAs

More information

Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET

Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET 2005 IEEE Nuclear Science Symposium Conference Record M11-126 Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET Jin Zhang, Member,

More information

Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Photoacoustic Imaging

Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Photoacoustic Imaging Invited Paper Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Photoacoustic Imaging Srikant Vaithilingam a,*, Ira O. Wygant a,paulinas.kuo a, Xuefeng Zhuang a, Ömer Oralkana, Peter D. Olcott

More information

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Xiaoli Sun and James B. Abshire NASA Goddard Space Flight Center Solar System Division,

More information

Bias errors in PIV: the pixel locking effect revisited.

Bias errors in PIV: the pixel locking effect revisited. Bias errors in PIV: the pixel locking effect revisited. E.F.J. Overmars 1, N.G.W. Warncke, C. Poelma and J. Westerweel 1: Laboratory for Aero & Hydrodynamics, University of Technology, Delft, The Netherlands,

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

Practical work no. 3: Confocal Live Cell Microscopy

Practical work no. 3: Confocal Live Cell Microscopy Practical work no. 3: Confocal Live Cell Microscopy Course Instructor: Mikko Liljeström (MIU) 1 Background Confocal microscopy: The main idea behind confocality is that it suppresses the signal outside

More information

Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves

Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves International Journal of Chemical and Biological Engineering 3:4 010 Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves Hirofumi Taki, Takuya Sakamoto,

More information

Linear arrays used in ultrasonic evaluation

Linear arrays used in ultrasonic evaluation Annals of the University of Craiova, Mathematics and Computer Science Series Volume 38(1), 2011, Pages 54 61 ISSN: 1223-6934 Linear arrays used in ultrasonic evaluation Laura-Angelica Onose and Luminita

More information

Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging

Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging Paweena U-Thainual Do-Hyun Kim Journal of Biomedical Optics 20(12), 121202

More information

Evaluation of a Chip LED Sensor Module at 770 nm for Fat Thickness Measurement of Optical Tissue Phantoms and Human Body Tissue

Evaluation of a Chip LED Sensor Module at 770 nm for Fat Thickness Measurement of Optical Tissue Phantoms and Human Body Tissue Journal of the Korean Physical Society, Vol. 51, No. 5, November 2007, pp. 1663 1667 Evaluation of a Chip LED Sensor Module at 770 nm for Fat Thickness Measurement of Optical Tissue Phantoms and Human

More information

Department of Electrical Engineering and Computer Science

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE of TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161/6637 Practice Quiz 2 Issued X:XXpm 4/XX/2004 Spring Term, 2004 Due X:XX+1:30pm 4/XX/2004 Please utilize

More information

Εισαγωγική στην Οπτική Απεικόνιση

Εισαγωγική στην Οπτική Απεικόνιση Εισαγωγική στην Οπτική Απεικόνιση Δημήτριος Τζεράνης, Ph.D. Εμβιομηχανική και Βιοϊατρική Τεχνολογία Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. Χειμερινό Εξάμηνο 2015 Light: A type of EM Radiation EM radiation:

More information

Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar

Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar Overview of Direct Detection Doppler Lidar (DDL) Resonance fluorescence DDL Fringe imaging DDL Scanning FPI DDL FPI edge-filter DDL Absorption

More information

Sensors. CSE 666 Lecture Slides SUNY at Buffalo

Sensors. CSE 666 Lecture Slides SUNY at Buffalo Sensors CSE 666 Lecture Slides SUNY at Buffalo Overview Optical Fingerprint Imaging Ultrasound Fingerprint Imaging Multispectral Fingerprint Imaging Palm Vein Sensors References Fingerprint Sensors Various

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Schematic of 2P-ISIM AO optical setup.

Nature Methods: doi: /nmeth Supplementary Figure 1. Schematic of 2P-ISIM AO optical setup. Supplementary Figure 1 Schematic of 2P-ISIM AO optical setup. Excitation from a femtosecond laser is passed through intensity control and shuttering optics (1/2 λ wave plate, polarizing beam splitting

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Ultrasound modulated optical tomography contrast enhancement with non-linear oscillation of microbubbles

Ultrasound modulated optical tomography contrast enhancement with non-linear oscillation of microbubbles Original rticle Ultrasound modulated optical tomography contrast enhancement with non-linear oscillation of microbubbles Haowen Ruan,, elissa L. ather,3, Stephen P. organ Electrical Systems and Optics

More information

Photoacoustic Imaging of Blood Vessels in Tissue

Photoacoustic Imaging of Blood Vessels in Tissue of Blood Vessels in Tissue F.F.M. de Mul (University of Twente, Enschede, the Netherlands) FdM [µm] Imaging methods for hidden structures in turbid media (tissue) OCT/ OPS (C)M TOF / FM NIR green C(M)

More information

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA Abstract: A novel interferometric scheme for detection of ultrasound is presented.

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Simulation-Based Optimization of the Acoustoelectric Hydrophone for Mapping an Ultrasound Beam

Simulation-Based Optimization of the Acoustoelectric Hydrophone for Mapping an Ultrasound Beam Simulation-Based Optimization of the Acoustoelectric Hydrophone for Mapping an Ultrasound Beam Zhaohui Wang a,b*, Pier Ingram a, Ragnar Olafsson a, Charles L. Greenlee c, Robert A. Norwood c, Russell S.

More information

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Diagnosis TTE TEE ICE 3D 4D Evaluation of Cardiac Anatomy Hemodynamic

More information

Explain what is meant by a photon and state one of its main properties [2]

Explain what is meant by a photon and state one of its main properties [2] 1 (a) A patient has an X-ray scan taken in hospital. The high-energy X-ray photons interact with the atoms inside the body of the patient. Explain what is meant by a photon and state one of its main properties....

More information

Study of self-interference incoherent digital holography for the application of retinal imaging

Study of self-interference incoherent digital holography for the application of retinal imaging Study of self-interference incoherent digital holography for the application of retinal imaging Jisoo Hong and Myung K. Kim Department of Physics, University of South Florida, Tampa, FL, US 33620 ABSTRACT

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

APPLYING SYNTHETIC APERTURE, CODED EXCITATION, AND TISSUE HARMONIC IMAGING TECHNIQUES TO ALLOW ULTRASOUND IMAGING WITH A VIRTUAL SOURCE ROBYN T.

APPLYING SYNTHETIC APERTURE, CODED EXCITATION, AND TISSUE HARMONIC IMAGING TECHNIQUES TO ALLOW ULTRASOUND IMAGING WITH A VIRTUAL SOURCE ROBYN T. APPLYING SYNTHETIC APERTURE, CODED EXCITATION, AND TISSUE HARMONIC IMAGING TECHNIQUES TO ALLOW ULTRASOUND IMAGING WITH A VIRTUAL SOURCE BY ROBYN T. UMEKI THESIS Submitted in partial fulfillment of the

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Random lasing in an Anderson localizing optical fiber

Random lasing in an Anderson localizing optical fiber Random lasing in an Anderson localizing optical fiber Behnam Abaie 1,2, Esmaeil Mobini 1,2, Salman Karbasi 3, Thomas Hawkins 4, John Ballato 4, and Arash Mafi 1,2 1 Department of Physics & Astronomy, University

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

Time-Domain Reconstruction for Thermoacoustic Tomography in a Spherical Geometry

Time-Domain Reconstruction for Thermoacoustic Tomography in a Spherical Geometry 814 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 7, JULY 2002 Time-Domain Reconstruction for Thermoacoustic Tomography in a Spherical Geometry Minghua Xu and Lihong V. Wang* Abstract Reconstruction-based

More information

Experimental Analysis of Luminescence in Printed Materials

Experimental Analysis of Luminescence in Printed Materials Experimental Analysis of Luminescence in Printed Materials A. D. McGrath, S. M. Vaezi-Nejad Abstract - This paper is based on a printing industry research project nearing completion [1]. While luminescent

More information

Photonic-based spectral reflectance sensor for ground-based plant detection and weed discrimination

Photonic-based spectral reflectance sensor for ground-based plant detection and weed discrimination Research Online ECU Publications Pre. 211 28 Photonic-based spectral reflectance sensor for ground-based plant detection and weed discrimination Arie Paap Sreten Askraba Kamal Alameh John Rowe 1.1364/OE.16.151

More information

Training Guide for Leica SP8 Confocal/Multiphoton Microscope

Training Guide for Leica SP8 Confocal/Multiphoton Microscope Training Guide for Leica SP8 Confocal/Multiphoton Microscope LAS AF v3.3 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Turn ON power switch for epifluorescence

More information

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND V.V. Shah, K. Balasubramaniam and J.P. Singh+ Department of Aerospace Engineering and Mechanics +Diagnostic Instrumentation and Analysis

More information

Multi-depth photoacoustic microscopy with a focus tunable lens

Multi-depth photoacoustic microscopy with a focus tunable lens Multi-depth photoacoustic microscopy with a focus tunable lens Kiri Lee a, Euiheon Chung b, Tae Joong Eom a* a Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju,

More information

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array S. Mondal London South Bank University; School of Engineering 103 Borough Road, London SE1 0AA More info about this article: http://www.ndt.net/?id=19093

More information

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation Spectroscopy in the UV and Visible: Instrumentation Typical UV-VIS instrument 1 Source - Disperser Sample (Blank) Detector Readout Monitor the relative response of the sample signal to the blank Transmittance

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information

Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev. Microscopy course, Michmoret Dec 2005

Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev. Microscopy course, Michmoret Dec 2005 Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev Why use confocal microscopy? Principles of the laser scanning confocal microscope. Image resolution. Manipulating the

More information