A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control

Size: px
Start display at page:

Download "A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control"

Transcription

1 A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control Xuezhe Zheng, 1 Eric Chang, 2 Philip Amberg, 1 Ivan Shubin, 1 Jon Lexau, 2 Frankie Liu, 2 Hiren Thacker, 1 Stevan S. Djordjevic, 1 Shiyun Lin, 1 Ying Luo, 1 Jin Yao, 1 Jin-Hyoung Lee, 1 Kannan Raj, 1 Ron Ho, 2 John E. Cunningham, 1 and Ashok V. Krishnamoorthy 1 1 Netra Systems and Networking, Oracle, San Diego, California 92121, USA 2 Oracle Labs, Oracle, Redwood Shores, California 94065, USA *xuezhe.zheng@oracle.com Abstract: We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit Optical Society of America OCIS codes: ( ) Modulators; ( ) Electro-optical devices; ( ) Integrated optics devices; ( ) Optical interconnects; ( ) Optical communications. References and links 1. G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, 40 Gb/s thermally tunable CMOS ring modulator, 9th Group IV Photonics, pp.1 3 PDP, E. Timurdogan, C. M. Sorace-Agaskar, A. Biberman, and M. R. Watts, Vertical junction silicon microdisk modulators at 25Gb/s, in Proceedings of OFC, OTh3H.2, X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, 60 Gbit/s silicon modulators with enhanced electrooptical efficiency, in Proceedings of OFC, OW4J.3, X. Zheng, E. Chang, I. Shubin, G. Li, Y. Luo, J. Yao, H. Thacker, J. Lee, J. Lexau, F. Liu, P. Amberg, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, A 33mW 100Gbps CMOS silicon photonic WDM transmitter using off-chip laser sources, OFC, PD 9, 5C (2013). 5. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, Wavelength tracking with thermally controlled silicon resonators, Opt. Express 19(6), (2011). 6. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, Integrated thermal stabilization of a microring modulator, Opt. Express 21(12), (2013). 7. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, Bit error monitoring for active wavelength control of silicon microphotonic resonant modulators, IEEE Micro 33(1), (2013). 8. K. Padmaraju, D. F. Logan, J. J. Ackert, A. P. Knights, and K. Bergman, Microring resonance stabilization using thermal dithering, IEEE OI Conf., pp.58 59, J. A. Cox, D. C. Trotter, and A. L. Starbuck, Integrated control of silicon-photonic micro-resonator wavelength via balanced homodyne locking, IEEE Optical Interconnects Conf., pp , P. Amberg, E. Chang, F. Liu, J. Lexau, X. Zheng, G. Li, I. Shubin, J. E. Cunningham, A. V. Krishnamoorthy, and R. Ho, A sub-400 fj/bit thermal tuner for optical resonant ring modulators in 40nm CMOS, IEEE A- SSCC, pp.29 32, F. Liu, D. Patil, J. Leaxu, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, 10 Gbps, 530 fj/b optical transceiver circuits in 40 nm CMOS, IEEE Symposium on VLSI Circuits, pp , (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12628

2 1. Introduction Microring based devices constitute a significant group in the silicon photonics components tool box. Utilizing the resonance characteristics of microrings, various photonic components including modulators, wavelength division multiplexing (WDM) filters, and switches can be made with very attractive performance metrics in both small physical size and low power consumption. In particular, microring based silicon modulators have been demonstrated with ultra-compact sizes, ultra-high modulation speed with ultra-low modulation power and total power penalty [1 3]. In addition, simple low voltage-swing CMOS drivers can be implemented to drive ring modulators with high energy efficiencies [4]. These unique advantages are ideal for building highly efficient and large-bandwidth WDM photonic interconnects for future communication and computing systems. However, practical application of microring modulators remains a big challenge because they are especially susceptible to both manufacturing tolerances and thermal fluctuations due to the relatively high thermo-optic coefficient of silicon and the resonant nature of microrings. To register and lock a ring with its corresponding laser wavelength, resonance adjustment is needed not only to compensate for the static offset from the manufacturing tolerances, but also to combat the dynamic drift in a thermally volatile environment. The most promising approaches to solving this problem have involved the use of closed-loop control systems to thermally stabilize the ring modulator with different feedback mechanisms [5 9]. Results reported so far include: wavelength tracking and control by monitoring the optical scattering from the ring resonator [5]; monitoring the mean power of the modulated signal [6]; measuring the bit-error-rate [7]; using a local thermal dithering [8]; or balanced homodyne phase detection of an optical carrier to mitigate the input laser power fluctuation [9]. However, in all these experiments, external closed-loop controllers, e.g. a personal computer, a PID controller, or a FPGA system, were used. To date, there has been no demonstration of a fully integrated closed-loop controller with low power. In this work, we report, to our knowledge, the first complete 10G silicon ring modulator with fully integrated CMOS driver and active wavelength control. A reverse biased depletion silicon ring modulator with integrated Ge waveguide photodetector (PD) for mean power monitoring and metal heater for ring resonance tuning, fabricated using a 130nm SOI CMOS process, was hybrid integrated with a 40nm bulk CMOS chip containing a 10G driver and a mixed-signal low-power bang-bang closed-loop controller. An active wavelength tracking range of more than 500GHz was achieved with only 20fJ/bit controller energy cost at a data rate of 10Gbps. 2. A complete 10G Si ring modulator with integrated active wavelength control The active microring device in this demonstration is a reverse-biased depletion ring modulator capable of 10Gbps modulation, fabricated using a commercial 130nm SOI CMOS process with 300nm silicon film thickness. Shown in Fig. 1, the device consists of a 7.5-μmradius ring with one side coupled to a signal bus waveguide for laser input and modulated signal output, and the other side coupled to a second bus waveguide which is connected to a Ge waveguide PD for power monitoring. The ring waveguide has a width of 380nm and a slab height of 80nm and is doped ( cm 3 ) 100% to form a symmetric lateral PN junction for high-speed modulation. It is designed to be wider than the bus waveguide (300nm) for smaller bending loss and better coupling phase matching. The gap is 285nm between the ring and the signal bus waveguide, and 525nm between the ring and the monitor bus waveguide to achieve a coupling coefficient of about 0.2%. The P contacts of the ring modulator between and outside of the two bus waveguides are connected using M2 layer metal. A metal resistor is implemented with daisy chained metal vias right above the ring waveguide between metal layers from M2 to M5 for thermal adjustment of the ring resonance wavelength. An array of 8 such ring modulators with slightly different radii are arrayed along (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12629

3 a shared signal waveguide to form a synthetic resonant comb with a channel spacing of 1.6nm, and a physical spacing of 125μm. Fig. 1. A complete Si ring modulator with closed-loop wavelength control. We monitor the mean power of the modulated signal using the integrated monitor PD to align and lock the ring modulator with its corresponding laser wavelength using a bang-bang controller. In contrast to an analog PI controller that produces a continuous error signal proportional to the difference between the measured photocurrent and the ideal threshold, a bang-bang control system provides a discrete 1 or 1 as the error signal to the digital loop accumulator, indicating whether the monitored photocurrent is above or below the ideal threshold. Figure 1 outlines the schematics of the feedback control system. The circuit compares the average output of the monitor photodiode to the ideal threshold which can be obtained via calibration at bring-up for given constant input laser optical power. An average value higher (lower) than the threshold indicates a change in ring resonance to a shorter (longer) wavelength and, therefore, a need to heat (cool) the ring to counteract this shift. The bang-bang control loop will eventually lock, and the comparator output will reach a limit cycle, dithering between 0 and 1. The overall transfer function of the system is a high-pass filter: thermal disturbances slower than the corner frequency (τ = 1 ms) can be corrected, but those due to faster thermal fluctuations pass through un-attenuated. The fine adjustment of the ring resonance to a desired wavelength is achieved by driving a carefully controlled current through the integrated metal resistor. As we reported earlier [4], we used a 15-bit DAC to drive the resistor with a maximum output power of 8 mw, giving us steps of 0.24 μw each. The DAC uses a delta-sigma approach to dither between two currents separated by 125 μa, giving us the precise resolution required. The details of the controller circuit design can be found in [10]. (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12630

4 Fig. 2. (a) A picture of the hybrid integrated chip assembly die-attached and wire bonded on a test PCB. (b) A picture of the test setup for a closed-loop controlled ring modulator. (c) Measured open-loop ring tuning efficiency including the heater driver power. The closed-loop control circuit, co-integrated with a pulsed-cascode ring modulator driver circuit as described in [11], was fabricated using a TSMC 40nm bulk CMOS process. Each modulator driver cell was designed with three pairs of 17 μm bonding pads to match the pads on the ring modulator chip for high speed modulation, ring tuning and ring power monitoring, respectively. These bonding pads are arranged in a 2x3 array with a separation of 50 μm. As pictured in Fig. 2(a), the fabricated VLSI chip was bonded with the SOI ring modulator chip using a micro solder bump based hybrid integration technique. The silicon handler substrate underneath the ring modulator array was then removed using a back side etch-pit process [4] for improved tuning efficiency. Finally, the hybrid chip assembly was die-attached to a test PCB for test and characterization. A picture of the test setup is shown in Fig. 2(b). A fiber array was used for laser light input and modulated optical signal output via the grating couplers on chip. The open-loop tuning efficiency of the metal resistor based thermal tuner was measured first with results shown in Fig. 2(c). A maximum tuning range of about 4.5nm can be achieved with about 14mW of total tuning power including the heater driver circuit power consumption. Fig G eye diagrams at a different wavelength showing the wavelength tracking of a closed-loop controlled ring modulator. We first drove one of the ring modulators open loop using an on-chip PRBS generator (2 31-1) at a data rate of 10Gbps with no current to the heater. A clean open eye was obtained with an extinction ratio of better than 6dB after aligning the laser wavelength to the ring resonance at nm with about 1mW input power to the ring. The measured modulation power is about 0.8 mw, similar to what we measured in other demonstrations [4]. We then turned on the ring s closed-loop controller with a calibrated ideal threshold and observed stable locking of the ring modulator to the laser wavelength. As we continued tuning the input laser wavelength, the controlled ring modulator was able to track the laser wavelength change and remained locked over a 4.25nm range (limited only by the tuning range of the thermal tuner), corresponding to an equivalent thermal fluctuation range of more than 50K. Figure 3 shows the 10G eye diagrams recorded at different wavelengths, indicating a largely un-changed modulation quality over the entire tracking range. (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12631

5 Control loop off Control loop on Loop off overnight Loop on overnight Loop off for 3 hours (a) Fig. 4. Measured ring modulator performance with thermal crosstalk from neighboring channels (a) and long-term (>24 hours) ambient temperature change (b). The controller performance under thermal crosstalk from the neighboring channels was characterized by setting two nearest neighbor rings tuners to their maximum output, and then turning them off suddenly. With the control-loop turned off, we observed a clear ring resonance shift from the accumulated eye (left picture in Fig. 4(a)) recorded through the process while no change to the modulator eye was observed with the control loop turned on (right picture in Fig. 4(a)). The closed-loop controller further proved its effectiveness in a long-term stability experiment. The modulation eye of the ring modulator would not normally remain open for overnight operation, due to ambient temperature change as the left picture in Fig. 4(b) indicates. However, it remained open for more than 24 hours with the control-loop turned on as shown in the right picture in Fig. 4(b). The measured total power consumption of the closed-loop controller excluding the power consumed by the metal heater and its driver was only 0.2 mw, corresponding to an energy cost of 20 fj/bit for 10Gbps operation. Table 1 summarizes the power consumption of the different components of the closed-loop controlled ring modulator, along with the corresponding circuit area. The total circuit area is about 2600 μm 2. The digital circuit component area will scale directly with technology while the analog component area will scale slowly, if at all. However, if the area of the scaled technologies increases in an adverse manner to analog blocks, we may choose to add more calibration and trimming circuitry to compensate, resulting in a slower improvement in areal efficiency. Table 1. Summary of the Circuit Power Consumption and Area of Different Components. Components Power (mw) Area (μm 2 ) Accumulator 630 FSM Level Shifters 80 TIA + Sense Amplifier 600 Thermal Tuner (@ max IDAC (Heater Driver) nm tuning) Heater N/A Modulator Driver (@ 10Gbps) Total Summary We demonstrated, for the first time, a complete hybrid-integrated silicon photonic ring modulator with fully integrated low power 10G driver and active closed-loop wavelength control. The SOI photonic chip integrates the Si ring modulator with a mean power monitoring PD and a metal resistor thermal tuner while the bulk CMOS VLSI chip integrates the low power 10G modulator driver with closed-loop wavelength control including a power monitoring TIA, a bang-bang controller and a high resolution heater driver. The closed-loop controlled ring modulator achieved wavelength tracking and stable locking over a range of 4.25nm (>500GHz), equivalent to a temperature change over 50K, with an energy cost of only 20fJ/bit excluding the thermal tuner power consumption. This successful demonstration paves the way for the application of ring modulators in practical low power WDM silicon photonics links. (b) (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12632

6 4. Acknowledgments This material is based upon work supported, in part, by DARPA under Agreements HR The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. The authors thank Dr. Jag Shah of DARPA MTO for his inspiration and support of this program. Approved for Public Release. Distribution Unlimited. (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12633

A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer

A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer A. V. Krishnamoorthy, 1* X. Zheng, 1 D. Feng, 3 J.

More information

A tunable Si CMOS photonic multiplexer/de-multiplexer

A tunable Si CMOS photonic multiplexer/de-multiplexer A tunable Si CMOS photonic multiplexer/de-multiplexer OPTICS EXPRESS Published : 25 Feb 2010 MinJae Jung M.I.C.S Content 1. Introduction 2. CMOS photonic 1x4 Si ring multiplexer Principle of add/drop filter

More information

Optical Proximity Communication for a Silicon Photonic Macrochip

Optical Proximity Communication for a Silicon Photonic Macrochip Optical Proximity Communication for a Silicon Photonic Macrochip John E. Cunningham, Ivan Shubin, Xuezhe Zheng, Jon Lexau, Ron Ho, Ying Luo, Guoliang Li, Hiren Thacker, J. Yao, K. Raj and Ashok V. Krishnamoorthy

More information

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13 µm CMOS SOI Technology School of Electrical and Electronic Engineering Yonsei University 이슬아 1. Introduction 2. Architecture

More information

An Example Design using the Analog Photonics Component Library. 3/21/2017 Benjamin Moss

An Example Design using the Analog Photonics Component Library. 3/21/2017 Benjamin Moss An Example Design using the Analog Photonics Component Library 3/21/2017 Benjamin Moss Component Library Elements Passive Library Elements: Component Current specs 1 Edge Couplers (Si)

More information

Design of an Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter

Design of an Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter Design of an Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter Cheng Li, Chin-Hui Chen, Binhao Wang, Samuel Palermo, Marco Fiorentino, Raymond Beausoleil HP Laboratories HPL-2014-21

More information

Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s

Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s Yang Liu, 1,6,* Ran Ding, 1,6 Yangjin Ma, 1 Yisu Yang, 1 Zhe Xuan, 1 Qi Li, 2 Andy Eu-Jin Lim, 3 Guo-Qiang Lo, 3 Keren Bergman, 2 Tom Baehr-Jones

More information

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory MICRO RING MODULATOR Dae-hyun Kwon High-speed circuits and Systems Laboratory Paper preview Title of the paper Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator Publication

More information

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A. Rylyakov, C. Schow, B. Lee, W. Green, J. Van Campenhout, M. Yang, F. Doany, S. Assefa, C. Jahnes, J. Kash, Y. Vlasov IBM

More information

Low-Power, 10-Gbps 1.5-Vpp Differential CMOS Driver for a Silicon Electro-Optic Ring Modulator

Low-Power, 10-Gbps 1.5-Vpp Differential CMOS Driver for a Silicon Electro-Optic Ring Modulator Low-Power, 10-Gbps 1.5-Vpp Differential CMOS Driver for a Silicon Electro-Optic Ring Modulator Michal Rakowski 1,2, Julien Ryckaert 1, Marianna Pantouvaki 1, Hui Yu 3, Wim Bogaerts 3, Kristin de Meyer

More information

Integrated thermal stabilization of a microring modulator

Integrated thermal stabilization of a microring modulator Integrated thermal stabilization of a microring modulator Kishore Padmaraju, 1,* Dylan F. Logan, 2,3 Xiaoliang Zhu, 1 Jason J. Ackert, 2 Andrew P. Knights, 2 and Keren Bergman 1 1 Department of Electrical

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 10: Electroabsorption Modulator Transmitters Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

The Light at the End of the Wire. Dana Vantrease + HP Labs + Mikko Lipasti

The Light at the End of the Wire. Dana Vantrease + HP Labs + Mikko Lipasti The Light at the End of the Wire Dana Vantrease + HP Labs + Mikko Lipasti 1 Goals of This Talk Why should we (architects) be interested in optics? How does on-chip optics work? What can we build with optics?

More information

MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS

MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS 1 MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS Robert Hendry, Dessislava Nikolova, Sébastien Rumley, Keren Bergman Columbia University HOTI 2014 2 Chip-to-chip optical networks

More information

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects By Mieke Van Bavel, science editor, imec, Belgium; Joris Van Campenhout, imec, Belgium; Wim Bogaerts, imec s associated

More information

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, * and Chunlai Xue State Key Laboratory on Integrated Optoelectronics,

More information

50-Gb/s silicon optical modulator with travelingwave

50-Gb/s silicon optical modulator with travelingwave 5-Gb/s silicon optical modulator with travelingwave electrodes Xiaoguang Tu, 1, * Tsung-Yang Liow, 1 Junfeng Song, 1,2 Xianshu Luo, 1 Qing Fang, 1 Mingbin Yu, 1 and Guo-Qiang Lo 1 1 Institute of Microelectronics,

More information

Wavelength tracking with thermally controlled silicon resonators

Wavelength tracking with thermally controlled silicon resonators Wavelength tracking with thermally controlled silicon resonators Ciyuan Qiu, Jie Shu, Zheng Li Xuezhi Zhang, and Qianfan Xu* Department of Electrical and Computer Engineering, Rice University, Houston,

More information

Binary phase-shift keying by coupling modulation of microrings

Binary phase-shift keying by coupling modulation of microrings Binary phase-shift keying by coupling modulation of microrings Wesley D. Sacher, 1, William M. J. Green,,4 Douglas M. Gill, Solomon Assefa, Tymon Barwicz, Marwan Khater, Edward Kiewra, Carol Reinholm,

More information

IBM T. J. Watson Research Center IBM Corporation

IBM T. J. Watson Research Center IBM Corporation Broadband Silicon Photonic Switch Integrated with CMOS Drive Electronics B. G. Lee, J. Van Campenhout, A. V. Rylyakov, C. L. Schow, W. M. J. Green, S. Assefa, M. Yang, F. E. Doany, C. V. Jahnes, R. A.

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

New advances in silicon photonics Delphine Marris-Morini

New advances in silicon photonics Delphine Marris-Morini New advances in silicon photonics Delphine Marris-Morini P. Brindel Alcatel-Lucent Bell Lab, Nozay, France New Advances in silicon photonics D. Marris-Morini, L. Virot*, D. Perez-Galacho, X. Le Roux, D.

More information

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli Microphotonics Readiness for Commercial CMOS Manufacturing Marco Romagnoli MicroPhotonics Consortium meeting MIT, Cambridge October 15 th, 2012 Passive optical structures based on SOI technology Building

More information

Heinrich-Hertz-Institut Berlin

Heinrich-Hertz-Institut Berlin NOVEMBER 24-26, ECOLE POLYTECHNIQUE, PALAISEAU OPTICAL COUPLING OF SOI WAVEGUIDES AND III-V PHOTODETECTORS Ludwig Moerl Heinrich-Hertz-Institut Berlin Photonic Components Dept. Institute for Telecommunications,,

More information

Physical Layer Analysis and Modeling of Silicon Photonic WDM Bus Architectures

Physical Layer Analysis and Modeling of Silicon Photonic WDM Bus Architectures Physical Layer Analysis and Modeling of Silicon Photonic WDM Bus Architectures Robert Hendry, Dessislava Nikolova, Sebastien Rumley, Noam Ophir, Keren Bergman Columbia University 6 th St. and Broadway

More information

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers Journal of Physics: Conference Series High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers To cite this article: Xi Xiao et al 2011 J. Phys.: Conf.

More information

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission Huaxiang Yi, 1 Qifeng Long, 1 Wei Tan, 1 Li Li, Xingjun Wang, 1,2 and Zhiping Zhou * 1 State Key Laboratory

More information

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers John E. Bowers, Jared Hulme, Tin Komljenovic, Mike Davenport and Chong Zhang Department of Electrical and Computer Engineering

More information

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Christoph Theiss, Director Packaging Christoph.Theiss@sicoya.com 1 SEMICON Europe 2016, October 27 2016 Sicoya Overview Spin-off from

More information

PROBE: Prediction-based Optical Bandwidth Scaling for Energy-efficient NoCs

PROBE: Prediction-based Optical Bandwidth Scaling for Energy-efficient NoCs PROBE: Prediction-based Optical Bandwidth Scaling for Energy-efficient NoCs Li Zhou and Avinash Kodi Technologies for Emerging Computer Architecture Laboratory (TEAL) School of Electrical Engineering and

More information

Impact of High-Speed Modulation on the Scalability of Silicon Photonic Interconnects

Impact of High-Speed Modulation on the Scalability of Silicon Photonic Interconnects Impact of High-Speed Modulation on the Scalability of Silicon Photonic Interconnects OPTICS 201, March 18 th, Dresden, Germany Meisam Bahadori, Sébastien Rumley,and Keren Bergman Lightwave Research Lab,

More information

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland 5th International Symposium for Optical Interconnect in Data Centres in ECOC, Gothenburg,

More information

Overview of short-reach optical interconnects: from VCSELs to silicon nanophotonics

Overview of short-reach optical interconnects: from VCSELs to silicon nanophotonics Acknowledgements: J. Cunningham, R. Ho, X. Zheng, J. Lexau, H. Thacker, J. Yao, Y. Luo, G. Li, I. Shubin, F. Liu, D. Patil, K. Raj, and J. Mitchell M. Asghari T. Pinguet Overview

More information

- no emitters/amplifiers available. - complex process - no CMOS-compatible

- no emitters/amplifiers available. - complex process - no CMOS-compatible Advantages of photonic integrated circuits (PICs) in Microwave Photonics (MWP): compactness low-power consumption, stability flexibility possibility of aggregating optics and electronics functionalities

More information

Si CMOS Technical Working Group

Si CMOS Technical Working Group Si CMOS Technical Working Group CTR, Spring 2008 meeting Markets Interconnects TWG Breakouts Reception TWG reports Si CMOS: photonic integration E-P synergy - Integration - Standardization - Cross-market

More information

GHz-bandwidth optical filters based on highorder silicon ring resonators

GHz-bandwidth optical filters based on highorder silicon ring resonators GHz-bandwidth optical filters based on highorder silicon ring resonators Po Dong, 1* Ning-Ning Feng, 1 Dazeng Feng, 1 Wei Qian, 1 Hong Liang, 1 Daniel C. Lee, 1 B. J. Luff, 1 T. Banwell, 2 A. Agarwal,

More information

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers Xinhong Jiang, 1 Jiayang Wu, 1 Yuxing Yang, 1 Ting Pan, 1 Junming Mao, 1 Boyu

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7 13.7 A 10Gb/s Photonic Modulator and WDM MUX/DEMUX Integrated with Electronics in 0.13µm SOI CMOS Andrew Huang, Cary Gunn, Guo-Liang Li, Yi Liang, Sina Mirsaidi, Adithyaram Narasimha, Thierry Pinguet Luxtera,

More information

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Indian Journal of Pure & Applied Physics Vol. 55, May 2017, pp. 363-367 Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Priyanka Goyal* & Gurjit Kaur

More information

OPTICAL I/O RESEARCH PROGRAM AT IMEC

OPTICAL I/O RESEARCH PROGRAM AT IMEC OPTICAL I/O RESEARCH PROGRAM AT IMEC IMEC CORE CMOS PHILIPPE ABSIL, PROGRAM DIRECTOR JORIS VAN CAMPENHOUT, PROGRAM MANAGER SCALING TRENDS IN CHIP-LEVEL I/O RECENT EXAMPLES OF HIGH-BANDWIDTH I/O Graphics

More information

Slot waveguide microring modulator on InP membrane

Slot waveguide microring modulator on InP membrane Andreou, S.; Millan Mejia, A.J.; Smit, M.K.; van der Tol, J.J.G.M. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, 26-27 November 2015, Brussels, Belgium Published:

More information

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product Myung-Jae Lee and Woo-Young Choi* Department of Electrical and Electronic Engineering,

More information

Figure Responsivity (A/W) Figure E E-09.

Figure Responsivity (A/W) Figure E E-09. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

An integrated recirculating optical buffer

An integrated recirculating optical buffer An integrated recirculating optical buffer Hyundai Park, John P. Mack, Daniel J. Blumenthal, and John E. Bowers* University of California, Santa Barbara, Department of Electrical and Computer Engineering,

More information

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

IST IP NOBEL Next generation Optical network for Broadband European Leadership DBR Tunable Lasers A variation of the DFB laser is the distributed Bragg reflector (DBR) laser. It operates in a similar manner except that the grating, instead of being etched into the gain medium, is

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

Silicon Optical Modulator

Silicon Optical Modulator Silicon Optical Modulator Silicon Optical Photonics Nature Photonics Published online: 30 July 2010 Byung-Min Yu 24 April 2014 High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering

More information

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland Silicon photonics with low loss and small polarization dependency Timo Aalto VTT Technical Research Centre of Finland EPIC workshop in Tokyo, 9 th November 2017 VTT Technical Research Center of Finland

More information

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Bindu Madhavan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111 Indexing

More information

Spurious-Mode Suppression in Optoelectronic Oscillators

Spurious-Mode Suppression in Optoelectronic Oscillators Spurious-Mode Suppression in Optoelectronic Oscillators Olukayode Okusaga and Eric Adles and Weimin Zhou U.S. Army Research Laboratory Adelphi, Maryland 20783 1197 Email: olukayode.okusaga@us.army.mil

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC

A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC A. Rylyakov, C. Schow, F. Doany, B. Lee, C. Jahnes, Y. Kwark, C.Baks, D. Kuchta, J.

More information

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Zhaoran (Rena) Huang Assistant Professor Department of Electrical, Computer and System Engineering

More information

Downloaded on T02:24:27Z. Title. Frequency modulated external cavity laser with photonic crystal resonator and microheater.

Downloaded on T02:24:27Z. Title. Frequency modulated external cavity laser with photonic crystal resonator and microheater. Title Author(s) Frequency modulated external cavity laser with photonic crystal resonator and microheater Butler, Sharon M.; Bakoz, Andrei P.; Liles, Alexandros A.; Viktorov, Evgeny A.; O'Faolain, Liam;

More information

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Hui Yu, Marianna Pantouvaki*, Joris Van Campenhout*, Katarzyna

More information

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

Hitless tunable WDM transmitter using Si photonic crystal optical modulators Hitless tunable WDM transmitter using Si photonic crystal optical modulators Hiroyuki Ito, Yosuke Terada, Norihiro Ishikura, and Toshihiko Baba * Department of Electrical and Computer Engineering, Yokohama

More information

High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud

High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud Data centers Optical telecommunications Environment Interconnects Silicon

More information

Figure Figure E E-09. Dark Current (A) 1.

Figure Figure E E-09. Dark Current (A) 1. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Demonstration of an Optical Chip-to-Chip Link in a 3D Integrated Electronic-Photonic Platform

Demonstration of an Optical Chip-to-Chip Link in a 3D Integrated Electronic-Photonic Platform Demonstration of an Optical Chip-to-Chip Link in a 3D Integrated Electronic-Photonic Platform Sen Lin Krishna Settaluri Sajjad Moazeni Vladimir Stojanovic, Ed. Electrical Engineering and Computer Sciences

More information

Silicon microring modulator for 40 Gb/s NRZ- OOK metro networks in O-band

Silicon microring modulator for 40 Gb/s NRZ- OOK metro networks in O-band Silicon microring modulator for 4 Gb/s NRZ- OOK metro networks in O-band Zhe Xuan, 1,* Yangjin Ma, 1,2 Yang Liu, 2 Ran Ding, 2 Yunchu Li, 1 Noam Ophir, 2 Andy Eu- Jin Lim, 3 Guo-Qiang Lo, 3 Peter Magill,

More information

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany Silicon Photonics in Optical Communications Lars Zimmermann, IHP, Frankfurt (Oder), Germany Outline IHP who we are Silicon photonics Photonic-electronic integration IHP photonic technology Conclusions

More information

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon Wei Shi, Han Yun, Charlie Lin, Mark Greenberg, Xu Wang, Yun Wang, Sahba Talebi Fard,

More information

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING ARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING Eric J Newman Sr. Applications Engineer in the Advanced Linear Products Division, Analog Devices, Inc., email: eric.newman@analog.com Optical power

More information

EE 232 Lightwave Devices Optical Interconnects

EE 232 Lightwave Devices Optical Interconnects EE 232 Lightwave Devices Optical Interconnects Sajjad Moazeni Department of Electrical Engineering & Computer Sciences University of California, Berkeley 1 Emergence of Optical Links US IT Map Hyper-Scale

More information

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15,

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15, 2013 2785 Fabrication-Tolerant Four-Channel Wavelength- Division-Multiplexing Filter Based on Collectively Tuned Si Microrings Peter De Heyn,

More information

EPIC: The Convergence of Electronics & Photonics

EPIC: The Convergence of Electronics & Photonics EPIC: The Convergence of Electronics & Photonics K-Y Tu, Y.K. Chen, D.M. Gill, M. Rasras, S.S. Patel, A.E. White ell Laboratories, Lucent Technologies M. Grove, D.C. Carothers, A.T. Pomerene, T. Conway

More information

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Ha Huy Thanh and Bui Trung Dzung National Center for Technology Progress (NACENTECH) C6-Thanh Xuan Bac-Hanoi-Vietnam

More information

Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments

Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments Chuck Tabbert and Charlie Kuznia Ultra Communications, Inc. 990 Park Center Drive, Suite H Vista, CA, USA, 92081 ctabbert@

More information

The Past, Present, and Future of Silicon Photonics

The Past, Present, and Future of Silicon Photonics The Past, Present, and Future of Silicon Photonics Myung-Jae Lee High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering Yonsei University Outline Introduction A glance at history

More information

Compact 1D-silicon photonic crystal electrooptic modulator operating with ultra-low switching voltage and energy

Compact 1D-silicon photonic crystal electrooptic modulator operating with ultra-low switching voltage and energy Compact 1D-silicon photonic crystal electrooptic modulator operating with ultra-low switching voltage and energy Abdul Shakoor, 1,2 Kengo Nozaki, 1,2 Eiichi Kuramochi, 1,2 Katsuhiko Nishiguchi, 1 Akihiko

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops Coherent power combination of two Masteroscillator-power-amplifier (MOPA) semiconductor lasers using optical phase lock loops Wei Liang, Naresh Satyan and Amnon Yariv Department of Applied Physics, MS

More information

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging M. Asghari Kotura Inc April 27 Contents: Who is Kotura Choice of waveguide technology Challenges and merits of Si photonics

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

Addressing Link-Level Design Tradeoffs for Integrated Photonic Interconnects

Addressing Link-Level Design Tradeoffs for Integrated Photonic Interconnects Addressing Link-Level Design Tradeoffs for Integrated Photonic Interconnects Michael Georgas, Jonathan Leu, Benjamin Moss, Chen Sun and Vladimir Stojanović Massachusetts Institute of Technology CICC 2011

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Silicon Photonics Photo-Detector Announcement Mario Paniccia Intel Fellow Director, Photonics Technology Lab Agenda Intel s Silicon Photonics Research 40G Modulator Recap 40G Photodetector Announcement

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Opportunities and challenges of silicon photonics based System-In-Package

Opportunities and challenges of silicon photonics based System-In-Package Opportunities and challenges of silicon photonics based System-In-Package ECTC 2014 Panel session : Emerging Technologies and Market Trends of Silicon Photonics Speaker : Stéphane Bernabé (Leti Photonics

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation Low Thermal Resistance Flip-Chip Bonding of 85nm -D VCSEL Arrays Capable of 1 Gbit/s/ch Operation Hendrik Roscher In 3, our well established technology of flip-chip mounted -D 85 nm backside-emitting VCSEL

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

EE 230: Optical Fiber Communication Transmitters

EE 230: Optical Fiber Communication Transmitters EE 230: Optical Fiber Communication Transmitters From the movie Warriors of the Net Laser Diode Structures Most require multiple growth steps Thermal cycling is problematic for electronic devices Fabry

More information

Optical Integrated Devices in Silicon On Insulator for VLSI Photonics

Optical Integrated Devices in Silicon On Insulator for VLSI Photonics Optical Integrated Devices in Silicon On Insulator for VLSI Photonics Design, Modelling, Fabrication & Characterization Piero Orlandi 1 Possible Approaches Reduced Design time Transparent Technology Shared

More information

More-than-Moore with Integrated Silicon-Photonics. Vladimir Stojanović Berkeley Wireless Rearch Center UC Berkeley

More-than-Moore with Integrated Silicon-Photonics. Vladimir Stojanović Berkeley Wireless Rearch Center UC Berkeley More-than-Moore with Integrated Silicon-Photonics Vladimir Stojanović Berkeley Wireless Rearch Center UC Berkeley 1 Acknowledgments Milos Popović (Boulder/BU), Rajeev Ram, Jason Orcutt, Hanqing Li (MIT),

More information

Low threshold continuous wave Raman silicon laser

Low threshold continuous wave Raman silicon laser NATURE PHOTONICS, VOL. 1, APRIL, 2007 Low threshold continuous wave Raman silicon laser HAISHENG RONG 1 *, SHENGBO XU 1, YING-HAO KUO 1, VANESSA SIH 1, ODED COHEN 2, OMRI RADAY 2 AND MARIO PANICCIA 1 1:

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

Time Table International SoC Design Conference

Time Table International SoC Design Conference 04 International SoC Design Conference Time Table A Analog and Mixed-Signal Techniques I DV Digital Circuits and VLSI Architectures ET Emerging technology LP Power Electronics / Energy Harvesting Circuits

More information

Silicon photonics and memories

Silicon photonics and memories Silicon photonics and memories Vladimir Stojanović Integrated Systems Group, RLE/MTL MIT Acknowledgments Krste Asanović, Christopher Batten, Ajay Joshi Scott Beamer, Chen Sun, Yon-Jin Kwon, Imran Shamim

More information

Challenges for On-chip Optical Interconnect

Challenges for On-chip Optical Interconnect Initial Results of Prototyping a 3-D Integrated Intra-Chip Free-Space Optical Interconnect Berkehan Ciftcioglu, Rebecca Berman, Jian Zhang, Zach Darling, Alok Garg, Jianyun Hu, Manish Jain, Peng Liu, Ioannis

More information

PROGRAMMABLE PHOTONIC ICS:

PROGRAMMABLE PHOTONIC ICS: PROGRAMMABLE PHOTONIC ICS: MAKING OPTICAL DEVICES MORE VERSATILE Wim Bogaerts PIC International 9-10 April 2018 1 (SILICON) PICS TODAY Rapidly growing integration O(1000) components on a chip photonics

More information

2003 American Institute of Physics. Reprinted with permission.

2003 American Institute of Physics. Reprinted with permission. Jesse Tuominen, Tapio Niemi, and Hanne Ludvigsen. 2003. Wavelength reference for optical telecommunications based on a temperature tunable silicon etalon. Review of Scientific Instruments, volume 74, number

More information

Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits

Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits Department of Electrical and Computer Engineering Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits Wei-Ping Huang Department of Electrical and Computer Engineering McMaster

More information

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, 51643 Gummersbach, Germany

More information

3 General Principles of Operation of the S7500 Laser

3 General Principles of Operation of the S7500 Laser Application Note AN-2095 Controlling the S7500 CW Tunable Laser 1 Introduction This document explains the general principles of operation of Finisar s S7500 tunable laser. It provides a high-level description

More information

SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector

SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector Jin-Sung Youn, 1 Myung-Jae Lee, 1 Kang-Yeob Park, 1 Holger Rücker, 2 and Woo-Young Choi 1,* 1 Department of Electrical

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

1 Introduction. Research article

1 Introduction. Research article Nanophotonics 2018; 7(4): 727 733 Research article Huifu Xiao, Dezhao Li, Zilong Liu, Xu Han, Wenping Chen, Ting Zhao, Yonghui Tian* and Jianhong Yang* Experimental realization of a CMOS-compatible optical

More information

Design and characterization of low loss 50 picoseconds delay line on SOI platform

Design and characterization of low loss 50 picoseconds delay line on SOI platform Design and characterization of low loss 50 picoseconds delay line on SOI platform Zhe Xiao, 1,2 Xianshu Luo, 2 Tsung-Yang Liow, 2 Peng Huei Lim, 5 Patinharekandy Prabhathan, 1 Jing Zhang, 4 and Feng Luan

More information