Amplitude Modulation

Size: px
Start display at page:

Download "Amplitude Modulation"

Transcription

1 Amplitude Modulation Ang Man Shun October 30, 01 Reference Hwei P. Hsu Analog and Digital Communication Summary Message Carrier Simple AM DSB-LC DSB-SC SSB / VSB Equation m(t) Large Carrier Unity A m cos ω m t A c cos ω c t cos ω c t (A c + m(t)) cos ω c t = A c cos ω c t + m(t) cos ω c t A c cos ω c t + ma c ma c + ma c m(t) cos ω c t + ma c ma c cos (ω c ± ω m ) t Bandwidth Advantage Disadvantage Simple AM DSB-LC ω m $ Low η DSB-SC ω m Highη $$$ SSB/VSB ω m High η Small BW $$$$$ 1

2 1 Introduction Message signal and Carrier Signal in time domain A m cos ω m t = A m (ejω mt + e jω mt ) m(t) Unity Carrier cos ω c t = 1 (ejωct + e jωct ) Larger Carrier A c cos ω c t = A c (ejω ct + e jω ct ) frequency component in same amplitude Negative frequency is not real, just mathematical ω c > ω m, if not,aliasing 1.1 Continuous Wave Modulation CW modulation is just a multiplication, for montone message and larger carrier : (A m cos ω m t) (A c cos ω c t) By identity cos A cos B = cos (A + B) + cos (A B) A m A c { + } = A ma c 4 { e j(ω c ω m )t + e j(ω c ω m )t + e j(ω c+ω m )t + e j(ω c ω m )t } One cosine term has frequency spectral line, so cosine terms have 4 spectral line Frequency spectra line translated Negative frequency is not real, it is only mathematical, so although it has 4 spectra, it actually has only spectra 1. The signal s Fourier Transfroms For general message m(t) F M (jω m ) CW Modulated signal of general message with large carrier m(t)a c cos ω c t = A c m(t) ( e jωct + e jωct) F A c [M (jω m + jω c ) + M (jω m jω c )]

3 Amplitude Modulation There are 3 to 4 basic types of AM modulation : Simple AM (DSB-LC), DSB-SC, SSB, and VSB.1 Simple AM signal in Time Domain AM : Message signal embed into the amplitude of carrier Simple AM is also called : Double Sideband Large Carrier (DSB-LC) Modultion For general message signal m(t) : x AM (t) = (A c + m(t)) cos ω c t For simple monotone message signal m(t) = A m cos ω m t : x AM (t) = (A c + A m cos ω m t) cos ω c t = A c cos ω c t + A m cos ω m t cos ω c t By cos A cos B = = A c cos ω c t + A c m cos ω m t cos ω c t where m = A m A c cos (A + B) + cos (A B) = A c cos ω c t + ma c [ + ] = A c cos ω c t + ma c Simple AM / DSB-LC modulated signal is thus x AM (t) = (A c + m(t)) cos ω c t = A c cos ω c t + m(t) cos ω c t x AM (t) = (A c + m(t)) cos ω c t = A c cos ω c t + ma c Envelope of modulated signal will follow the message signal Message m = A m A c 100% m = 100% A m = A c m > 100% overmodulation A m > A c Requirements for AM / DSB-LC : A c > A m, ω c ω m 3

4 . Simple AM signal in Frequency Domain For general message signal The simple AM signal m(t) F M(jω m ) Bandwidth = [0, ω m ] = ω m The AM signal s Fourier Transform x AM (t) = (A c + m(t)) cos ω c t = A c cos ω c t + m(t) cos ω c t F {x AM (t)} = F {A c cos ω c t} + F {m(t) cos ω c t} = A c F {cos ω c t} + 1 F { m(t) ( e jω ct + e jω ct )} = A c F {cos ω c t} + 1 F { m(t)e jω ct } + 1 F { m(t)e jω ct } = A c ˆ F As m(t) M(jω m ) thus m(t)e ±jat F M (jω ± ja) = A c cos ω c te jωt dt + 1 ˆ ˆ m(t)e j(ω ω c)t dt + 1 ˆ ( e j(ω ω c )t + e j(ω+ω c)t ) dt + 1 M (jω jω c) + 1 M (jω jω c) m(t)e j(ω+ω c)t dt X AM (jω) = A c δ (ω ± ω c) + 1 M (jω jω c) + 1 M (jω jω c) Bandwidth is twice of original bandwidth : BW AM = W = ω m AM wave contains sideband with bandwidth of each band as W LSB = W USB = W = ω m 4

5 .3 Double-Sideband Suppressed-Carrier Modulation DSBSC Recall, simple AM / DSB-LC for m(t) = A m cos ω m t x AM (t) = (A c + m(t)) cos ω c t = A c cos ω c t + m(t) cos ω c t x AM (t) = A c cos ω c t + ma c Message Carrier contains no info, so suppresse it to enhance power efficiency After dropping the carrier term, x DSB SC (t) = m(t) cos ω c t = m(t) cos ω c t x DSB SC (t) = ma c Message For general message signal m(t) F M(t), the Fourier Transform is F { } } x(t) DSB-SC = F {m(t) cos ωc t} = F {m(t) ejω ct + e jω ct = 1 [M (jω jω c) + M (jω + jω c )].4 Generation & Demodulation of DSB signal 5

6 For Simple AM / DSB-LC After mixing : x AM (t) cos ω c t = [A c + m(t)] cos ω c t After passing LPF : A c + m(t) After passing capacitor to block the DC : m(t) Thus, with suitable amplifier, the original signal can be recovered. * Then this demodulator works A c = [A c + m(t)] 1 + cos ω ct = A c + m(t) + A c + m(t) cos ω c t Since carrier is suppressed, so A m 0, and thus m = A m for DSB-SC signal. A c so modulation index is meaningless.5 Single-Sideband Suppressed Carrier To improve power efficiency, further dropping one sideband For monotone signal, the DSB-SC signal is x DSB SC (t) = ma c After dropping one sideband After LPF LSB x SSB LSB (t) = ma c After HPF HSB x SSB USB (t) = ma c Vestigial Sideband Signal Since SSB require a very sharp cut-off filter to remove one sideband, such filter is not easy to implement Thus, the requirement is relaxed by allowing a vestige part : Vestigial Sideband signal 6

7 3 Power of the AM Signal 3.1 Review of Root-Mean-Square value For a function A cos ωt, the RMS value is : ˆ 1 T RMS (A cos ωt) = (A cos ωt) 1 dt = A T T 0 ˆ T 0 1 cos ωtdt = A T ˆ T cos ωt dt Since cos θ is orthogonal to 1, so the second integral is zero ˆ 1 T 1 = A T 0 dt + 1 ˆ T T cos ωtdt = A T 0 T = A }{{} So the RMS value of a function of A cos ωt is A Then, recall that simple AM / DSB-LC signal of montone message has the form x AM (t) = (A c + m(t)) cos ω c t = A c cos ω c t + A cm Then the RMS value is Thus the total power, by P = A R, is x AM,RMS = A c + A cm + A cm 0 + A cm,am = A c R + A cm + A cm The power used to transmitte information for simple AM is thus : When m = 1 η AM = P Info = A cm + A cm A c R + A cm + A cm = m 4 + m m 4 + m 4 = m 4 + m = m + m η AM = = 66.6%Power Lost Therefore, simple AM signal is not power-efficienct. η AM < 33.3% = sup η AM In summary, for simple AM / DSB-LC signal, The efficiency is limited to 33% The carrier signal is present even if nothing is being transmitted The circuitary is relatively simple (only envelop detector is required! ) Bandwidth is ω m 7

8 For Dobule Sideband Suppressed Carrier of montone message, the wave form is x DSB (t) = x AM (Without Carrier) = A cm Thus, the RMS value is + A cm Thus, the Total power is And hence, the power efficiency is x DSB,RMS = A cm + A cm,dsb = A cm + A cm η DSB = P Info = = 100% (Ideal) The power efficiency of DSB singal is very good, but the tradeoff is it require relatively expensive circuitry in the receiver In summary, for DSB signal It have must higher power efficiency ( 100% ) But it has same bandwidth as simple AM, ω m It require relatively expensive circuitry in the receiver For SSB singal, a sideband filter, either high pass or low pass, is concatenated to the receiver circuit. For Single Sideband Suppressed Carrier of montone message, the wave form is Thus, the RMS value is Thus, the Total power is x SSB (t) = A cm cos (ω c ± ω m ) t x DSB,RMS = A cm And hence, the power efficiency is,ssb = A cm In summary, for SSB signal, η SSB = P Info = = 100% (Ideal) It has high power efficiency ( 100% ) It has relatively most expensive circuitry ( An extra sideband filter ) It cut bandwidth in half, BW SSB = ω m END 8

UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers)

UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) 1. Define modulation? Modulation is a process by which some characteristics of high frequency carrier Signal is varied in accordance with the

More information

Master Degree in Electronic Engineering

Master Degree in Electronic Engineering Master Degree in Electronic Engineering Analog and telecommunication electronic course (ATLCE-01NWM) Miniproject: Baseband signal transmission techniques Name: LI. XINRUI E-mail: s219989@studenti.polito.it

More information

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications Lecture 6: Amplitude Modulation II EE 3770: Communication Systems AM Limitations AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Lecture 6 Amplitude Modulation II Amplitude modulation is

More information

Amplitude Modulation II

Amplitude Modulation II Lecture 6: Amplitude Modulation II EE 3770: Communication Systems Lecture 6 Amplitude Modulation II AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Multiplexing Mojtaba Vaezi 6-1 Contents

More information

Introduction to Amplitude Modulation

Introduction to Amplitude Modulation 1 Introduction to Amplitude Modulation Introduction to project management. Problem definition. Design principles and practices. Implementation techniques including circuit design, software design, solid

More information

DT Filters 2/19. Atousa Hajshirmohammadi, SFU

DT Filters 2/19. Atousa Hajshirmohammadi, SFU 1/19 ENSC380 Lecture 23 Objectives: Signals and Systems Fourier Analysis: Discrete Time Filters Analog Communication Systems Double Sideband, Sub-pressed Carrier Modulation (DSBSC) Amplitude Modulation

More information

Amplitude Modulation, II

Amplitude Modulation, II Amplitude Modulation, II Single sideband modulation (SSB) Vestigial sideband modulation (VSB) VSB spectrum Modulator and demodulator NTSC TV signsals Quadrature modulation Spectral efficiency Modulator

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Amplitude Modulated Systems

Amplitude Modulated Systems Amplitude Modulated Systems Communication is process of establishing connection between two points for information exchange. Channel refers to medium through which message travels e.g. wires, links, or

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

Amplitude Modulation. Ahmad Bilal

Amplitude Modulation. Ahmad Bilal Amplitude Modulation Ahmad Bilal 5-2 ANALOG AND DIGITAL Analog-to-analog conversion is the representation of analog information by an analog signal. Topics discussed in this section: Amplitude Modulation

More information

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved. Contemporary Communication Systems using MATLAB Chapter 3: Analog Modulation 2013 Cengage Learning Engineering. All Rights Reserved. 3.1 Preview In this chapter we study analog modulation & demodulation,

More information

Amplitude Modulation Chapter 2. Modulation process

Amplitude Modulation Chapter 2. Modulation process Question 1 Modulation process Modulation is the process of translation the baseband message signal to bandpass (modulated carrier) signal at frequencies that are very high compared to the baseband frequencies.

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction 1. In AM modulation we impart the information of a message signal m(t) on to a sinusoidal carrier c(t). This results in the translation of the message signal to a new frequency range. The motivation for

More information

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad EXPERIMENT #5 DSB-SC AND SSB MODULATOR Theory The amplitude-modulated signal is

More information

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall ELEC 350 Communications Theory and Systems: I Review ELEC 350 Fall 007 1 Final Examination Saturday, December 15-3 hours Two pages of notes allowed Calculator Tables provided Fourier transforms Table.1

More information

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3]

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3] Code No: RR220401 Set No. 1 1. (a) The antenna current of an AM Broadcast transmitter is 10A, if modulated to a depth of 50% by an audio sine wave. It increases to 12A as a result of simultaneous modulation

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

Chapter 3. Amplitude Modulation Fundamentals

Chapter 3. Amplitude Modulation Fundamentals Chapter 3 Amplitude Modulation Fundamentals Topics Covered 3-1: AM Concepts 3-2: Modulation Index and Percentage of Modulation 3-3: Sidebands and the Frequency Domain 3-4: AM Power 3-5: Single-Sideband

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

Charan Langton, Editor

Charan Langton, Editor Charan Langton, Editor SIGNAL PROCESSING & SIMULATION NEWSLETTER Baseband, Passband Signals and Amplitude Modulation The most salient feature of information signals is that they are generally low frequency.

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

3.1 Introduction to Modulation

3.1 Introduction to Modulation Haberlesme Sistemlerine Giris (ELE 361) 9 Eylul 2017 TOBB Ekonomi ve Teknoloji Universitesi, Guz 2017-18 Dr. A. Melda Yuksel Turgut & Tolga Girici Lecture Notes Chapter 3 Amplitude Modulation Speech, music,

More information

CHAPTER 2! AMPLITUDE MODULATION (AM)

CHAPTER 2! AMPLITUDE MODULATION (AM) CHAPTER 2 AMPLITUDE MODULATION (AM) Topics 2-1 : AM Concepts 2-2 : Modulation Index and Percentage of Modulation 2-3 : Sidebands and the Frequency Domain 2-4 : Single-Sideband Modulation 2-5 : AM Power

More information

4- Single Side Band (SSB)

4- Single Side Band (SSB) 4- Single Side Band (SSB) It can be shown that: s(t) S.S.B = m(t) cos ω c t ± m h (t) sin ω c t -: USB ; +: LSB m(t) X m(t) cos ω c t -π/ cos ω c t -π/ + s S.S.B m h (t) X m h (t) ± sin ω c t 1 Tone Modulation:

More information

UNIT I AMPLITUDE MODULATION

UNIT I AMPLITUDE MODULATION UNIT I AMPLITUDE MODULATION Prepared by: S.NANDHINI, Assistant Professor, Dept. of ECE, Sri Venkateswara College of Engineering, Sriperumbudur, Tamilnadu. CONTENTS Introduction to communication systems

More information

Chapter 5. Amplitude Modulation

Chapter 5. Amplitude Modulation Chapter 5 Amplitude Modulation So far we have developed basic signal and system representation techniques which we will now apply to the analysis of various analog communication systems. In particular,

More information

CHAPTER 3 Noise in Amplitude Modulation Systems

CHAPTER 3 Noise in Amplitude Modulation Systems CHAPTER 3 Noise in Amplitude Modulation Systems NOISE Review: Types of Noise External (Atmospheric(sky),Solar(Cosmic),Hotspot) Internal(Shot, Thermal) Parameters of Noise o Signal to Noise ratio o Noise

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

Solutions to some sampled questions of previous finals

Solutions to some sampled questions of previous finals Solutions to some sampled questions of previous finals First exam: Problem : he modulating signal m(a m coπf m is used to generate the VSB signal β cos[ π ( f c + f m ) t] + (1 β ) cos[ π ( f c f m ) t]

More information

Angle Modulated Systems

Angle Modulated Systems Angle Modulated Systems Angle of carrier signal is changed in accordance with instantaneous amplitude of modulating signal. Two types Frequency Modulation (FM) Phase Modulation (PM) Use Commercial radio

More information

3.1 Introduction 3.2 Amplitude Modulation 3.3 Double Sideband-Suppressed Carrier Modulation 3.4 Quadrature-Carrier Multiplexing 3.

3.1 Introduction 3.2 Amplitude Modulation 3.3 Double Sideband-Suppressed Carrier Modulation 3.4 Quadrature-Carrier Multiplexing 3. Chapter 3 Amplitude Modulation Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Outline 3.1 Introduction 3. Amplitude Modulation 3.3

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

Lecture 12 - Analog Communication (II)

Lecture 12 - Analog Communication (II) Lecture 12 - Analog Communication (II) James Barnes (James.Barnes@colostate.edu) Spring 2014 Colorado State University Dept of Electrical and Computer Engineering ECE423 1 / 12 Outline QAM: quadrature

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 10 Single Sideband Modulation We will discuss, now we will continue

More information

EE140 Introduction to Communication Systems Lecture 7

EE140 Introduction to Communication Systems Lecture 7 3/4/08 EE40 Introdution to Communiation Systems Leture 7 Instrutor: Prof. Xiliang Luo ShanghaiTeh University, Spring 08 Arhiteture of a (Digital) Communiation System Transmitter Soure A/D onverter Soure

More information

Analog Communications

Analog Communications 1 Analog Communiations Amplitude Modulation (AM) Frequeny Modulation (FM) 2 Radio broadasting 30-300M Hz SOURCE Soure Transmitter Transmitted signal Channel Reeived signal Reeiver User Analog baseband

More information

Lecture-3 Amplitude Modulation: Single Side Band (SSB) Modulation

Lecture-3 Amplitude Modulation: Single Side Band (SSB) Modulation Lecture-3 Amplitude Modulation: Single Side Band (SSB) Modulation 3.0 Introduction. 3.1 Baseband Signal SSB Modulation. 3.1.1 Frequency Domain Description. 3.1. Time Domain Description. 3. Single Tone

More information

! Amplitude of carrier wave varies a mean value in step with the baseband signal m(t)

! Amplitude of carrier wave varies a mean value in step with the baseband signal m(t) page 7.1 CHAPTER 7 AMPLITUDE MODULATION Transmit information-bearing (message) or baseband signal (voice-music) through a Communications Channel Baseband = band of frequencies representing the original

More information

AM and FM MODULATION Lecture 5&6

AM and FM MODULATION Lecture 5&6 AM and FM MODULATION Lecture 5&6 Ir. Muhamad Asvial, MEng., PhD Center for Information and Communication Engineering Research Electrical Engineering Department University of Indonesia Kampus UI Depok,

More information

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Contents Slide 1 Single-Sideband Modulation Slide 2 SSB by DSBSC-AM and Filtering Slide 3 SSB by DSBSC-AM and Filtering (cont.) Slide

More information

Vestigial Sideband Modulation KEEE343 Communication Theory Lecture #11, April 7, Prof. Young-Chai Ko

Vestigial Sideband Modulation KEEE343 Communication Theory Lecture #11, April 7, Prof. Young-Chai Ko Vestigial Sideband Modulation KEEE343 Communication Theory Lecture #11, April 7, 2011 Prof. Young-Chai Ko koyc@korea.ac.kr Summary Vestigial sideband modulation Baseband representation of modulated wave

More information

Amplitude Modulation Early Radio EE 442 Spring Semester Lecture 6

Amplitude Modulation Early Radio EE 442 Spring Semester Lecture 6 Amplitude Modulation Early Radio EE 442 Spring Semester Lecture 6 f f f LO audio baseband m http://www.technologyuk.net/telecommunications/telecom_principles/amplitude_modulation.shtml AM Modulation --

More information

ANALOG COMMUNICATIONS. BY P.Swetha, Assistant Professor (Units 1, 2 & 5) K.D.K.Ajay, Assistant Professor (Units 3 & 4)

ANALOG COMMUNICATIONS. BY P.Swetha, Assistant Professor (Units 1, 2 & 5) K.D.K.Ajay, Assistant Professor (Units 3 & 4) ANALOG COMMUNICATIONS BY P.Swetha, Assistant Professor (Units 1, 2 & 5) K.D.K.Ajay, Assistant Professor (Units 3 & 4) (R15A0409) ANALOG COMMUNICATIONS Course Objectives: Objective of the course is to:

More information

EEM 306 Introduction to Communications

EEM 306 Introduction to Communications EEM 306 Introduction to Communications Lecture 5 Department o Electrical and Electronics Engineering Anadolu University April 8, 2014 Lecture 5 1/20 Last Time Bandpass Systems Phase and Group Delay Introduction

More information

Analog Communication.

Analog Communication. Analog Communication Vishnu N V Tele is Greek for at a distance, and Communicare is latin for to make common. Telecommunication is the process of long distance communications. Early telecommunications

More information

CS311: Data Communication. Transmission of Analog Signal - I

CS311: Data Communication. Transmission of Analog Signal - I CS311: Data Communication Transmission of Analog Signal - I by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

ECE5713 : Advanced Digital Communications

ECE5713 : Advanced Digital Communications ECE5713 : Advanced Digital Communications Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Advanced Digital Communications, Spring-2015, Week-8 1 In-phase and Quadrature (I&Q) Representation Any bandpass

More information

Amplitude Modulation Fundamentals

Amplitude Modulation Fundamentals 3 chapter Amplitude Modulation Fundamentals In the modulation process, the baseband voice, video, or digital signal modifies another, higher-frequency signal called the carrier, which is usually a sine

More information

Introduction. Amplitude Modulation System Angle Modulation System

Introduction. Amplitude Modulation System Angle Modulation System Introduction Amplitude Modulation System Angle Modulation System Frequency Modulation Phase Modulation Digital Communication Elements of Information Theory Advanced Communication Techniques 1 Tools for

More information

1B Paper 6: Communications Handout 2: Analogue Modulation

1B Paper 6: Communications Handout 2: Analogue Modulation 1B Paper 6: Communications Handout : Analogue Modulation Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk Lent Term 16 1 / 3 Modulation Modulation

More information

Lab10: FM Spectra and VCO

Lab10: FM Spectra and VCO Lab10: FM Spectra and VCO Prepared by: Keyur Desai Dept. of Electrical Engineering Michigan State University ECE458 Lab 10 What is FM? A type of analog modulation Remember a common strategy in analog modulation?

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE3723 : Digital Communications Week 8-9: Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Muhammad Ali Jinnah University, Islamabad - Digital Communications - EE3723 1 In-phase and Quadrature (I&Q) Representation

More information

ELE636 Communication Systems

ELE636 Communication Systems ELE636 Communication Systems Chapter 5 : Angle (Exponential) Modulation 1 Phase-locked Loop (PLL) The PLL can be used to track the phase and the frequency of the carrier component of an incoming signal.

More information

PRODUCT DEMODULATION - SYNCHRONOUS & ASYNCHRONOUS

PRODUCT DEMODULATION - SYNCHRONOUS & ASYNCHRONOUS PRODUCT DEMODULATION - SYNCHRONOUS & ASYNCHRONOUS INTRODUCTION...98 frequency translation...98 the process...98 interpretation...99 the demodulator...100 synchronous operation: ω 0 = ω 1...100 carrier

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

Single Sideband (SSB) AM

Single Sideband (SSB) AM Single Sideband (SSB) AM Leture 7 Why SSB-AM? Spetral eiieny is o great importane. Conventional & DSB-SC oupy twie the message bandwidth. All the inormation is ontained in either hal the other is redundant.

More information

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University Communiation Systems Leture 7 Dong In Kim Shool o Ino/Comm Engineering Sungkyunkwan University 1 Outline Expression o SSB signals Waveorm o SSB signals Modulators or SSB: Frequeny disrimination Phase disrimination

More information

Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET

Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET EEE 309 Communiation Theory Semester: January 06 Dr. Md. Farhad Hossain Assoiate Proessor Department o EEE, BUET Email: marhadhossain@eee.buet.a.bd Oie: ECE 33, ECE Building Part 03-3 Single-sideband Suppressed

More information

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM)

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM) ELEC3242 Communications Engineering Laboratory 1 ---- Amplitude Modulation (AM) 1. Objectives 1.1 Through this the laboratory experiment, you will investigate demodulation of an amplitude modulated (AM)

More information

Linear Modulation: Amplitude Modulation

Linear Modulation: Amplitude Modulation 1 Communication Systems Chapter Linear Modulation: Amplitude Modulation In the previous chapter, we have covered, what is modulation, its different types along with its need. Now here in this chapter we

More information

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal University of Saskatchewan EE 9 Electrical Engineering Laboratory III Amplitude and Frequency Modulation Objectives: To observe the time domain waveforms and spectra of amplitude modulated (AM) waveforms

More information

COMM 601: Modulation I

COMM 601: Modulation I Prof. Ahmed El-Mahdy, Communications Department The German University in Cairo Text Books [1] Couch, Digital and Analog Communication Systems, 7 th edition, Prentice Hall, 2007. [2] Simon Haykin, Communication

More information

The Communications Channel (Ch.11):

The Communications Channel (Ch.11): ECE-5 Phil Schniter February 5, 8 The Communications Channel (Ch.): The eects o signal propagation are usually modeled as: ECE-5 Phil Schniter February 5, 8 Filtering due to Multipath Propagation: The

More information

Chapter 6 Double-Sideband Suppressed-Carrier Amplitude Modulation. Contents

Chapter 6 Double-Sideband Suppressed-Carrier Amplitude Modulation. Contents Chapter 6 Double-Sideband Suppressed-Carrier Amplitude Modulation Contents Slide 1 Double-Sideband Suppressed-Carrier Amplitude Modulation Slide 2 Spectrum of a DSBSC-AM Signal Slide 3 Why Called Double-Sideband

More information

CME312- LAB Manual DSB-SC Modulation and Demodulation Experiment 6. Experiment 6. Experiment. DSB-SC Modulation and Demodulation

CME312- LAB Manual DSB-SC Modulation and Demodulation Experiment 6. Experiment 6. Experiment. DSB-SC Modulation and Demodulation Experiment 6 Experiment DSB-SC Modulation and Demodulation Objectives : By the end of this experiment, the student should be able to: 1. Demonstrate the modulation and demodulation process of DSB-SC. 2.

More information

CHAPTER 5. Additional Problems (a) The AM signal is defined by st () = A c. k a A c 1

CHAPTER 5. Additional Problems (a) The AM signal is defined by st () = A c. k a A c 1 CHAPTER 5 Additional Problems 5.7 (a) The AM signal is defined by st () A c ( + k a mt ()) cos( ω c k a A c + ------------ + t cos( ω c To obtain 5% modulation, we choose k a, which results in the modulated

More information

6. Amplitude Modulation

6. Amplitude Modulation 6. Amplitude Modulation Modulation is a proess by whih some parameter of a arrier signal is varied in aordane with a message signal. The message signal is alled a modulating signal. Definitions A bandpass

More information

S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN)

S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN) Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4657]-49 S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN)

More information

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits & Modulation Techniques Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits 2 Digital systems are being used

More information

EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EC2252 SEM / YEAR : II year SUBJECT NAME : COMMUNICATION THEORY UNIT

More information

Fundamentals of Communication Systems SECOND EDITION

Fundamentals of Communication Systems SECOND EDITION GLOBAL EDITIO Fundamentals of Communication Systems SECOD EDITIO John G. Proakis Masoud Salehi 78 Effect of oise on Analog Communication Systems Chapter 6 The noise power is P n = ow we can find the output

More information

AN INTRODUCTION OF ANALOG AND DIGITAL MODULATION TECHNIQUES IN COMMUNICATION SYSTEM

AN INTRODUCTION OF ANALOG AND DIGITAL MODULATION TECHNIQUES IN COMMUNICATION SYSTEM AN INTRODUCTION OF ANALOG AND DIGITAL MODULATION TECHNIQUES IN COMMUNICATION SYSTEM Rashmi Pandey Vedica Institute of Technology, Bhopal Department of Electronics & Communication rashmipandey07@rediffmail.com

More information

Complex Spectrum. Box Spectrum. Im f. Im f. Sine Spectrum. Cosine Spectrum 1/2 1/2 1/2. f C -f C 1/2

Complex Spectrum. Box Spectrum. Im f. Im f. Sine Spectrum. Cosine Spectrum 1/2 1/2 1/2. f C -f C 1/2 ECPE 364: view o Small-Carrier Amplitude Modulation his handout is a graphical review o small-carrier amplitude modulation techniques that we studied in class. A Note on Complex Signal Spectra All o the

More information

UNIT 1 QUESTIONS WITH ANSWERS

UNIT 1 QUESTIONS WITH ANSWERS UNIT 1 QUESTIONS WITH ANSWERS 1. Define modulation? Modulation is a process by which some characteristics of high frequency carrier signal is varied in accordance with the instantaneous value of the modulating

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Modulation and Demodulation Introduction A communication system

More information

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Leture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Eletrial Engineering Department University of Jordan EE421: Communiations I Notation 2 1 Three Modulation Types

More information

Lecture 10. Digital Modulation

Lecture 10. Digital Modulation Digital Modulation Lecture 10 On-Off keying (OOK), or amplitude shift keying (ASK) Phase shift keying (PSK), particularly binary PSK (BPSK) Frequency shift keying Typical spectra Modulation/demodulation

More information

ANALOG (DE)MODULATION

ANALOG (DE)MODULATION ANALOG (DE)MODULATION Amplitude Modulation with Large Carrier Amplitude Modulation with Suppressed Carrier Quadrature Modulation Injection to Intermediate Frequency idealized system Software Receiver Design

More information

HW 6 Due: November 9, 4 PM

HW 6 Due: November 9, 4 PM Name ID3 ECS 332: Principles of Communications 2018/1 HW 6 Due: November 9, 4 PM Lecturer: Prapun Suksompong, Ph.D. Instructions (a) This assignment has 10 pages. (b) (1 pt) Work and write your answers

More information

Communications and Signals Processing

Communications and Signals Processing Communications and Signals Processing Department of Communications An Najah National University 2012/2013 1 3.1 Amplitude Modulation 3.2 Virtues, Limitations, and Modifications of Amplitude Modulation

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for communication

More information

Part I - Amplitude Modulation

Part I - Amplitude Modulation EE/CME 392 Laboratory 1-1 Part I - Amplitude Modulation Safety: In this lab, voltages are less than 15 volts and this is not normally dangerous to humans. However, you should assemble or modify a circuit

More information

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Amplitude Modulation Pages 306-309 309 The analytical signal for double sideband, large carrier amplitude modulation

More information

Keywords Internet, LabVIEW, Smart Classroom-cum-Laboratory, Teaching and Learning process of communication.

Keywords Internet, LabVIEW, Smart Classroom-cum-Laboratory, Teaching and Learning process of communication. Volume 4, Issue 10, October 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Smart Classroom-cum-Laboratory

More information

AM Generation High Level Low Level

AM Generation High Level Low Level AM Generation High Level Low Level Low-level generation In modern radio systems, modulated signals are generated via digital signal processing (DSP). With DSP many types of AM modulation are possible with

More information

ELE 635 Communication Systems. Assignment Problems and Solutions

ELE 635 Communication Systems. Assignment Problems and Solutions ELE 635 Communication Systems Assignment Problems and Solutions Winter 2015 CONTENTS Assignment 1: Signals and Signal Space 1.1 Problems... 1 1.2 Solutions... 3 Assignment 2: Analysis and Transmission

More information

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Leture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Eletrial Engineering Department University of Jordan EE421: Communiations I Notation 2 1 Three Modulation Types

More information

S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering

S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering QUESTION BANK Subject Code : EC314 Subject Name : Communication Engineering Year & Sem : III Year, 6th Sem (EEE)

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

EXPERIMENT 4 - Part I: DSB Amplitude Modulation

EXPERIMENT 4 - Part I: DSB Amplitude Modulation OBJECTIVE To generate DSB amplitude modulated signal. EXPERIMENT 4 - Part I: DSB Amplitude Modulation PRELIMINARY DISCUSSION In an amplitude modulation (AM) communications system, the message signal is

More information

Modulator: a crucial part of any communication systems

Modulator: a crucial part of any communication systems Fourier Transform and Communication Systems 116 Introductory concepts in communications Modulator: a crucial part of any communication systems 117 Modulation The term baseband is used to designate the

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 2013 REGULATION 2MARKS UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 2013 REGULATION 2MARKS UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 2013 REGULATION 2MARKS UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) 1. Define modulation? Modulation is a process by which some characteristics

More information

World Journal of Engineering Research and Technology WJERT

World Journal of Engineering Research and Technology WJERT wjert, 2017, Vol. 3, Issue 2, 185-197 Original Article ISSN 2454-695X Susanchi et al. WJERT www.wjert.org SJIF Impact Factor: 4.326 DESIGN AND SIMULATION OF DOUBLE SIDE BAND SUPPRESSED CARRIER MODEL USING

More information

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad Berkeley Mixers: An Overview Prof. Ali M. U.C. Berkeley Copyright c 2014 by Ali M. Mixers Information PSD Mixer f c The Mixer is a critical component in communication circuits. It translates information

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information