60 MHz A-line rate ultra-high speed Fourier-domain optical coherence tomography

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "60 MHz A-line rate ultra-high speed Fourier-domain optical coherence tomography"

Transcription

1 60 MHz Aline rate ultrahigh speed Fourierdomain optical coherence tomography K. Ohbayashi a,b), D. Choi b), H. HiroOka b), H. Furukawa b), R. Yoshimura b), M. Nakanishi c), and K. Shimizu c) a Graduate School of Medical Science, Kitasato University, Sagamihara, Kanagawa , Japan; b Center for Natural Science, Kitasato University, Sagaminara, Kanagawa , Japan; c Department of Ophthalmology, Kitasato University, Sagamihara, Kanagawa , Japan ABSTRACT We describe a highspeed Fourier domain optical coherence tomography (OCT) using optical demultiplexers for spectral dispersion of interferograms. The optical demultiplexer enables to separate 256 narrow spectral bands from a broadband incident light in 25.0 GHz frequency interval centered at THz ( nm) and allows simultaneous detection of all the bands at the speed of DAQ. Using the optical demultiplexers into a Fourier domain OCT system as spectral analyzers, OCT imaging of 60,000,000 axial scans per second has been achieved. Using a resonant scanner for lateral scan, 16 khz frame rate, 1400 Alines per frame, 3 mm depth range, 23 micron meter resolution OCT imaging has been demonstrated. Keywords: OCT, optical coherence tomography, Fourier domain, optical demultiplexer 1. INTRODUCTION As optical coherence tomography (OCT) becomes useful imaging modality for biological applications 1, higher speeds of data acquisition are required to increase diagnostic volume within a finite limited time and to reduce motion artifacts for rendering 3 dimensional (3D) tomography images. For that purpose, fast OCT imaging methods have been developed. With swept source (SS) OCT methods, such as 236 khz 2 and 5 MHz 3 axial scans per second have been achieved. The speed of SSOCT is limited by sweeping speed of a source. Highspeed OCTs have also been realized with spectral domain (SD) OCT, a typical highspeed axial scan rate being 52 khz 4, which is limited by reading speed of data from the CCD detector. Because those techniques are still developed toward higher speed, much faster OCT methods would be realized with those methods. We have been developing a unique optical frequency domain imaging (OFDI) using a superstructuredgrating distributed Bragg reflector (SSGDBR) lasers as the light source 512. Merit of the source is that the wave number is scanned discretely in equal interval in wave number (frequency) and the line width is much narrow compared with the scan interval. As the result, measurements with as long as 12 mm depth range can be done. However, data acquisition speed is limited by the scanning speed of the laser source. Because discrete sampling is possible for Fourier domain OCT, we have come to an idea to detect all the data at different wave numbers simultaneously. An optical element to enable such detection is optical demultiplexers used in telecommunication fields. In this work, we propose a new method of highspeed OCT (ODOCT), where optical demultiplexers (OD) are used for spectral separation. An optical demultiplexer (OD) is similar to a spectrometer in that it disperse incident light, but differs in that it separates light at different frequencies discretely in equal frequency interval. The ODs we use in this study are custom made arrayed wave guides (AWG) (NTT Electronics, prototype). The OD separates light at δ f = 25 GHz equal frequency interval at 256 channels, the frequency of the center channel being THz ( λ = nm in c wavelength). The detection of interference spectrum in equal interval in frequency (also in wave number) is more appropriate for Fourier transform than equal spaced detection in wavelength as in a spectrometer, where rescaling is required. The window characteristic of each channel is nearly Gaussian with full width at half maximum (FWHM) of 14 GHz ( δλ = nm). The narrower FWHM than the frequency interval makes effective coherence length of detection longer than the case without window. About details of AWG, we refer the readers to the text book 13.. Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, edited by Joseph A. Izatt, James G. Fujimoto, Valery V. Tuchin, Proc. of SPIE Vol. 6847, 68470M, (2008) /08/$18 doi: / SPIE Digital Library Subscriber Archive Copy Proc. of SPIE Vol M1

2 2. METHOD How the ODs are installed in our OCT system is shown in Fig. 1. In the system, the light source is a broad band superluminescent diode (SLD, prototype by NTT Electronics). The output light from the SLD is amplified with a semiconductor optical amplifier (SOA) (COVEGA, BOA1004 type) and divided into the sample arm (50%) and the reference arm (50%) with the coupler CP1. The output intensity of light from SOA1 was adjusted so that the power illuminating the sample is 9 mw (ANSI safety limit). The light into sample arm is directed onto the sample S with a collimator lens L1 and an objective lens L2. A resonant scanner RS (ElectroOptical Products, SC30 type) and a galvano mirror G (Cambridge Technology, 6210 type) are used to scan the light beam on the sample. Backscattered or backreflected light from the sample is collected with the light illuminating optics and directed to SOA2 (COVEGA, BOA 1004 type) with an optical circulator C1. The output of SOA2 and the reference light are combined with a coupler CP2 (50:50 coupling ratio). The reference arm comprises the optical circulator C2, the collimator lens L3 and reference mirror RM. Figure 1. Expreimental set up of ODOCT. For details, see text. The outputs from CP2 are demultiplexed with two optical demultiplexers (OD1 and OD2) for balanced detection. The outputs at the same optical frequency from the two ODs are detected with a balanced photoreceivers (New Focus, 2117 type), 256 photoreceivers in total. The outputs of the photoreceivers are detected with a fast multichannel DAQ system. The DAQ system comprises 32 DAQ boards (National Instruments, 5105 type with 8 inputs). Data are stored in the memory of the DAQ system during a single data acquisition and then transferred to a computer for analysis. The ODOCT is similar to SDOCT in that it detects the interference spectrum simultaneously. The difference is that a whole interferogram is detected at the speed of DAQ at different frequencies simultaneously, instead of accumulating it into a CCD detector during certain time duration as in SDOCT. Therefore the axial scan rate is determined by the data acquisition speed of the DAQ system, which is as fast as 60 MHz in the present system. The speed 16 KHz of the resonant scanner determines the frame rate. Only one scanning direction was used for data acquisition (50 % duty), which leads to the sampling time of µ s per frame axial scans are acquired per frame, however the lateral scanning with a resonant scanner is highly nonlinear and only 1400 axial scans are used discarding 475 axial scans. 3. RESULTS The dynamic range, measured as a function of the imaging depth, is shown in Fig. 2. The dynamic range was determined as the ratio between the peak value of the point spread function (PSF) and the noise floor when the sample arm is not blocked. From the result, the dynamic range is estimated to be about 40 db at all depths, slightly decreasing as the depth increases. A merit of ODOCT is that the spectral width ( δλ = nm) detected at each channel of AWG is narrower 2 than the frequency step of 25 GHz. The effective coherence length is estimate tobe l = (2ln 2/ π )( λ / δλ) = 9. 7 mm, c c which is longer than the depth range z = c / 4δf = 3. 0 mm determined by the frequency interval δ f. Here, c is the velocity of light. The coherence length, about three times longer than the depth range, is consistent with the nearly constant dynamic range all over the depth range. The dynamic range of 40 db is marginally sufficient for biological tissue measurements. Proc. of SPIE Vol M2

3 Figure 2. Point spread functions (PSF) as a function of the axial position of mirror placed at the sample position. Signal power is indicated at the left vertical axis. The reflection was attenuated with 39.3 db with neutral density filters. The thick solid curve is the noise floor measured with the sample light blocked. Sensitivity determined by these values are scaled at the right hand side vertical scale. The PSFs shown in Fig. 2 were measured by attenuating the reflected signal from the mirror at the sample position by 39.3 db using neutral filters. The thick solid curve shown in Fig. 2 is the noise when the sample arm was blocked (reference noise floor). By adding 39.3 db to the observed peak height values measured from the reference noise floor level, we can determine the experimental sensitivity. The sensitivity is shown in the right hand vertical axis in Fig. 2. The sensitivity is 88 db at the depth of 0.28 mm and decreases slightly to 86 db at the depth of 2.7 mm, the mean being 87 db. The sensitivity is not sufficient to observe a typical biological tissue signal intensity of 55 db with above mentioned dynamic range of 40 db. In the case, sensitivity of better than 95 db is require Fig. 3. Interferogram (left) and the peak profile (right) obtained by Fourier transform of the interferogram. Proc. of SPIE Vol M3

4 r A few factors affect frequency dependence of an interferogram. Those factors are frequency dependence of the ouput power of the SLD source, frequency dependence of amplification of the optical amplifiers, channel dependence of the insertion loss of the AWGs, and variations of the amplification of photoreceivers from one to another. The dependence can be determined experimentally for correction of the observed interferograms. An interferogarm observed placing a mirror at the depth of 287 µ m is depicted in Fig. 3 (a). The discrete Fourier transform of the signal is shown in Fig. 3 (b) in linear vertical scale. From FWHM of the peak, resolution is determined as 23 µ m. For a rectangular profile of the source power with frequency span of f = 6. 4 THz ( GHz), the resolution is estimated as δ z = 2.78c / 2π f = 21 µ m. 6 The observed value is consistent with this theoretical limit. Figure 4 (a) shows OCT images of human finger skin obtained at 60,000,000 axial scans per second with OD OCT system. A part of lateral scan is shown. The penetration depth of the image is about 1 mm, which is shallow compared with usually obtained about 2mm penetration depth with SSOCT or SDOCT. This is due to the low sensitivity. In order to render 3D image, a number of OCT cross sections are required. For that purpose, due to limited memory, we need to reduce the sampling rate to 10 MHz. An OCT image obtained at 10 MHz sampling rate is shown in Fig.. 4 (b). There is not much difference in quality between the two images shown Fig. 4. &..: t.; I.... I.. Fig. 4 OCT image of finger skin observed (a) 60 MHz sampling rate and (b) 10 MHz sampling rate. 3D rendering of OCT image is shown in Fig. 5. Fig. 5. 3D rendering OCT image acquired at 10,000,000 axial scans per sec. 4. SUMMARY In conclusion, we have demonstrated OCT imaging at record high speed of 60,000,000 axial scans per second. Proc. of SPIE Vol M4

5 ACKNOWLEDGEMENTS This research is supported by System Development Programs for Advanced Measurement and Analysis of Japan Science and Technology Agency (JST). Authors express sincere thanks to Dr. A. Himeno with NTT Electronics Corporation and Dr. K. Kato with NTT Photonics Laboratories for valuable discussions. 1 REFERENCES D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, ans J. G. Fujimoto, Science 254, 1178 (1991). 2 R. Huber, D. C. Adler and J. G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s, Opt. Lett. 31, (2006) 3 S. Moon and D. Y. Kim, Ultrahighspeed optical coherence tomography with a stretched pulse supercontinuum source, Opt. Express 14, (2006) 4 Y. K. Tao, M. Zhao, and J. A. Izatt Highspeed complex sonjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation, Opt. Lett. 32, (2007). 5 T. Amano, H. Hirooka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu and K. Ohbayashi, Optical frequencydomain reflectometry with a rapid wavelengthscanning superstructuregrating distributed Bragg reflector laser, Appl. Opt. 44, (2005) 6 D. Choi, T. Amano, H. Hirooka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu and K. Ohbayashi, Tissue imaging by OFDROCT using an SSGDBR laser, Proc. SPIE 5690, (2005). 7 H. Furukawa, H. Hirooka, T. Amano, D. H. Choi, T. Miyazawa, R. Yoshimura. K. Shimizu and K. Ohbayashi, Reconstruction of threedimensional structure of an extracted tooth by OFDROCT, Proc. SPIE 6079, 60790T T7 (2006). 8 K. Ohbayashi, T. Amano, H. Hirooka, F. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, Discretely swept opticalfrequency domain imaging toward highresolution, highspeed, hghsensitivity and longdepthrange, SPIE 6429, 64291G G7 (2007). 9 K. Ohbayashi, P. Jayavel, T. Amano and K. Asaka, Enhancement of OFDROCT sensitivity using semiconductor optical amplifier, SPIE 6429, 64291I I6 (2007). 10 K. Asaka and K. Ohbayashi, Dispersion compensation in OFDIOCT by using dispersion shifted fiber, SPIE 6429, (2007) 11 H. Furukawa, T. Amano, D. Choi, H. Hirooka, K. Ohbyashi, Highspeed opticalfrequency domain imaging by one frame imaging within one single frequency sweep, SPIE 6429, 6429D1 6429D5 (2007). 12 D. Choi, H. Hirooka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii and K. Ohbayashi, A Method of improving Scanning Speed and Resolution of OFDROCT Using Multiple SSGDBR Lasers Simultaneously, SPIE 6429, 64292E E7. 13 K. Okamoto, Fundamentals of Optical Waveguides, Academic Press, Amsterdam, Proc. of SPIE Vol M5

Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism

Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism VI Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism Fang-Wen Sheu and Pei-Ling Luo Department of Applied Physics, National Chiayi University, Chiayi

More information

Optical coherence tomography

Optical coherence tomography Optical coherence tomography Peter E. Andersen Optics and Plasma Research Department Risø National Laboratory E-mail peter.andersen@risoe.dk Outline Part I: Introduction to optical coherence tomography

More information

Frequency comb swept lasers

Frequency comb swept lasers Frequency comb swept lasers Tsung-Han Tsai 1, Chao Zhou 1, Desmond C. Adler 1, and James G. Fujimoto 1* 1 Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,

More information

High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength

High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer Harvard Medical School and Wellman Center of Photomedicine,

More information

Frequency comb swept lasers

Frequency comb swept lasers Frequency comb swept lasers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Tsai, Tsung-Han et al.

More information

Frequency comb swept lasers for optical coherence tomography

Frequency comb swept lasers for optical coherence tomography Frequency comb swept lasers for optical coherence tomography The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line

Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line Min Gyu Hyeon, 1 Hyung-Jin Kim, 2 Beop-Min Kim, 1,2,4 and Tae Joong Eom 3,5 1 Department

More information

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography Günay Yurtsever *,a, Pieter Dumon a, Wim Bogaerts a, Roel Baets a a Ghent University IMEC, Photonics

More information

Laser Sources for Frequency-Domain Optical Coherence Tomography FD-OCT

Laser Sources for Frequency-Domain Optical Coherence Tomography FD-OCT Laser Sources for Frequency-Domain Optical Coherence Tomography FD-OCT Photonic Sensing Workshop SWISSLaser.Net Biel, 17. 9. 2009 Ch. Meier 1/ 20 SWISSLASER.NET Ch. Meier 17.09.09 Content 1. duction 2.

More information

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography 3. The Art of OCT Dr. Gereon Hüttmann / 2009 System perspective (links clickable) Light sources Superluminescent diodes

More information

High-speed imaging of human retina in vivo with swept-source optical coherence tomography

High-speed imaging of human retina in vivo with swept-source optical coherence tomography High-speed imaging of human retina in vivo with swept-source optical coherence tomography H. Lim, M. Mujat, C. Kerbage, E. C. W. Lee, and Y. Chen Harvard Medical School and Wellman Center for Photomedicine,

More information

Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG

Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG PHOTONIC SENSORS / Vol. 5, No. 3, 215: 251 256 Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG Radu-Florin STANCU * and Adrian PODOLEANU Applied Optics Group, School of Physical

More information

High-Coherence Wavelength Swept Light Source

High-Coherence Wavelength Swept Light Source Kenichi Nakamura, Masaru Koshihara, Takanori Saitoh, Koji Kawakita [Summary] Optical technologies that have so far been restricted to the field of optical communications are now starting to be applied

More information

some aspects of Optical Coherence Tomography

some aspects of Optical Coherence Tomography some aspects of Optical Coherence Tomography SSOM Lectures, Engelberg 17.3.2009 Ch. Meier 1 / 34 Contents 1. OCT - basic principles (Time Domain Frequency Domain) 2. Performance and limiting factors 3.

More information

Sinusoidal wavelength-scanning common-path interferometer with a beam-scanning system for measurement of film thickness variations

Sinusoidal wavelength-scanning common-path interferometer with a beam-scanning system for measurement of film thickness variations Sinusoidal wavelength-scanning common-path interferometer with a beam-scanning system for measurement of film thickness variations Osami Sasaki, Takafumi Morimatsu, Samuel Choi, and Takamasa Suzuki Faculty

More information

Optical Coherence Tomography Systems and signal processing in SD-OCT

Optical Coherence Tomography Systems and signal processing in SD-OCT Optical Coherence Tomography Systems and signal processing in SD-OCT Chandan S.Rawat 1, Vishal S.Gaikwad 2 1 Associate Professor V.E.S.I.T., Mumbai chandansrawat@gmail.com 2 P.G.Student, V.E.S.I.T., Mumbai

More information

Citation for published version (APA): Nguyen, D. V. (2013). Integrated-optics-based optical coherence tomography

Citation for published version (APA): Nguyen, D. V. (2013). Integrated-optics-based optical coherence tomography UvA-DARE (Digital Academic Repository) Integrated-optics-based optical coherence tomography Nguyen, Duc Link to publication Citation for published version (APA): Nguyen, D. V. (2013). Integrated-optics-based

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm

Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford Photonics Systems Integration Lab University of California San Diego Jacobs School of Engineering Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

More information

White-light interferometry, Hilbert transform, and noise

White-light interferometry, Hilbert transform, and noise White-light interferometry, Hilbert transform, and noise Pavel Pavlíček *a, Václav Michálek a a Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics, 17. listopadu

More information

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

More information

Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer

Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer Michael North Morris, James Millerd, Neal Brock, John Hayes and *Babak Saif 4D Technology Corporation, 3280 E. Hemisphere Loop Suite 146,

More information

6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System

6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System 6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System TAKAHASHI Masanori, OTA Hiroyasu, and ARAI Ken Ichi An optically scanning electromagnetic field probe system consisting

More information

Design of a Swept-Source, Anatomical OCT System for Pediatric Bronchoscopy

Design of a Swept-Source, Anatomical OCT System for Pediatric Bronchoscopy Design of a Swept-Source, Anatomical OCT System for Pediatric Bronchoscopy Kushal C. Wijesundara a, Nicusor V. Iftimia c, and Amy L. Oldenburg a,b a Department of Physics and Astronomy and the b Biomedical

More information

All-Optical Signal Processing and Optical Regeneration

All-Optical Signal Processing and Optical Regeneration 1/36 All-Optical Signal Processing and Optical Regeneration Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction Major Nonlinear Effects

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

Extended coherence length megahertz FDML and its application for anterior segment imaging

Extended coherence length megahertz FDML and its application for anterior segment imaging Extended coherence length megahertz FDML and its application for anterior segment imaging Wolfgang Wieser, 1 Thomas Klein, 1 Desmond C. Adler, 2 Francois Trépanier, 3 Christoph M. Eigenwillig, 1 Sebastian

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors

Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors Mantas Zurauskas, * John Rogers, and Adrian Gh. Podoleanu Applied Optics Group,

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1 Lecture 8 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 8, Slide Bit error

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology Dejiao Lin, Xiangqian Jiang and Fang Xie Centre for Precision Technologies,

More information

High-speed optical frequency-domain imaging

High-speed optical frequency-domain imaging High-speed optical frequency-domain imaging S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma Harvard Medical School and Wellman Laboratories for Photomedicine, Massachusetts General

More information

Customized Lasers for Specific Swept Source OCT Applications. Bill Ahern Axsun Technologies, Inc. June 20, 2013

Customized Lasers for Specific Swept Source OCT Applications. Bill Ahern Axsun Technologies, Inc. June 20, 2013 Customized Lasers for Specific Swept Source OCT Applications Bill Ahern Axsun Technologies, Inc. June 20, 2013 Outline Axsun Overview Axsun Technology and Manufacturing Axsun OCT Laser Platform Laser Operation

More information

Fourier Domain (Spectral) OCT OCT: HISTORY. Could OCT be a Game Maker OCT in Optometric Practice: A THE TECHNOLOGY BEHIND OCT

Fourier Domain (Spectral) OCT OCT: HISTORY. Could OCT be a Game Maker OCT in Optometric Practice: A THE TECHNOLOGY BEHIND OCT Could OCT be a Game Maker OCT in Optometric Practice: A Hands On Guide Murray Fingeret, OD Nick Rumney, MSCOptom Fourier Domain (Spectral) OCT New imaging method greatly improves resolution and speed of

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - I Part - I Objectives In this lecture you will learn the following WDM Components Optical Couplers Optical Amplifiers Multiplexers (MUX) Insertion

More information

Kit for building your own THz Time-Domain Spectrometer

Kit for building your own THz Time-Domain Spectrometer Kit for building your own THz Time-Domain Spectrometer 16/06/2016 1 Table of contents 0. Parts for the THz Kit... 3 1. Delay line... 4 2. Pulse generator and lock-in detector... 5 3. THz antennas... 6

More information

Multi-format all-optical-3r-regeneration technology

Multi-format all-optical-3r-regeneration technology Multi-format all-optical-3r-regeneration technology Masatoshi Kagawa Hitoshi Murai Amount of information flowing through the Internet is growing by about 40% per year. In Japan, the monthly average has

More information

Development of Etalon-Type Gain-Flattening Filter

Development of Etalon-Type Gain-Flattening Filter Development of Etalon-Type Gain-Flattening Filter by Kazuyou Mizuno *, Yasuhiro Nishi *, You Mimura *, Yoshitaka Iida *, Hiroshi Matsuura *, Daeyoul Yoon *, Osamu Aso *, Toshiro Yamamoto *2, Tomoaki Toratani

More information

Laser Beam Analysis Using Image Processing

Laser Beam Analysis Using Image Processing Journal of Computer Science 2 (): 09-3, 2006 ISSN 549-3636 Science Publications, 2006 Laser Beam Analysis Using Image Processing Yas A. Alsultanny Computer Science Department, Amman Arab University for

More information

Holography Transmitter Design Bill Shillue 2000-Oct-03

Holography Transmitter Design Bill Shillue 2000-Oct-03 Holography Transmitter Design Bill Shillue 2000-Oct-03 Planned Photonic Reference Distribution for Test Interferometer The transmitter for the holography receiver is made up mostly of parts that are already

More information

Contents. Acknowledgments. iii. 1 Structure and Function 1. 2 Optics of the Human Eye 3. 3 Visual Disorders and Major Eye Diseases 5

Contents. Acknowledgments. iii. 1 Structure and Function 1. 2 Optics of the Human Eye 3. 3 Visual Disorders and Major Eye Diseases 5 i Contents Acknowledgments iii 1 Structure and Function 1 2 Optics of the Human Eye 3 3 Visual Disorders and Major Eye Diseases 5 4 Introduction to Ophthalmic Diagnosis and Imaging 7 5 Determination of

More information

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Design and Analysis of Resonant Leaky-mode Broadband Reflectors 846 PIERS Proceedings, Cambridge, USA, July 6, 8 Design and Analysis of Resonant Leaky-mode Broadband Reflectors M. Shokooh-Saremi and R. Magnusson Department of Electrical and Computer Engineering, University

More information

Moving from biomedical to industrial applications: OCT Enables Hi-Res ND Depth Analysis

Moving from biomedical to industrial applications: OCT Enables Hi-Res ND Depth Analysis Moving from biomedical to industrial applications: OCT Enables Hi-Res ND Depth Analysis Patrick Merken a,c, Hervé Copin a, Gunay Yurtsever b, Bob Grietens a a Xenics NV, Leuven, Belgium b UGENT, Ghent,

More information

Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography

Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography 1492 J. Opt. Soc. Am. A/ Vol. 22, No. 8/ August 2005 Wang et al. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography Yimin Wang, Ivan Tomov,

More information

Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second

Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig and Robert Huber* Lehrstuhl

More information

Characterization of Chirped volume bragg grating (CVBG)

Characterization of Chirped volume bragg grating (CVBG) Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds

More information

Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts

Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma Harvard Medical School and Wellman Center

More information

Frequency Stabilization Using Matched Fabry-Perots as References

Frequency Stabilization Using Matched Fabry-Perots as References April 1991 LIDS-P-2032 Frequency Stabilization Using Matched s as References Peter C. Li and Pierre A. Humblet Massachusetts Institute of Technology Laboratory for Information and Decision Systems Cambridge,

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

Spectral domain optical coherence tomography of multi-mhz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second

Spectral domain optical coherence tomography of multi-mhz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second Spectral domain optical coherence tomography of multi-mhz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second Dong-hak Choi, 1 Hideaki Hiro-Oka, 1 Kimiya Shimizu, 2 and Kohji

More information

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis Differential measurement scheme for Brillouin Optical Correlation Domain Analysis Ji Ho Jeong, 1,2 Kwanil Lee, 1,4 Kwang Yong Song, 3,* Je-Myung Jeong, 2 and Sang Bae Lee 1 1 Center for Opto-Electronic

More information

Lecture 10. Dielectric Waveguides and Optical Fibers

Lecture 10. Dielectric Waveguides and Optical Fibers Lecture 10 Dielectric Waveguides and Optical Fibers Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Step-Index Fiber, Multimode and Single Mode Fibers Numerical Aperture, Coupling

More information

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Abstract: Speckle interferometry (SI) has become a complete technique over the past couple of years and is widely used in many branches of

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

Miniature Spectrographs: Characterization of Arrayed Waveguide Gratings for Astronomy

Miniature Spectrographs: Characterization of Arrayed Waveguide Gratings for Astronomy Miniature Spectrographs: Characterization of Arrayed Waveguide Gratings for Astronomy Nick Cvetojevic *ab, Nemanja Jovanovic ab, Joss Bland-Hawthorn c, Roger Haynes d, Jon Lawrence ab a Department of Physics

More information

Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm

Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm Journal of the Korean Physical Society, Vol. 55, No. 6, December 2009, pp. 2354 2360 Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Ultrasound Imaging. Phased Arrays. Resolution of Imaging System. Imaging by sound waves. Many of same principles applied to RADAR

Ultrasound Imaging. Phased Arrays. Resolution of Imaging System. Imaging by sound waves. Many of same principles applied to RADAR Ultrasound Imaging Imaging by sound waves Just like SONAR Many of same principles applied to RADAR phased arrays Doppler synthetic apertures Phased Arrays Simulate large optic (antenna) by adjusting timing

More information

Swept Wavelength Testing:

Swept Wavelength Testing: Application Note 13 Swept Wavelength Testing: Characterizing the Tuning Linearity of Tunable Laser Sources In a swept-wavelength measurement system, the wavelength of a tunable laser source (TLS) is swept

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Holography as a tool for advanced learning of optics and photonics

Holography as a tool for advanced learning of optics and photonics Holography as a tool for advanced learning of optics and photonics Victor V. Dyomin, Igor G. Polovtsev, Alexey S. Olshukov Tomsk State University 36 Lenin Avenue, Tomsk, 634050, Russia Tel/fax: 7 3822

More information

Optical frequency switching scheme for a high-speed broadband THz measurement system based on the photomixing technique

Optical frequency switching scheme for a high-speed broadband THz measurement system based on the photomixing technique Vol. 25, No. 10 15 May 2017 OPTICS EXPRESS 11767 Optical frequency switching scheme for a high-speed broadband THz measurement system based on the photomixing technique HAJUN SONG, SEJIN HWANG, AND JONG-IN

More information

OPTICAL coherence tomography (OCT) is a noninvasive

OPTICAL coherence tomography (OCT) is a noninvasive IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 2, FEBRUARY 2008 485 Analog CMOS Design for Optical Coherence Tomography Signal Detection and Processing Wei Xu, David L. Mathine, Member, IEEE,

More information

Transmitting Light: Fiber-optic and Free-space Communications Holography

Transmitting Light: Fiber-optic and Free-space Communications Holography 1 Lecture 9 Transmitting Light: Fiber-optic and Free-space Communications Holography 2 Wireless Phone Calls http://havilandtelconews.com/2011/10/the-reality-behind-wireless-networks/ 3 Undersea Cable and

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

HR2000+ Spectrometer. User-Configured for Flexibility. now with. Spectrometers

HR2000+ Spectrometer. User-Configured for Flexibility. now with. Spectrometers Spectrometers HR2000+ Spectrometer User-Configured for Flexibility HR2000+ One of our most popular items, the HR2000+ Spectrometer features a high-resolution optical bench, a powerful 2-MHz analog-to-digital

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

How to build an Er:fiber femtosecond laser

How to build an Er:fiber femtosecond laser How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Konstanz Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Frequency comb laser Time domain : pulse train

More information

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection Adnan H. Ali Technical college / Baghdad- Iraq Tel: 96-4-770-794-8995 E-mail: Adnan_h_ali@yahoo.com Received: April

More information

Megahertz FDML Laser with up to 143nm Sweep Range for Ultrahigh Resolution OCT at 1050nm

Megahertz FDML Laser with up to 143nm Sweep Range for Ultrahigh Resolution OCT at 1050nm Megahertz FDML Laser with up to 143nm Sweep Range for Ultrahigh Resolution OCT at 1050nm Jan Philip Kolb 1,2, Thomas Klein 2,3, Mattias Eibl 1,2, Tom Pfeiffer 1,2, Wolfgang Wieser 2,3 and Robert Huber

More information

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM Progress In Electromagnetics Research Letters, Vol. 6, 115 121, 2009 AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM M. He, J. Jiang, J. Han,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Signal Processing in Acoustics Session 1pSPa: Nearfield Acoustical Holography

More information

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory ULTRAFAST THEORY The distinguishing aspect of femtosecond laser optics design is the need to control the phase characteristic of the optical system over the requisite wide pulse bandwidth. CVI Laser Optics

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) Patent numbers: Canada 2,494,133, USA 7095931, 7295731, China 1672073, and Europe 03766088.3, EP1527363 Features: Telcordia GR-468 qualified Available

More information

University of Central Florida. Mohammad Umar Piracha University of Central Florida. Doctoral Dissertation (Open Access)

University of Central Florida. Mohammad Umar Piracha University of Central Florida. Doctoral Dissertation (Open Access) University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) A Laser Radar Employing Linearly Chirped Pulses From A Mode-locked Laser For Long Range, Unambiguous,

More information

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro Fiber Bragg Gratings for DWDM Optical Networks Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro Overview Introduction. Fabrication. Physical properties.

More information

A WDM passive optical network enabling multicasting with color-free ONUs

A WDM passive optical network enabling multicasting with color-free ONUs A WDM passive optical network enabling multicasting with color-free ONUs Yue Tian, Qingjiang Chang, and Yikai Su * State Key Laboratory of Advanced Optical Communication Systems and Networks, Department

More information

NEW NEW OPTICAL DELAY LINES

NEW NEW OPTICAL DELAY LINES Features: Low loss Sub-picosecond resolution Wide wavelength range New: Over 600 psec delay range Polarization insensitive Singlemode and polarization maintaining fiber versions Electrically controlled

More information

Rotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition

Rotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition Rotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition V. K. Beri, Amit Aran, Shilpi Goyal, and A. K. Gupta * Photonics Division Instruments Research and Development

More information

GRENOUILLE.

GRENOUILLE. GRENOUILLE Measuring ultrashort laser pulses the shortest events ever created has always been a challenge. For many years, it was possible to create ultrashort pulses, but not to measure them. Techniques

More information

An Introduction to Spectrum Analyzer. An Introduction to Spectrum Analyzer

An Introduction to Spectrum Analyzer. An Introduction to Spectrum Analyzer 1 An Introduction to Spectrum Analyzer 2 Chapter 1. Introduction As a result of rapidly advancement in communication technology, all the mobile technology of applications has significantly and profoundly

More information

Evaluation of Scientific Solutions Liquid Crystal Fabry-Perot Etalon

Evaluation of Scientific Solutions Liquid Crystal Fabry-Perot Etalon Evaluation of Scientific Solutions Liquid Crystal Fabry-Perot Etalon Testing of the etalon was done using a frequency stabilized He-Ne laser. The beam from the laser was passed through a spatial filter

More information

Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers

Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers Chang Wan Son* a,b, Sang Hun Kim a, Young Min Jhon a, Young Tae Byun a, Seok Lee a, Deok Ha Woo a,

More information

Directional coupler (2 Students)

Directional coupler (2 Students) Directional coupler (2 Students) The goal of this project is to make a 2 by 2 optical directional coupler with a defined power ratio for the two output branches. The directional coupler should be optimized

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

Simulation of semiconductor modelocked ring lasers with monolithically integrated pulse shaping elements

Simulation of semiconductor modelocked ring lasers with monolithically integrated pulse shaping elements Simulation of semiconductor modelocked ring lasers with monolithically integrated pulse shaping elements Martijn Heck, Yohan Barbarin, Erwin Bente Daan Lenstra Meint Smit Richard Nötzel, Xaveer Leijtens,

More information

DWDM millimeter-wave radio-on-fiber systems

DWDM millimeter-wave radio-on-fiber systems DWDM millimeter-wave radio-on-fiber systems Hiroyuki Toda a, Toshiaki Kuri b, and Ken-ichi Kitayama c a Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto, Japan 610-0321; b National Institute

More information