4.5 Biasing in BJT Amplifier Circuits


 Gavin Webb
 2 years ago
 Views:
Transcription
1 4/5/011 secion 4_5 Biasing in MOS Amplifier Circuis 1/ 4.5 Biasing in BJT Amplifier Circuis eading Assignmen: 8086 Now le s examine how we C bias MOSFETs amplifiers! f we don bias properly, disorion can resul! EXAMPLE: MOSFET AMPLFE STOTON There is a classic bias circui for MOSFET amplifiers; le s see wha i is! HO: MOSFET BASNG USNG A SNGLE POWE SUPPLY Le s do an example C bias design. EXAMPLE: BASNG OF SCETE MOSFET AMPLFES We can also use a C curren source o bias he Amplifier. Q: Yes, bu jus how do we consruc a curren source? A: HO:THE MOSFET CUENT MO HO: CUENT STEENG CCUTS Jim Siles The Univ. of Kansas ep. of EECS
2 4/5/011 secion 4_5 Biasing in MOS Amplifier Circuis / HO: MOSFET BASNG USNG CUENT MOS EXAMPLE: MOSFET BASNG USNG CUENT MOS Jim Siles The Univ. of Kansas ep. of EECS
3 4/5/011 Example MOSFET Amplifier isorion 1/9 Example: MOSFET Amplifier isorion ecall his circui from a previous handou: i ( ) = i ( ) d 15.0 = 5K v ( ) = v ( ) O o vi( ) K = 0.5 ma/ = We found ha he smallsignal volage gain is: A vo vo( ) = = 5.0 v ( ) i
4 4/5/011 Example MOSFET Amplifier isorion /9 Say he inpu volage o his amplifier is: v ( ) = cosω i Q: Wha is he larges value ha i can ake wihou producing a disored oupu? i A: Well, we know ha he smallsignal oupu is: v ( ) = A v ( ) o vo i = 5.0 cosω BUT, his is no he oupu volage! i The oal oupu volage is he sum of he smallsignal oupu volage and he C oupu volage! Noe for his example, he C oupu volage is he C drain volage, and we recall we deermined in an earlier handou ha is value is: O = = 10 Thus, he oal oupu volage is : v ( ) = v ( ) O o = cosω i
5 4/5/011 Example MOSFET Amplifier isorion 3/9 is very imporan ha you realize here is a limi on boh how high and how low he oal oupu volage v ( ) can go! O Tha s righ! f he oal oupu volage v ( ) ries o exceed O hese limis even for a momen hemosfet will leave sauraion mode. And leaving sauraion mode resuls in signal disorion!
6 4/5/011 Example MOSFET Amplifier isorion 4/9 Le s break he problem down ino wo separae problems: 1) f oal oupu volage v ( ) becomes oo small, he MOSFET will ener he riode mode. ) f oal oupu volage v ( ) becomes oo large, he MOSFET will ener cuoff. O O We ll firs consider problem 1. For a MOSFET o remain in sauraion, v ( ) mus remain greaer han he excess gae volage ( ) v ( ) > S S for all ime. Since he source erminal of he MOSFET in his circui is conneced o ground, we know ha = 0. Theore: vs ( ) = v( ) = vo ( ) and = G And so he MOSFET will remain in sauraion only if he oal oupu volage remains larger han = G! S v ( ) > O G
7 4/5/011 Example MOSFET Amplifier isorion 5/9 Thus, we conclude for his amplifier ha he oupu floor is: L = G And since = 4.0 and =.0, we find: G L = = 4 =.0 G Thus, o remain in sauraion, he oal oupu volage mus remain larger han he floor volage L for all ime : Since his oal volage is: v ( ) > L =.0 O v ( ) = cosω O we can deermine he maximum value of smallsignal inpu magniude i : i cosω > > 5.0 cosω cosω < 1.6 i i i
8 4/5/011 Example MOSFET Amplifier isorion 6/9 Since cosω can be as large as 1.0, we find ha he magniude of he inpu volage can be no larger han 1.6, i.e., i < 1.6 f he inpu magniude exceeds his value, he MOSFET will (momenarily) leave he sauraion region and ener he dreaded riode mode! Now le s consider problem For he MOSFET o remain in sauraion, he drain curren mus be greaer han zero (i.e., i > 0 ). Oherwise, he MOSFET will ener cuoff mode. Applying Ohm s Law o he drain resisor, we find he drain curren is: vo 15 vo i = = 5 C i is eviden ha drain curren is posiive only if v < 15. n oher words, he upper limi (i.e., he ceiling ) on he oal oupu volage is: L = = 15.0 O Since: v ( ) = cosω O i
9 4/5/011 Example MOSFET Amplifier isorion 7/9 we can conclude ha in order for he MOSFET o remain in sauraion mode: cosω > 15.0 Theore, we find: i 5.0 s cosω > = Since cosω 1, he above equaion means ha he inpu signal magniude i can be no larger han: i < 1.0 f he inpu magniude exceeds 1.0, he MOSFET will (momenarily) leave he sauraion and ener he cuoff region! n summary: 1) f i > 1.6, he MOSFET will a imes ener riode, and disorion will occur! ) f 1.0 i >, he MOSFET will a imes ener cuoff, and even more disorion will occur!
10 4/5/011 Example MOSFET Amplifier isorion 8/9 To demonsrae his, le s consider hree examples: 1. i < 1.0 The oupu signal in his case remains beween = 15.0 and =.0 for all ime. Theore, he oupu signal is no G disored. L = = 15 v ( ) O = O 10 L = = G. 1.6 > i > 1.0 The oupu signal in his case remains greaer han L = G = for all ime. However, he smallsignal oupu is now large enough so ha he oal oupu volage a imes ries o exceed L = = 15. For hese imes, he MOSFET will ener cuoff, and he oupu signal will be disored.
11 4/5/011 Example MOSFET Amplifier isorion 9/9 L = = 15 v ( ) O = O 10 L = = G 3. > 1.6 i n his case, he smallsignal inpu signal is sufficienly large so ha he oal oupu will aemp o exceed boh limis (i.e., = 15.0 and G =.0 ). Theore, here are periods of ime when he MOSFE will be in cuoff, and periods when he MOSFET will be in sauraion. L = = 15 v ( ) O = O 10 L = = G
12 4/5/011 MOSFET Biasing using a Single Power Supply 1/9 MOSFET Biasing using a Single Power Supply The general form of a singlesupply MOSFET amplifier biasing circui is: 1 S S Jus like BJT biasing, we ypically aemp o saisfy hree main bias design goals: 1) Maximize Gain Typically, he smallsignal volage gain of a MOSFET amplifier will be proporional o ransconducance g m :
13 4/5/011 MOSFET Biasing using a Single Power Supply /9 A vo g m Thus, o maximize he amplifier volage gain, we mus maximize he MOSFET ransconducance. Q: Wha does his have o do wih.c. biasing? A: ecall ha he ransconducance depends on he C excess gae volage: ( ) g = K m Anoher way o consider ransconducance is o express i in erms of C drain curren. ecall his C curren is relaed o he C excess gae volage (in saureaion!) as: ( ) ( ) = = K And so ransconducance can be alernaively expressed as: K g = K ( ) = K = K K m Theore, he amplifier volage gain is ypically proporional o he squareroo of he C drain curren: A vo
14 4/5/011 MOSFET Biasing using a Single Power Supply 3/9 To maximize A vo, maximize ) Maximize olage Swing ecall ha if he C drain volage is biased oo close o, hen even a small smallsignal drain volage vd ( ) can resul in a oal drain volage ha is oo large, i.e.: v ( ) = v ( ) d n oher words, he MOSFET eners cuoff, and he resul is a disored signal! To avoid his (o allow vd ( ) o be as large as possible wihou MOSFET enering cuoff), we need o bias our MOSFET such ha he C drain volage is as small as possible. Noe ha he drain volage is: = Theore is minimized by designing he bias circui such ha he C drain curren is as large as possible.
15 4/5/011 MOSFET Biasing using a Single Power Supply 4/9 However, we mus also consider he signal disorion ha occurs when he MOSFET eners riod. This of course is avoided if he oal volage drainosource remains greaer han he excess gae volage, i.e.: ( ) vs( ) = S vds( ) > Thus, o avoid he MOSFET riode mode and he resuling signal disorion we need o bias our MOSFET such ha he C volage S is as large as possible. To minimize signal disorion, maximize S 3) Minimize Sensiiviy o changes in K, We find ha MOSFETs are sensiive o emperaure specifically, he value of K is a funcion of emperaure. Likewise, he values of K and hreshold volage are no paricularly consan wih regard o he manufacuring process. Boh of hese facs lead o he requiremen ha our bias design be insensiive o he values of K and. Specifically, we wan o design he bias nework such ha he C bias curren does no change values when K and/or does.
16 4/5/011 MOSFET Biasing using a Single Power Supply 5/9 Mahemaically, we can express his requiremen as minimizing he value: d d and dk d Similar o he BJT, we find ha hese derivaives are minimized by maximizing he value of source resisor S. To minimize d dk, maximize S So, le s recap wha we have learned abou designing our bias nework: 1. Make as large as possible.. Make S as large as possible. 3. Make S as large as possible. Again analogous o BJT biasing, we find ha hese hree goals are conflicing, as hey are consrained by he KL equaion of he bias circui:
17 4/5/011 MOSFET Biasing using a Single Power Supply 6/9 1 S S = 0 S S or S S = Maximize A vo by maximizing his erm. Minimize disorion by maximizing his erm. Minimize sensiiviy by maximizing his erm. Bu he oal of he hree erms mus equal his!
18 4/5/011 MOSFET Biasing using a Single Power Supply 7/9 esolving his conflic is a subjec choice of he amplifier designer. However, here is a ruleofhumb procedure. However, verify ha hese resuls saisfy your design requiremens (or he requiremens assigned o you by your boss and/or professor!). 1. Given he desired value of, make source volage S = 4, i.e. se he source resisor S o: S = s = 4 (1) This value reduces he sensiiviy d dk!. Now deermine he required value of. Since = K( ), we find ha should be: = K 3. Se he required value of gae volage G. Noe ha: = G S Thus, we can add he resuls of he previous wo seps o find he required value of he gae volage G.
19 4/5/011 MOSFET Biasing using a Single Power Supply 8/9 To se he gae volage o his value, we mus selec he proper values of resisors 1 and. Since he gae curren is zero ( i = 0), we find from volage G division ha: G = = () Noe his equaion deermines he raio of resisors 1 and, bu no he resisors hemselves. We need a second equaion o explicily deermine he resisors values he sum of he wo resisances, for example. We find ha making he resisances 1 and as large as possible is very desirable! This will ypically maximize he amplifier inpu resisance, as well as resul in minimum power dissipaion. As a resul, we make he resisors as large a pracicable. For example: = 50 K (3) 1 4. Se he required value of C drain volage. ecall ha: a) we require = L o avoid cuoff mode.
20 4/5/011 MOSFET Biasing using a Single Power Supply 9/9 b) and, we require ha G = L o avoid riode mode. Soluion: se he drain volage o a value halfway beween and! G n oher words, se he C drain volage o be: ( ) G = To achieve his, we mus selec he drain resisor so ha: ( ) G = = (4) Thus, use equaions (1), (), (3), and (4) o deermine he sandard C bias design (i.e., 1,, S, and ) for MOSFET amplifiers. f were you, d make sure undersood his maerial well enough ha could also bias a nonsandard MOSFET amplifier problem. s no enough o simply know how, you mus also know why!
21 4/5/011 Example Biasing of iscree MOSFET Amplifiers 1/4 Example: Biasing of iscree MOSFET Amplifiers S S f he MOSFET has device values K = 10. ma/ and = 10., deermine he resisor values o bias his MOSFET wih a C drain curren of: = 4 ma 1. Given he desired value of, make source volage s = 4 = 4. 0, i.e. se he source resisor S o: S s 40. = = = 1K Ω 40.
22 4/5/011 Example Biasing of iscree MOSFET Amplifiers /4. Now deermine he required value of. Since = K( ), we find ha should be: = K 40. = = Se he required value of gae volage G. = G S = = 70. Since he gae curren is zero ( i = 0), we find from volage G division ha: = G 1 1 Theore: 1 = 1 G = = 7
23 4/5/011 Example Biasing of iscree MOSFET Amplifiers 3/4 We need a second equaion o explicily deermine he resisors values he sum of he wo resisances, for example. We make he resisors as large a pracicable. For example: Theore: and hus: = 40 K 1 9 = = 40 7 = 135 K Ω and = 105 KΩ 1 4. Se he required value of C drain volage. Se he drain volage o a value halfway beween and! G n oher words, se he C drain volage o be: ( ) G = = = (.. )
24 4/5/011 Example Biasing of iscree MOSFET Amplifiers 4/4 To achieve his, we mus selec he drain resisor so ha: = = 40. = 15. KΩ K 15K. 105 K 1K S
25 4/5/011 The MOSFET Curren Mirror 1/6 The MOSFET Curren Mirror Consider he following MOSFET circui: Noe =, heore: G S = and hus: > S So, if >, hen he MOSFET is in sauraion! We know ha for a MOSFET in sauraion, he drain curren is equal o: = K ( ) Say we wan his curren o be a specific value call i. Since s = 0, we find ha from he above equaion, he drain volage mus be: = K
26 4/5/011 The MOSFET Curren Mirror /6 Likewise, from KL we find ha: = And hus he resisor value o achieve he desired drain curren is: = where: Q: Why are we doing his? = K A: Say we now add anoher componen o he circui, wih a second MOSFET ha is idenical o he firs : L L 1
27 4/5/011 The MOSFET Curren Mirror 3/6 Q: So wha is curren L? A: Noe ha he gae volage of each MOSFET is he same (i.e., = ), and if he MOSFETS are he same (i.e., 1 K = K = ), and if he second MOSFET is likewise in, 1 1 sauraion, is drain curren is: L ( ) ( ) = K L = K = Theore, he drain curren of he second MOSFET is equal o he curren of he firs! = L Q: Wai a minue! You mean o say ha he curren hrough he resisor L is independen of he value of resisor L? A: Absoluely! As long as he second MOSFET is in sauraion, he curren hrough L is equal o period. The curren hrough L is independen on he value of L (provided ha he MOSFET remains in sauraion). Think abou wha his means his device is a curren source!
28 4/5/011 The MOSFET Curren Mirror 4/6 L L Curren Source emember, he second MOSFET mus be in sauraion for he curren hrough L o be a consan value. As a resul, we find ha: > S or for his example, since s = 0 : > G Since =, we find ha in order for he MOSFET L o be in sauraion: > = L G G1 1 Or, saed anoher way, we find ha he load resisor L can be no larger han:
29 4/5/011 The MOSFET Curren Mirror 5/6 G1 1 < L Where we know ha: = G 1 and hus we can alernaively wrie he above equaion as: 1 < L f he load resisor becomes larger han, he 1 volage will drop below he excess gae volage, S and hus he second MOSFET will ener he riode region. As a resul, he drain curren will no equal he curren source will sop working! Alhough he circui presened here is someimes erred o as a curren sink, undersand ha he circui is clearly a way of designing a curren source.
30 4/5/011 The MOSFET Curren Mirror 6/6 We can also use PMOS devices o consruc a curren mirror! SS 1 SS This beer be in sauraion! L L L =, regardless of he value of L!!!
31 4/7/011 Curren Seering Circuis 1/3 Curren Seering Circuis A curren mirror may consis of many MOSFET curren sources! L1 = L = L1 L L3 L3 = Q Q 1 Q Q 3 This circui is paricularly useful in inegraed circui design, where one resisor is used o make muliple curren sources. Q: Wha if we wan o make he sources have differen curren values? o we need o make addiional curren mirrors? A: NO!! ecall ha he curren mirror simply ensures ha he gae o source volages of each ransisor is equal o he gae o source volage of he erence:
32 4/7/011 Curren Seering Circuis /3 = = = = 1 3 Theore, if each ransisor is idenical (i.e., K = K1 =, and = = = ) hen: 1 n ( ) ( n n ) = K = K = n oher words, if each ransisor Q n is idenical o Q, hen each curren n will equal erence curren. n Bu, consider wha happens if he MOSFETS are no idenical. Specifically, consider he case where Kn K (bu = ). emember, we know ha n = sill, even when Kn K. Thus, he drain curren n will now be: n n n ( ) = K n n ( ) = K = Kn K K n = K The drain curren is a scaled value of! n
33 4/7/011 Curren Seering Circuis 3/3 For example, if K 1 is wice ha of K (i.e., K 1 = K ), hen 1 will be wice as large as (i.e., 1 = ). From he sandpoin of inegraed circui design, we can change he value of K by modifying he MOSFET channel widholengh raio (W/L) for each ransisor. W ( ) W ( ) W ( ) W ( ) 1 K k L L = = K 1 k L L n n n L1 = K K 1 L1 L L3 L = K K L3 = K K 3 Q Q 1 Q Q 3
34 4/7/011 MOSFET Biasing using a Curren Mirror 1/5 MOSFET Biasing using a Curren Mirror Jus as wih BJT amplifiers, we can likewise bias a MOSFET amplifier using a curren source: 1 K, S is eviden ha he C drain curren, is equal o he curren source, regardless of he MOSFET values K or! Thus, his bias design maximizes drain curren sabiliy! We now know how o implemen his bias design wih MOSFETs we use he curren mirror o consruc he curren source!
35 4/7/011 MOSFET Biasing using a Curren Mirror /5 1 K, S Q Q 1 1 Since =, i is eviden ha mus be equal o: = K and since he C gae volage is: G = 1 is eviden ha he C source volage S is hus:
36 4/7/011 MOSFET Biasing using a Curren Mirror 3/5 = S G = K 1 Since we are biasing wih a curren source, we do no need o worry abou drain curren sabiliy he curren source will deermine he C drain curren for all condiions (i.e., = ). We migh conclude heore, ha we should make C source volage S as small as possible. Afer all, his would allow us o maximize he oupu volage swing (i.e., maximize and S ). Noe however, ha he source volage S of he MOSFET is numerically equal o he drain volage (and hus S ) of he second MOSFET of he curren mirror. Q: So wha?! A: The volage = S mus be greaer han: S = 1 1 ( ) = 1 in order for he second MOSFET o remain in sauraion. There is a minimum volage across he curren source in order for he curren source o properly operae!
37 4/7/011 MOSFET Biasing using a Curren Mirror 4/5 Thus, o maximize oupu swing, we migh wish o se: 1 S > 1 1 = S 1 1 (alhough o be pracical, we should make S slighly greaer han his o allow for some design margin). Q: How do we se he C source volage S?? A: By seing he C gae volage G!! ecall ha he C volage is deermined by he C curren source value : = K and he C gae volage is deermined by he wo resisors 1 and : = G 1
38 4/7/011 MOSFET Biasing using a Curren Mirror 5/5 Thus, we should selec hese resisors such ha: = G S = K ( ) 1 1 Q: So wha should he value of resisor be? A: ecall ha we should se he C drain volage : a) much less han o avoid cuoff. b) much greaer han o avoid riode. G Thus, we compromise by seing he C drain volage o a poin halfway in beween! ( ) G = To achieve his, we mus selec he drain resisor so ha: = = ( ) G
39 4/7/011 Example MOSFET Biasing using a Curren Mirror 1/3 Example: MOSFET Biasing using a Curren Mirror Le s deermine he proper resisor values o C bias his MOSFET. The curren source is 5.0 ma and has a minimum volage of.0 ols in order o operae properly K =0. ma/ =1.0 Since = = 5.0 ma, we know ha will be (if in sauraion): = K 5.0 ma min = = = 60. Assuming ha we wan he C source volage o be he minimum value of S =.0, we nee for he C gae volage o be: G = S = = 8.0
40 4/7/011 Example MOSFET Biasing using a Curren Mirror /3 Thus, we need o selec resisors 1 and so ha: G = 80. = 1 or in oher words, we wan: 80. = Since we can make 1 and large, le s assume ha we wan: 1 = 300K So ha 1 = 140 KΩ and = 160 KΩ. Finally, we wan he C drain volage o be: ( ) G = = = ( ) So ha he resisor is: = = 50. = 08K. Ω
41 4/7/011 Example MOSFET Biasing using a Curren Mirror 3/ = 140 K = 08K. K =0. ma/ =1.0 = 160 K 5.0 ma min =.0
EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling
EE 330 Lecure 24 Amplificaion wih Transisor Circuis Small Signal Modelling Review from las ime Area Comparison beween BJT and MOSFET BJT Area = 3600 l 2 nchannel MOSFET Area = 168 l 2 Area Raio = 21:1
More informationP. Bruschi: Project guidelines PSM Project guidelines.
Projec guidelines. 1. Rules for he execuion of he projecs Projecs are opional. Their aim is o improve he sudens knowledge of he basic fullcusom design flow. The final score of he exam is no affeced by
More informationEXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER
EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER INTRODUCTION: Being able o ransmi a radio frequency carrier across space is of no use unless we can place informaion or inelligence upon i. This las ransmier
More information10. The Series Resistor and Inductor Circuit
Elecronicsab.nb 1. he Series esisor and Inducor Circui Inroducion he las laboraory involved a resisor, and capacior, C in series wih a baery swich on or off. I was simpler, as a pracical maer, o replace
More information16.5 ADDITIONAL EXAMPLES
16.5 ADDITIONAL EXAMPLES For reiew purposes, more examples of boh piecewise linear and incremenal analysis are gien in he following subsecions. No new maerial is presened, so readers who do no need addiional
More informationEE 40 Final Project Basic Circuit
EE 0 Spring 2006 Final Projec EE 0 Final Projec Basic Circui Par I: General insrucion 1. The final projec will coun 0% of he lab grading, since i s going o ake lab sessions. All oher individual labs will
More informationCommunication Systems. Department of Electronics and Electrical Engineering
COMM 704: Communicaion Lecure : Analog Mulipliers Dr Mohamed Abd El Ghany Dr. Mohamed Abd El Ghany, Mohamed.abdelghany@guc.edu.eg nroducion Nonlinear operaions on coninuousvalued analog signals are ofen
More informationTable of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost)
Table of Conens 3.0 SMPS Topologies 3.1 Basic Componens 3.2 Buck (Sep Down) 3.3 Boos (Sep Up) 3.4 nverer (Buck/Boos) 3.5 Flyback Converer 3.6 Curren Boosed Boos 3.7 Curren Boosed Buck 3.8 Forward Converer
More informationEE201 Circuit Theory I Fall
EE1 Circui Theory I 17 Fall 1. Basic Conceps Chaper 1 of Nilsson  3 Hrs. Inroducion, Curren and Volage, Power and Energy. Basic Laws Chaper &3 of Nilsson  6 Hrs. Volage and Curren Sources, Ohm s Law,
More informationSynchronization of singlechannel stepper motor drivers reduces noise and interference
hronizaion of singlechannel sepper moor drivers reduces noise and inerference n mos applicaions, a nonsynchronized operaion causes no problems. However, in some cases he swiching of he wo channels inerfere,
More informationDiodes. Diodes, Page 1
Diodes, Page 1 Diodes VI Characerisics signal diode Measure he volagecurren characerisic of a sandard signal diode, he 1N914, using he circui shown below. The purpose of he backoback power supplies
More informationM2 3 Introduction to Switching Regulators. 1. What is a switching power supply? 2. What types of switchers are available?
M2 3 Inroducion o Swiching Regulaors Objecive is o answerhe following quesions: 1. Wha is a swiching power supply? 2. Wha ypes of swichers are available? 3. Why is a swicher needed? 4. How does a swicher
More informationf t 2cos 2 Modulator Figure 21: DSBSC modulation.
4.5 Ampliude modulaion: AM 4.55. DSBSC ampliude modulaion (which is summarized in Figure 21) is easy o undersand and analyze in boh ime and frequency domains. However, analyical simpliciy is no always
More informationExplanation of Maximum Ratings and Characteristics for Thyristors
8 Explanaion of Maximum Raings and Characerisics for Thyrisors Inroducion Daa shees for s and riacs give vial informaion regarding maximum raings and characerisics of hyrisors. If he maximum raings of
More informationEXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK
EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK INTRODUCTION: Much of daa communicaions is concerned wih sending digial informaion hrough sysems ha normally only pass analog signals. A elephone line is such
More informationA1 K. 12V rms. 230V rms. 2 Full Wave Rectifier. Fig. 2.1: FWR with Transformer. Fig. 2.2: Transformer. Aim: To Design and setup a full wave rectifier.
2 Full Wave Recifier Aim: To Design and seup a full wave recifier. Componens Required: Diode(1N4001)(4),Resisor 10k,Capacior 56uF,Breadboard,Power Supplies and CRO and ransformer 230V12V RMS. + A1 K B1
More informationAN303 APPLICATION NOTE
AN303 APPLICATION NOTE LATCHING CURRENT INTRODUCTION An imporan problem concerning he uilizaion of componens such as hyrisors or riacs is he holding of he componen in he conducing sae afer he rigger curren
More information4 20mA InterfaceIC AM462 for industrial µprocessor applications
Because of he grea number of indusrial buses now available he majoriy of indusrial measuremen echnology applicaions sill calls for he sandard analog curren nework. The reason for his lies in he fac ha
More informationTHE OSCILLOSCOPE AND NOISE. Objectives:
26 Preparaory Quesions. Go o he Web page hp://www.ek.com/measuremen/app_noes/xyzs/ and read a leas he firs four subsecions of he secion on Trigger Conrols (which iself is a subsecion of he secion The
More informationTEA2019 CURRENT MODE SWITCHING POWER SUPPLY CONTROL CIRCUIT DIRECT DRIVE OF THE EXTERNAL SWITCHING TRANSISTOR POSITIVE AND NEGATIVE OUTPUT CUR
CURRENT MODE SWITCHING POWER SUPPLY CONTROL CIRCUIT DIRECT DRIVE OF THE EXTERNAL SWITCHING TRANSISTOR POSITIVE AND NEGATIVE OUTPUT CUR RENTS UP TO 05A CURRENT LIMITATION TRANSFORMER DEMAGNETIZATION AND
More informationGG6005. General Description. Features. Applications DIP8A Primary Side Control SMPS with Integrated MOSFET
General Descripion GG65 is a primary side conrol PSR SMPS wih an inegraed MOSFET. I feaures a programmable cable drop compensaion funcion, PFM echnology, and a CV/CC conrol loop wih high reliabiliy and
More informationLecture 5: DCDC Conversion
1 / 31 Lecure 5: DCDC Conversion ELECE845 Elecric Drives (5 ECTS) Mikko Rouimo (lecurer), Marko Hinkkanen (slides) Auumn 217 2 / 31 Learning Oucomes Afer his lecure and exercises you will be able o:
More informationAnalog Circuits EC / EE / IN. For
Analog Circuis For EC / EE / IN By www.hegaeacademy.com Syllabus Syllabus for Analog Circuis Small Signal Equivalen Circuis of Diodes, BJTs, MOSFETs and Analog CMOS. Simple Diode Circuis, Clipping, Clamping,
More informationTechnology Trends & Issues in HighSpeed Digital Systems
Deailed comparison of dynamic range beween a vecor nework analyzer and sampling oscilloscope based ime domain reflecomeer by normalizing measuremen ime Sho Okuyama Technology Trends & Issues in HighSpeed
More informationUniversal microprocessorbased ON/OFF and P programmable controller MS8122A MS8122B
COMPETENCE IN MEASUREMENT Universal microprocessorbased ON/OFF and P programmable conroller MS8122A MS8122B TECHNICAL DESCRIPTION AND INSTRUCTION FOR USE PLOVDIV 2003 1 I. TECHNICAL DATA Analog inpus
More informationObsolete Product(s)  Obsolete Product(s)
DUAL SWITCHMODE SOLENOID DRIER HIGH CURRENT CAPABILITY (up o.5a per channel) HIGH OLTAGE OPERATI (up o 46 for power sage) HIGH EFFICIENCY SWITCHMODE OPERATI REGULATED OUTPUT CURRENT (adjusable) FEW EXTERNAL
More information= f 8 f 2 L C. i C. 8 f C. Q1 open Q2 close (1+D)T DT 2. i C = i L. Figure 2: Typical Waveforms of a StepDown Converter.
Inroducion Oupu Volage ipple in SepDown and SepUp Swiching egulaors Oupu volage ripple is always an imporan performance parameer wih DCDC converers. For inducorbased swiching regulaors, several key
More informationApplication Note 5324
Desauraion Faul Deecion Opocoupler Gae Drive Producs wih Feaure: PLJ, PL0J, PLJ, PL1J and HCPLJ Applicaion Noe 1. Inroducion A desauraion faul deecion circui provides proecion for power semiconducor swiches
More informationECE3204 Microelectronics II Bitar / McNeill. ECE 3204 / Term D2017 Problem Set 7
EE3204 Microelecronics II Biar / McNeill Due: Monday, May 1, 2017 EE 3204 / Term D2017 Problem Se 7 All ex problems from Sedra and Smih, Microelecronic ircuis, 7h ediion. NOTES: Be sure your NAME and
More informationPrimary Side Control SMPS with Integrated MOSFET
General Descripion GG64 is a primary side conrol SMPS wih an inegraed MOSFET. I feaures programmable cable drop compensaion and a peak curren compensaion funcion, PFM echnology, and a CV/CC conrol loop
More informationEECE 301 Signals & Systems Prof. Mark Fowler
EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #8 CT Sysems: FrequencyDomain Analysis of Sysems Reading Assignmen: Secion 5.2 of Kamen and Heck /2 Course Flow Diagram The arrows here show concepual
More informationDISCONTINUED MODEL Replaced with Model JPS3
Plugin Signal Condiioners MUNIT PUSE ADDER (fieldprogrammable) MODE MODE & SUFFIX CODE SEECTI MODE A : Dry conac B :Volage pulse (Specify sensiiviy) C : V pulse (sensiiviy V) D : V/V pulse (sensiiviy
More informationSignals and the frequency domain ENGR 40M lecture notes July 31, 2017 ChuanZheng Lee, Stanford University
Signals and he requency domain ENGR 40M lecure noes July 3, 07 ChuanZheng Lee, Sanord Universiy signal is a uncion, in he mahemaical sense, normally a uncion o ime. We oen reer o uncions as signals o
More informationLecture #7: Discretetime Signals and Sampling
EEL335: DiscreeTime Signals and Sysems Lecure #7: Discreeime Signals and Sampling. Inroducion Lecure #7: Discreeime Signals and Sampling Unlike coninuousime signals, discreeime signals have defined
More informationAutomatic Power Factor Control Using Pic Microcontroller
IDL  Inernaional Digial Library Of Available a:www.dbpublicaions.org 8 h Naional Conference on Advanced Techniques in Elecrical and Elecronics Engineering Inernaional ejournal For Technology And Research2017
More informationECE315 / ECE515 Lecture 9 Date:
Lecture 9 Date: 03.09.2015 Biasing in MOS Amplifier Circuits Biasing using Single Power Supply The general form of a singlesupply MOSFET amplifier biasing circuit is: We typically attempt to satisfy three
More informationORDER INFORMATION TO pin 320 ~ 340mV AMC7150DLF
www.addmek.com DESCRIPTI is a PWM power ED driver IC. The driving curren from few milliamps up o 1.5A. I allows high brighness power ED operaing a high efficiency from 4Vdc o 40Vdc. Up o 200KHz exernal
More informationNotes on the Fourier Transform
Noes on he Fourier Transform The Fourier ransform is a mahemaical mehod for describing a coninuous funcion as a series of sine and cosine funcions. The Fourier Transform is produced by applying a series
More informationSensing, Computing, Actuating
Sensing, Compuing, Acuaing Sander Suik (s.suik@ue.nl) Deparmen of Elecrical Engineering Elecronic Sysems INDUCTIE SENSOS (Chaper.5,.6,.0, 5.4) 3 Inducive sensors damping conrol wheel speed sensor (ABS)
More information(This lesson plan assumes the students are using an airpowered rocket as described in the Materials section.)
The Mah Projecs Journal Page 1 PROJECT MISSION o MArs inroducion Many sae mah sandards and mos curricula involving quadraic equaions require sudens o solve "falling objec" or "projecile" problems, which
More informationSignal Characteristics
Signal Characerisics Analog Signals Analog signals are always coninuous (here are no ime gaps). The signal is of infinie resoluion. Discree Time Signals SignalCharacerisics.docx 8/28/08 10:41 AM Page 1
More informationExperiment 6: Transmission Line Pulse Response
Eperimen 6: Transmission Line Pulse Response Lossless Disribued Neworks When he ime required for a pulse signal o raverse a circui is on he order of he rise or fall ime of he pulse, i is no longer possible
More informationControl and Protection Strategies for Matrix Converters. Control and Protection Strategies for Matrix Converters
Conrol and Proecion Sraegies for Marix Converers Dr. Olaf Simon, Siemens AG, A&D SD E 6, Erlangen Manfred Bruckmann, Siemens AG, A&D SD E 6, Erlangen Conrol and Proecion Sraegies for Marix Converers To
More informationMODEL: M6NXF1. POWER INPUT DC Power R: 24 V DC
Screw Terminal UlraSlim Signal Condiioners M6N Series FUNCTION MODULE (PC programmable) Funcions & Feaures Single inpu filer and funcion module 12 ypes of funcions are PC programmable 7.5mm wide ulraslim
More informationActive Filters  1. Active Filters  2
PHY35  Elecronics Laboraory, all Term (K rong) Acie ilers  By combining opamps wih energysorage elemens, circuis can be designed o gie frequencydependen opamp responses Acie filers are hose ha use
More informationATEE Adriana FLORESCU
SWITCHING POWER SUPPLY WITH MONOLITHIC SWITCHING REGULATOR SUBSYSTEMS AND DCDC STEPUP CONERTER PART B: Design Example, Pspice Simulaion, Pracical Consideraions, Experimenal Resuls Adriana FLORESCU Poliehnica
More informationControl circuit for a SelfOscillating Power Supply (SOPS) TDA8385
FEATURES Bandgap reference generaor Slowsar circuiry Lowloss peak curren sensing Overvolage proecion Hyseresis conrolled sandby funcion Error amplifier wih gain seing Programmable ransfer characer
More informationThe University of Melbourne Department of Mathematics and Statistics School Mathematics Competition, 2013 JUNIOR DIVISION Time allowed: Two hours
The Universiy of Melbourne Deparmen of Mahemaics and Saisics School Mahemaics Compeiion, 203 JUNIOR DIVISION Time allowed: Two hours These quesions are designed o es your abiliy o analyse a problem and
More informationLinear PFC regulator for LED lighting with the multilevel structure and low voltage MOSFETs.
Linear PFC regulaor for lighing wih he mulilevel srucure and low volage MOSFETs. Yuichi Noge Nagaoka Universiy of Technology Niigaa, Japan noge@sn.nagaokau.ac.jp Junichi Ioh Nagaoka Universiy of Technology
More informationLab 3 Acceleration. What You Need To Know: Physics 211 Lab
b Lab 3 Acceleraion Wha You Need To Know: The Physics In he previous lab you learned ha he velociy of an objec can be deermined by finding he slope of he objec s posiion vs. ime graph. x v ave. = v ave.
More informationMODEL: M6SXF1. POWER INPUT DC Power R: 24 V DC
TensionClamp UlraSlim Signal Condiioners M6S Series FUNCTION MODULE (PC programmable) Funcions & Feaures Mainenancefree ension clamp connecion Single inpu filer and funcion module 12 ypes of funcions
More informationMX6895BETR. 550V Full Bridge Gate Driver INTEGRATED CIRCUITS DIVISION. Features. Description. Applications. Ordering Information
550V Full Bridge Gae Driver INTEGRATED CIRCUITS DIVISION Feaures Full Bridge Gae Driver Inernal High Volage Level Shif Funcion Negaive 550V Lamp Supply Volage 3V o 12V CMOS Logic Compaible 8V o 12V Inpu
More informationRevision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax
2.5.3: Sinusoidal Signals and Complex Exponenials Revision: June 11, 2010 215 E Main Suie D Pullman, W 99163 (509) 334 6306 Voice and Fax Overview Sinusoidal signals and complex exponenials are exremely
More informationAK8777B. Overview. Features
AK8777B Hall Effec IC for Pulse Encoders Overview The AK8777B is a Hall effec lach which deecs boh verical and horizonal (perpendicular and parallel o he marking side of he package) magneic field a he
More informationAccurate TunableGain 1/x Circuit Using Capacitor Charging Scheme
Accurae TunableGain 1/x Circui Using Capacior Charging Scheme ByungDo Yang and Seo Weon Heo This paper proposes an accurae unablegain 1/x circui. The oupu volage of he 1/x circui is generaed by using
More informationMarch 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION
March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION 1. Parial Derivaives and Differeniable funcions In all his chaper, D will denoe an open subse of R n. Definiion 1.1. Consider a funcion
More informationSolution of ECE 342 Test 2 S12
Soluion of ECE 342 Tes 2 S2. All quesions regarding superheerodyne receivers refer o his diagram. x c () Anenna B T < B RF < 2 f B = B T Oher Signals f c Mixer f Baseband x RFi RF () x RFo () () () x i
More informationPower losses in pulsed voltage source inverters/rectifiers with sinusoidal currents
reewheeling diode Turnoff power dissipaion: off/d = f s * E off/d (v d, i LL, T j/d ) orward power dissipaion: fw/t = 1 T T 1 v () i () d Neglecing he load curren ripple will resul in: fw/d = i Lavg
More informationImpacts of the dv/dt Rate on MOSFETs Outline:
Ouline: A high dv/d beween he drain and source of he MOSFET may cause problems. This documen describes he cause of his phenomenon and is counermeasures. Table of Conens Ouline:... 1 Table of Conens...
More informationAnalog Multiplexer Demultiplexer HighPerformance SiliconGate CMOS
TECHNICAL DATA IW0B Analog Muliplexer Demuliplexer HighPerformance SiliconGae CMOS The IW0B analog muliplexer/demuliplexer is digially conrolled analog swiches having low ON impedance and very low OFF
More informationMultiple LoadSource Integration in a Multilevel Modular Capacitor Clamped DCDC Converter Featuring Fault Tolerant Capability
Muliple LoadSource Inegraion in a Mulilevel Modular Capacior Clamped DCDC Converer Feauring Faul Toleran Capabiliy Faisal H. Khan, Leon M. Tolber The Universiy of Tennessee Elecrical and Compuer Engineering
More informationGaNHEMT Dynamic ONstate Resistance characterisation and Modelling
GaNHEMT Dynamic ONsae Resisance characerisaion and Modelling Ke Li, Paul Evans, Mark Johnson Power Elecronics, Machine and Conrol group Universiy of Noingham, UK Email: ke.li@noingham.ac.uk, paul.evans@noingham.ac.uk,
More informationPRM and VTM Parallel Array Operation
APPLICATION NOTE AN:002 M and V Parallel Array Operaion Joe Aguilar VI Chip Applicaions Engineering Conens Page Inroducion 1 HighLevel Guidelines 1 Sizing he Resisor 4 Arrays of Six or More Ms 5 Sysem
More informationSolid State Modulators for PIII Applications
Solid Sae Modulaors for P Applicaions Dr. Marcel P.J. Gaudreau, P.E., Dr. Jeffrey A. Casey, Timohy J. Hawkey, Michael A. Kempkes, J. Michael Mulvaney; Diversified Technologies, nc. Absrac One of he key
More informationCreating a Channel for Current Flow
10/10/2005 Creaing a Channel for Curren Flow 1/5 Creaing a Channel for Curren Flow When we firs look a an NMOS deice, i appears ha no curren can flow from he Drain elecrode o he Source elecrode (or ice
More informationMEASUREMENTS OF VARYING VOLTAGES
MEASUREMENTS OF ARYING OLTAGES Measuremens of varying volages are commonly done wih an oscilloscope. The oscilloscope displays a plo (graph) of volage versus imes. This is done by deflecing a sream of
More informationv GS D 1 i S i L v D + V O + v S i D
2 Buck PWM DC DC Converer 2. Inroducion his chaper sudies he PWM buck swichingmode converer, ofen referred o as a chopper [ 3]. Analysis is given for boh coninuous conducion mode (CCM) and disconinuous
More informationCommunications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved
Communicaions II Lecure 5: Eecs o Noise on FM Proessor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Recap o FM FM sysem model in noise Derivaion o oupu SNR Pre/deemphasis
More informationELEG 3124 SYSTEMS AND SIGNALS Ch. 1 ContinuousTime Signals
Deparmen of Elecrical Engineering Universiy of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 ConinuousTime Signals Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Inroducion: wha are signals and sysems? Signals
More informationIntegrated Forward HalfBridge Resonant Inverter as a HighPowerFactor Electronic Ballast
Inegraed Forward HalfBridge Resonan Inverer as a HighPowerFacor Elecronic Ballas Absrac. A novel singlesage highpowerfacor elecronic ballas obained from he inegraion of a forward dcodc converer
More informationDisribued by: www.jameco.com 18008314242 The conen and copyrighs of he aached maerial are he propery of is owner. 16KBi CMOS PARALLEL E 2 PROM FEATURES Fas Read Access Times: 200 ns Low Power CMOS
More informationProceedings of International Conference on Mechanical, Electrical and Medical Intelligent System 2017
on Mechanical, Elecrical and Medical Inelligen Sysem 7 Consan Onime Conrolled Fourphase Buck Converer via Sawoohwave Circui and is Elemen Sensiiviy Yi Xiong a, Koyo Asaishi b, Nasuko Miki c, Yifei Sun
More informationA New Voltage Sag and Swell Compensator Switched by Hysteresis Voltage Control Method
Proceedings of he 8h WSEAS Inernaional Conference on ELECTRIC POWER SYSTEMS, HIGH VOLTAGES, ELECTRIC MACHINES (POWER '8) A New Volage Sag and Swell Compensaor Swiched by Hyseresis Volage Conrol Mehod AMIR
More informationTime Control Technique
Time Conrol Technique MULTITIMER Mulifuncion Relay MK 785N/2 23928 Your Advanages Up o 1 funcions in one uni Simplified sorage Increased flexibiliy Quick seing of long ime values Circui Diagrams B1 22
More informationMODELING OF CROSSREGULATION IN MULTIPLEOUTPUT FLYBACK CONVERTERS
MODELING OF CROSSREGULATION IN MULTIPLEOUTPUT FLYBACK CONVERTERS Dragan Maksimovićand Rober Erickson Colorado Power Elecronics Cener Deparmen of Elecrical and Compuer Engineering Universiy of Colorado,
More informationInstallation and Operating Instructions for ROBA brakechecker Typ
(B.018102.EN) Guidelines on he Declaraion of Conformiy A conformiy evaluaion has been carried ou for he produc in erms of he EC Low Volage Direcive 2006/95/ EC and EMC Direcive 2004/108/EC. The Declaraion
More informationAnalog Multiplexer Demultiplexer HighPerformance SiliconGate CMOS
TEHNIAL DATA Analog Muliplexer Demuliplexer HighPerformance SiliconGae MOS IW402B N SUFFIX PLASTI The IW402B analog muliplexer/demuliplexer is digially conrolled analog swiches having low ON impedance
More informationSmart HighSide Power Switch Two Channels: 2 x 30mΩ Current Sense
POFET Smar HighSide Power Swich Two Channels: 2 x 3mΩ Curren Sense Produc Summary Package Operaing olage (on) 5...34 Acive channels one wo parallel Onsae esisance ON 3mΩ 15mΩ Nominal load curren (NOM)
More informationErrata and Updates for ASM Exam MLC (Fourteenth Edition) Sorted by Page
Erraa for ASM Exam MLC Sudy Manual (Foureenh Ediion) Sored by Page 1 Erraa and Updaes for ASM Exam MLC (Foureenh Ediion) Sored by Page Pracice Exam 7:25 (page 1386) is defecive, Pracice Exam 5:21 (page
More informationPointwise Image Operations
Poinwise Image Operaions Binary Image Analysis Jana Kosecka hp://cs.gmu.edu/~kosecka/cs482.hml  Lookup able mach image inensiy o he displayed brighness values Manipulaion of he lookup able differen Visual
More informationSolidstate Timer H3CT
Solidsae Timer H3CT DIN 48 x 48mm Sandard Size Analog Timer Wide ime range (for 4 series of models); 0.1 s o 30 hrs. Wih H3CT8H models, he oupu ype can be swiched beween ime limi DPDT and ime limi SPDT
More informationBOUNCER CIRCUIT FOR A 120 MW/370 KV SOLID STATE MODULATOR
BOUNCER CIRCUIT FOR A 120 MW/370 KV SOLID STATE MODULATOR D. Gerber, J. Biela Laboraory for High Power Elecronic Sysems ETH Zurich, Physiksrasse 3, CH8092 Zurich, Swizerland Email: gerberdo@ehz.ch This
More informationUltracompact 6Channel Backlight and Flash/Torch White LED Driver
Feaures and Benefis Proprieary adapive conrol scheme (1, 1.5, 2 ) 0.5% ypical LED curren maching 2 separae serial inerfaces for dimming conrol Drives up o 6 whie LEDs (4 display backligh, 2 flash/orch)
More informationPolytech Montpellier MEA M2 EEA Systèmes Microélectroniques. Advanced Analog IC Design
Polyech Monpellier MEA M EEA Sysèmes Microélecroniques Adanced Analog IC Design Chaper I Inroducion Pascal Noue / 013014 noue@lirmm.fr hp://www.lirmm.fr/~noue/homepage/lecure_ressources.hml Ouline of
More informationUsually use an opamp circuit Often found as a preamplifier to ADC circuitry Simple circuit to computer natural logarithm
Connecing he compuaion capabiliies of a microconroller o exernal signals Transforming variable values ino volages and viceversa Digial and analog Issues How many signals can be conrolled? How can digial
More informationThe student will create simulations of vertical components of circular and harmonic motion on GX.
Learning Objecives Circular and Harmonic Moion (Verical Transformaions: Sine curve) Algebra ; PreCalculus Time required: 10 150 min. The sudens will apply combined verical ranslaions and dilaions in he
More informationPulse Train Controlled PCCM BuckBoost Converter Ming Qina, Fangfang Lib
5h Inernaional Conference on Environmen, Maerials, Chemisry and Power Elecronics (EMCPE 016 Pulse Train Conrolled PCCM BuckBoos Converer Ming Qina, Fangfang ib School of Elecrical Engineering, Zhengzhou
More informationAnalysis ofthe Effects ofduty Cycle Constraints in MultipleInput Converters for Photovoltaic Applications
Analysis ofhe Effecs ofduy Cycle Consrains in MulipleInpu Converers for Phoovolaic Applicaions Junseok Song and Alexis Kwasinski Deparmen ofelecrical and Compuer Engineering The Universiy oftexas a Ausin
More informationChapter 2 Summary: ContinuousWave Modulation. Belkacem Derras
ECEN 44 Communicaion Theory Chaper Summary: ConinuousWave Modulaion.1 Modulaion Modulaion is a process in which a parameer of a carrier waveform is varied in accordance wih a given message (baseband)
More information5 Spatial Relations on Lines
5 Spaial Relaions on Lines There are number of useful problems ha can be solved wih he basic consrucion echniques developed hus far. We now look a cerain problems, which involve spaial relaionships beween
More informationMemorandum on Impulse Winding Tester
Memorandum on Impulse Winding Teser. Esimaion of Inducance by Impulse Response When he volage response is observed afer connecing an elecric charge sored up in he capaciy C o he coil L (including he inside
More informationApplication Note AN1083
Applicaion Noe AN1083 Feaures of he LowSide Family IPS10xx By Fabio Necco, Inernaional Recifier Table of Conens Page Inroducion...1 Diagnosis...1 Inpu Curren vs. Temperaure...1 Selecion of he Resisor
More informationALEVEL Electronics. ELEC4 Programmable Control Systems Mark scheme June Version: 1.0 Final
ALEVEL Elecronics ELEC4 Programmable Conrol Sysems scheme 243 June 26 Version:. Final schemes are prepared by he Lead Assessmen Wrier and considered, ogeher wih he relevan quesions, by a panel of subjec
More informationMX629. DELTA MODULATION CODEC meets MilStd DATA BULLETIN. Military Communications Multiplexers, Switches, & Phones
DATA BULLETIN MX629 DELTA MODULATION CODEC mees MilSd188113 Feaures Mees MilSd188113 Single Chip Full Duplex CVSD CODEC Onchip Inpu and Oupu Filers Programmable Sampling Clocks 3 or 4bi Companding
More informationLecture 11. Digital Transmission Fundamentals
CS4/MSc Compuer Neworking Lecure 11 Digial Transmission Fundamenals Compuer Neworking, Copyrigh Universiy of Edinburgh 2005 Digial Transmission Fundamenals Neworks consruced ou of Links or ransmission
More informationISSCC 2007 / SESSION 29 / ANALOG AND POWER MANAGEMENT TECHNIQUES / 29.8
ISSCC 27 / SESSION 29 / ANALOG AND POWER MANAGEMENT TECHNIQUES / 29.8 29.8 A 3GHz Swiching DCDC Converer Using Clock Tree ChargeRecycling in 9nm CMOS wih Inegraed Oupu Filer Mehdi Alimadadi, Samad Sheikhaei,
More informationReliability Improvement of FB inverter in HID Lamp Ballast using UniFET II MOSFET family
Reliabiliy Improvemen of FB inverer in HID Lamp Ballas using UniFET II MOSFET family WonSeok Kang Sysem & Applicaion Group Fairchild Semiconducor Bucheon, Korea wonseok.kang@fairchildsemi.com JaeEul
More informationComparative Analysis of SNR for Image Sensors with Enhanced Dynamic Range David X. D. Yang, Abbas El Gamal Information Systems Laboratory, Stanford Un
Comparaive Analysis of SNR for Image Sensors wih Enhanced Dynamic Range David X. D. Yang, Abbas El Gamal Informaion Sysems Laboraory, Sanford Universiy ABSTRACT Dynamic range is a criical figure of meri
More informationECMA st Edition / June Near Field Communication Wired Interface (NFCWI)
ECMA373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFCWI) Sandard ECMA373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFCWI) Ecma Inernaional Rue du Rhône 114
More informationCURRENT MODE PWM+PFM CONTROLLER WITH BUILTIN HIGH VOLTAGE MOSFET
CURRENT MODE PWM+PFM CONTROLLER WITH BUILTIN HIGH VOLTAGE MOSFET DESCRIPTION SD6835 is curren mode PWM+PFM conroller used for SMPS wih builin highvolage MOSFET and exernal sense resisor. I feaures low
More information