ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE

Size: px
Start display at page:

Download "ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE"

Transcription

1 77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on op-amps the focus was on DC for the ideal and non-ideal opamp. The perfect op-amp assumptions were used to develop all the standard forms. A qualitative discussion described the how op-amps deviate from the ideal. The application of gain offset designs for transducer interfaces to data acquisition systems was explored with several design examples. inally, we quantitatively investigated op-amp limitations for input resistance, output resistance, gain and steady state DC errors. In this handout we will investigate in detail small signal and large signal op-amp dynamic behavior. A Small Signal SPICE Model It is not our purpose in this handout to derive a detailed dynamic model of every transistor within an Integrated Circuit (IC) op-amp, but rather present an equivalent circuit model that is representative of the observed dynamic behavior. The IC op-amp contains many transistors and each transistor s small signal model has performance over a frequency range. igure 1 illustrates the small signal equivalent circuit model of a transistor. igure 1 small signal frequency model of a Transistor As seen in igure 1 the parasitic capacitors CCB and CBE of the many transistors in the IC interact with the equivalent circuit resistance and stage gains to cause a complex myriad of break frequencies that will force the circuit gain to roll off with frequency at eventually a very high order. Because of this behavior, what is done to enable stability of the dynamic response for most applications, is to deliberately add a compensation capacitor that starts the roll off very early (~10Hz) well before any of the transistor

2 78 frequency cutoffs start to take effect. Equation 1 gives a simple gain model in Laplace notation that fits this behavior. A As () s s (1) As seen in Equation 1 the DC gain is A, the first break frequency is at 10Hz and the second break is at 10 5 Hz. Actually, all of the parasitic break frequencies start shortly after this but, the gain has been rolled off to such an extent that all of the high order parasitic break frequencies are no longer relevant. In circuits where one must consider the input, output impedances and the frequency dependant gain we can configure the SPICE equivalent circuit model of igure 2. igure 2 SPICE small signal op-amp frequency model In igure 2: R 1, is the input impedance typical value 1Meg R, C sets the 1 st break frequency 10Hz 2 1 Equation 3 sets the break frequencies. R3, C 2 sets the 2 nd break frequency 10 5 Hz G, is the gain set to 100k and the inversion is in this stage R, is the output impedance 100 ohms RC 1 2 RC 2 1 f 10Hz 5 f1 10 Hz (3) 3 2 ormula 3 can be used to scale the model to any pair of break frequencies. Most op-amp data sheets provide data for the DC gain, the break frequencies and the input, output impedances. Additionally, many SPICE programs have a model for the op-amp (by part #) that includes all these effects. However, configuring your own as per igure 2 you will

3 79 know exactly what you used rather than some Typical alues unknown to you. This small signal frequency model can be used for SPICE analysis to obtain transient or AC bode response of very complicated circuits. or simple circuits where input and output impedances can be neglected the control system analysis approach from the previous handout ( perational Amplifiers Part II DC Errors ) can be used. The expression can for many cases (as shown in that handout) be written by inspection and after some clean up algebra the closed loop system function will be obtained. Consider for example the inverting amplifier finite gain expression developed in that hand-out as Equation 12 and repeated here as Equation 4. UT (4) R AR R AR If we plug in Equation 1 for the gain A in Equation 4 we have the closed loop inverting op-amp response for frequency dependant gain, neglecting input and output impedances effects. UT A R s s A R R R s s After some clean up algebra we obtain Equation R 4 10 A0 UT R R AR s s R R (5) Another very interesting point is what happens to the common mode gain as a function of frequency. In the last handout ( perational Amplifiers Part II DC Errors ) we developed the common mode gain for the differential amplifier configuration (see igure 10 of that handout). That expression was given by Equation 36 (un-simplified) and Equation 37 (simplified) both from that handout. We will consider the simplified case where we repeat Equation 37 here as Equation 6. UTCM a b ACM R ACM R CM 2 ADM R ADM R (6)

4 80 Now we will do the same as before, we will plug in Equation 1 for A DM in Equation 6: UTCM CM ACM R A R s s UTCM ACM R s s CM 1 1 AR (7) bserve how the op-amp poles have turned into ZERS in the common mode gain, which corrupt the common mode rejection as frequency increases. Equation 7 clearly tells us that the ability of the differential amplifier to reject common mode goes away with increasing frequency starting at the compensation pole with +20db/dec. Positive eedback In the previous handout ( perational Amplifiers Part II DC Errors ) igure 3 illustrated a control system block diagram that was used to develop an analysis approach for op-amp circuits. That igure is repeated here also as igure 3. igure 3 block diagram of the basic control system bserve in igure 3 the signal B is input to the summer block with a plus sign. This is positive feedback. Also from that handout the system function is given by Equation 6 repeated here as Equation 8.

5 81 UT G (8) 1 GH The only hint in Equation 8 about problems with the system function is if the Loop Gain were to become equal to 1. There would then be division by zero and the system function would blow up (saturate at the power supply limit). It would appear that if the loop gain is not equal to 1 that there would be no problems. Simple analysis on op-amp circuits would appear to confirm this. Consider the inverting amplifier with the op-amp modeled as finite gain but otherwise ideal except that we implement with positive feedback. igure 4 illustrates the schematic and igure 5 illustrates the equivalent circuit. igure 4 the inverting op-amp configured with positive feed-back igure 5 the equivalent circuit of igure 4 This circuit can be analyzed with the control system approach. By inspection the Straight through Gain is given by Equation 9 and the Loop Gain is Equation 10: Straight Thru Gain A R R R Loop Gain A R R R (9) (10)

6 82 Plugging Equations 9 and 10 into Equation 7 of the previous handout ( perational Amplifiers Part II DC Errors ) we obtain Equation 11. UT AR R R AR (11) In Equation 11 if we let the gain A get very large we obtain the ideal inverting op-amp gain: UT R R (12) These results would indicate that as long as in Equation 11 you avoid division by zero that positive feedback is not an issue. NT TRUE! Let s revisit the simple control system block diagram of igure 3 and let gains G and H be given as follows: G A, H 1 s 1 (13) Now let s plug Equation 13 into Equation 6 of the previous handout ( perational Amplifiers Part II DC Errors ) and we obtain the system function: UT A (14) s (1 A ) The inverse Laplace transform of Equation 14 is the impulse response of this circuit: h t A e (15) t( (1 A) () Equation 15, the impulse response, is a positive growing exponential as the gain A is bigger than 1. Thus if such a circuit was quiescent at the right answer, then, the tiniest noise spike would drive it to saturate at the power supply limit. If more complicated models of the op-amp were used the results are still unstable. Thus, for op-amp circuits requiring conventional linear gains positive feedback is not used. However, there is another wide application of op-amps where positive feedback is used to obtain a toggle operation whereby the output toggles from minus saturation to plus saturation when an input signal varies relative to a reference signal. These are called comparators. There will be a future hand out that explores in depth this application. ull Power Bandwidth and Slew Rate

7 83 There is another IC op-amp performance specification that can restrict performance beyond all the previous limitations. The specification is called Slew Rate. Slew Rate is the maximum limit on the time derivative of the output voltage. or no distortion to occur the output voltage must comply with Equation 16: dut () t SR, Slew Rate Spec (16) dt or example if the maximum +/-voltage at DC from the op-amp is: and we output a sine wave: sin 2 f t (17) UT m If we plug Equation 17 into Equation 16: 2 f cos(2 f t) SR m m Now set the peak value equal to the slew rate spec: f m SR 2 (18) Where: f m is the maximum frequency for no distortion, Hz is the maximum output voltage swing SR is the slew rate specificationolts/sec requency Model for Common Mode of p-amp The previous op-amp hand-out investigated the common mode behavior of an op-amp. We now combine that effect with the inherent bandwidth of differential gain. igure 6 illustrates a simple diagram of how common mode and differential gains combine. igure 6 Simple model of common mode and differential gain op-amp The common mode gain is typically assumed flat at a very low gain of just 0db. or the differential gain the 2 pole model is typically used:

8 84 A0 ADM s s The Spice model that combines igure 6 and Equation 19 is given by: (19) p-amp UT 0 1 AD M AC M A DM poles 2 Spice common mode model of op-amp with poles in differential gain igure 7 Spice common mode model of op-amp with poles in differential gain igure 8 illustrates a differential amplifier and igure 9 illustrates the Spice model to evaluate common mode rejection. igure 8 Differential amplifier for common mode analysis

9 85 In the spice analysis CM would be an AC source set to 1 volt. A Bode plot of UT would be the frequency response of the common mold rejection. igure 9 gives the Spice circuit that, with appropriate values would yield a bode plot of the common mode rejection. igure 9 Spice common mode model of differential amplifier Phase Gain Margin for Stability Analysis Even though an op-amp circuit doesn't have positive feedback it could still get in trouble with instability oscillations. Consider the standard simple feedback block diagram. igure 10 standard simple feedback block diagram As seen before the Closed Loop Gain (GLG) is given by: G CLG 1 GH (20)

10 86 The negative in the denominator is inherent to the feedback analysis and the inclusion of a negative sign in either G or H, but not both then Equation 20 becomes: G G CLG 1 GH 1 GH (21) This is the desired result from negative feedback. This will be true as long as the 2 negative signs are present. The first negative is always present as it is from the feedback process. However, the second negative is dependant upon the frequency response of GH the loop gain. or many applications the sign of GH at low frequency will start negative and at higher frequency will phase shift to zero to yield positive feedback. or a good design when the phase shift of GH does hit positive, the magnitude of GH is significantly less than unity. ne analysis tool used to assess this condition is Bode plots of GH. The criteria for good stability is: 1. When GH falls to unity, the phase of GH, GH, still has not reached positive feedback. How much is left is "Phase Margin" (PM) 2. When the phase GH, does reach positive feedback, the GH 1 and how much less is the "Gain Margine"(GM). 3. Typical design guidelines are for GM GH 0.1and PM at least 30 o left before positive feedback. GH 0 o PM f GH 0db GM f igure 11 PM and GM on an illustration of a Bode plot of GH.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

Lecture #2 Operational Amplifiers

Lecture #2 Operational Amplifiers Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #2 Operational Amplifiers Instructor: Dr. Ahmad El-Banna Agenda Introduction Op-Amps Input Modes and

More information

ELECTRICAL CIRCUITS 4. OPERATIONAL AMPLIFIERS INPUT/OUTPUT CHARACTERISTICS

ELECTRICAL CIRCUITS 4. OPERATIONAL AMPLIFIERS INPUT/OUTPUT CHARACTERISTICS 43 ELECTICAL CICUITS 4. OPEATIONAL AMPLIIES PUT/OUTPUT CHAACTEISTICS Introduction The purpose of this development is not to examine the detailed design of the internals of the chip for the operational

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

Operational Amplifiers

Operational Amplifiers Questions Easy Operational Amplifiers 1. Which of the following statements are true? a. An op-amp has two inputs and three outputs b. An op-amp has one input and two outputs c. An op-amp has two inputs

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc. Feedback 1 Figure 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantities x represent either voltage or current signals. 2 Figure E8.1 3 Figure 8.2 Illustrating

More information

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY INTRODUCTION Op-Amp means Operational Amplifier. Operational stands for mathematical operation like addition,

More information

CMOS Operational-Amplifier

CMOS Operational-Amplifier CMOS Operational-Amplifier 1 What will we learn in this course How to design a good OP Amp. Basic building blocks Biasing and Loading Swings and Bandwidth CH2(8) Operational Amplifier as A Black Box Copyright

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a high-side switch for a remotely operated fuel pump. You decide to use the IRF9520 power

More information

BUCK Converter Control Cookbook

BUCK Converter Control Cookbook BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019 Spring Term 00.101 Introductory Analog Electronics Laboratory Laboratory No.

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

+ power. V out. - power +12 V -12 V +12 V -12 V

+ power. V out. - power +12 V -12 V +12 V -12 V Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

More information

Operational Amplifiers. Boylestad Chapter 10

Operational Amplifiers. Boylestad Chapter 10 Operational Amplifiers Boylestad Chapter 10 DC-Offset Parameters Even when the input voltage is zero, an op-amp can have an output offset. The following can cause this offset: Input offset voltage Input

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0. Laboratory 6 Operational Amplifier Circuits Required Components: 1 741 op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.1 F capacitor 6.1 Objectives The operational amplifier is one of the most

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 Objective Terminal characteristics of the ideal op amp How to analyze op amp circuits How to use op amps to design amplifiers How to design more sophisticated

More information

Operational Amplifier as A Black Box

Operational Amplifier as A Black Box Chapter 8 Operational Amplifier as A Black Box 8. General Considerations 8.2 Op-Amp-Based Circuits 8.3 Nonlinear Functions 8.4 Op-Amp Nonidealities 8.5 Design Examples Chapter Outline CH8 Operational Amplifier

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology-Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology-Bombay Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology-Bombay Week -02 Module -01 Non Idealities in Op-Amp (Finite Gain, Finite Bandwidth and Slew Rate)

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

Input Stage Concerns. APPLICATION NOTE 656 Design Trade-Offs for Single-Supply Op Amps

Input Stage Concerns. APPLICATION NOTE 656 Design Trade-Offs for Single-Supply Op Amps Maxim/Dallas > App Notes > AMPLIFIER AND COMPARATOR CIRCUITS Keywords: single-supply, op amps, amplifiers, design, trade-offs, operational amplifiers Apr 03, 2000 APPLICATION NOTE 656 Design Trade-Offs

More information

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

James Lunsford HW2 2/7/2017 ECEN 607

James Lunsford HW2 2/7/2017 ECEN 607 James Lunsford HW2 2/7/2017 ECEN 607 Problem 1 Part A Figure 1: Negative Impedance Converter To find the input impedance of the above NIC, we use the following equations: V + Z N V O Z N = I in, V O kr

More information

Combination Notch and Bandpass Filter

Combination Notch and Bandpass Filter Combination Notch and Bandpass Filter Clever filter design for graphic equalizer can perform both notch and bandpass functions Gain or attenuation is controlled by a potentiometer for specific frequency

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 beta Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 3: Operational Amplifier Part 1- Op Amp Basics School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew

More information

Section 4: Operational Amplifiers

Section 4: Operational Amplifiers Section 4: Operational Amplifiers Op Amps Integrated circuits Simpler to understand than transistors Get back to linear systems, but now with gain Come in various forms Comparators Full Op Amps Differential

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

Lecture 2: Non-Ideal Amps and Op-Amps

Lecture 2: Non-Ideal Amps and Op-Amps Lecture 2: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical Op-Amps Linear Imperfections: Finite open-loop gain (A 0 < ) Finite input resistance

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

Laboratory 8 Operational Amplifiers and Analog Computers

Laboratory 8 Operational Amplifiers and Analog Computers Laboratory 8 Operational Amplifiers and Analog Computers Introduction Laboratory 8 page 1 of 6 Parts List LM324 dual op amp Various resistors and caps Pushbutton switch (SPST, NO) In this lab, you will

More information

Lecture 8: More on Operational Amplifiers (Op Amps)

Lecture 8: More on Operational Amplifiers (Op Amps) Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Practical Testing Techniques For Modern Control Loops

Practical Testing Techniques For Modern Control Loops VENABLE TECHNICAL PAPER # 16 Practical Testing Techniques For Modern Control Loops Abstract: New power supply designs are becoming harder to measure for gain margin and phase margin. This measurement is

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

More information

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 Objectives: OPERATIONAL AMPLIFIERS 1.To demonstrate an inverting operational amplifier circuit.

More information

CMOS Operational-Amplifier

CMOS Operational-Amplifier CMOS Operational-Amplifier 1 What will we learn in this course How to design a good OP Amp. Basic building blocks Biasing and Loading Swings and Bandwidth CH2(8) Operational Amplifier as A Black Box Copyright

More information

Other useful blocks. Differentiator i = CdV/dt. = -RCdV/dt or /v in. Summing amplifier weighted sum of inputs (consider currents)

Other useful blocks. Differentiator i = CdV/dt. = -RCdV/dt or /v in. Summing amplifier weighted sum of inputs (consider currents) Other useful blocks Differentiator i = CdV/dt = RCdV/dt or /v in = jωrc C R + Summing amplifier weighted sum of inputs (consider currents) v 1 R 1 v 2 v 3 R 3 + R f Differential amplifier = ( /R 1 )(v

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization

More information

Testing Power Sources for Stability

Testing Power Sources for Stability Keywords Venable, frequency response analyzer, oscillator, power source, stability testing, feedback loop, error amplifier compensation, impedance, output voltage, transfer function, gain crossover, bode

More information

Model 176 and 178 DC Amplifiers

Model 176 and 178 DC Amplifiers Model 176 and 178 DC mplifiers Features*! Drifts to 100 MΩ! CMR: 120 db @! Gain Linearity of ±.005% *The key features of this amplifier series, listed above, do not necessarily apply

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwertyuiopasdfghjklzxcvbnmqwer Instrumentation Device Components Semester 2 nd tyuiopasdfghjklzxcvbnmqwertyuiopas

More information

Revision History. Contents

Revision History. Contents Revision History Ver. # Rev. Date Rev. By Comment 0.0 9/15/2012 Initial draft 1.0 9/16/2012 Remove class A part 2.0 9/17/2012 Comments and problem 2 added 3.0 10/3/2012 cmdmprobe re-simulation, add supplement

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.5 Integrators and Differentiators Utilized resistors in the op-amp feedback and feed-in path Ideally independent of frequency Use of capacitors together

More information

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required.

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. 1 When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. More frequently, one of the items in this slide will be the case and biasing

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) Answer: Series-shunt. 2. True or false: an engineer

More information

Experiment #2 OP-AMP THEORY & APPLICATIONS

Experiment #2 OP-AMP THEORY & APPLICATIONS Experiment #2 OP-MP THEOY & PPLICTIONS Jonathan oderick Scott Kilpatrick Burgess Introduction: Operational amplifiers (op-amps for short) are incredibly useful devices that can be used to construct a multitude

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

ELEC207 LINEAR INTEGRATED CIRCUITS

ELEC207 LINEAR INTEGRATED CIRCUITS Concept of VIRTUAL SHORT For feedback amplifiers constructed with op-amps, the two op-amp terminals will always be approximately equal (V + = V - ) This condition in op-amp feedback amplifiers is known

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

EE 501 Lab 4 Design of two stage op amp with miller compensation

EE 501 Lab 4 Design of two stage op amp with miller compensation EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a two-stage operational amplifier. Tasks: 1. Build a two-stage

More information

Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Winter Semester, Linear control systems design Part 1

Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Winter Semester, Linear control systems design Part 1 Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Winter Semester, 2018 Linear control systems design Part 1 Andrea Zanchettin Automatic Control 2 Step responses Assume

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Low Dropout Voltage Regulator Operation and Performance Review

Low Dropout Voltage Regulator Operation and Performance Review Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the

More information

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

LF411 Low Offset, Low Drift JFET Input Operational Amplifier Low Offset, Low Drift JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Frequency domain specifications Frequency response shaping (Loop shaping) Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Active Filter Design Techniques

Active Filter Design Techniques Active Filter Design Techniques 16.1 Introduction What is a filter? A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others.

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2056 Operational amplifiers (op amps) Operational amplifiers (op amps) are among

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith)

Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith) Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith) Prepared by: S V UMA, Associate Professor, Department of ECE, RNSIT, Bangalore Reference: Microelectronic Circuits Adel Sedra and K C Smith 1 Objectives

More information

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik 1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Microelectronic Circuits II. Ch 9 : Feedback

Microelectronic Circuits II. Ch 9 : Feedback Microelectronic Circuits II Ch 9 : Feedback 9.9 Determining the Loop Gain 9.0 The Stability problem 9. Effect on Feedback on the Amplifier Poles 9.2 Stability study using Bode plots 9.3 Frequency Compensation

More information