COMBINED DIGITAL COMPRESSION AND DIGITAL MODULATION

Size: px
Start display at page:

Download "COMBINED DIGITAL COMPRESSION AND DIGITAL MODULATION"

Transcription

1 COMBINED DIGITAL COMPRESSION AND DIGITAL MODULATION Asbjørn Grøvlen*, John M. Lervik** and Tor A. Ramstad** *Nera Research, Nera AS, Postboks 91, 1361 Billingstad, Norway **Department of Telecommunications, The Norwegian Institute of Technology, 70 Trondheim, Norway. ABSTRACT This paper is on combined subband compression and multilevel modulation of pictures. Generally digital coding and transmission have been bit oriented. In this paper we show that by allowing coding and transmission with signal sets having an odd number of levels, we can achieve advantages over traditional bit oriented coding and transmission. By using 81-PAM/QAM instead of 64-PAM/QAM as a modulation scheme, the signal to noise ratio of the decoded picture improves at a given power level and symbol rate. The quality of the received picture can be improved by finding more intelligent mappings between the source space and the channel space. In this work two different approaches are compared: One adhoc method and one method based on simulated annealing. In transmission of subband coded pictures, error free transmission of the level allocation table is essential. We introduce a method based on Reed- Solomon coding that enables error free transmission of the level allocation table at channel signal to noise ratios that give acceptable picture quality. 1. INTRODUCTION In subband coding the original image is decomposed into frequency domain samples. One efficient method for coding of the subbands is to adapt to the individual image statistics by allocating bits among the subband samples according to the local variance [1,2]. In earlier work on combined subband compression and multilevel modulation [3], blocks of subband samples have been allocated from 0 to 6 bits, thus, using even level quantizers. These quantized values of different bitlength were then combined into 64-PAM or 64- QAM symbols before transmission. In contrast, we introduce a new scheme based on odd level quantization and 81-PAM or 81-QAM. Figure 1 shows the integrated system for transmission of subband coded images. The image is first filtered and decimated to get a subband image. A level allocating algorithm is applied in order to decide the number of quantization levels to be used on each sample. The lowpass-lowpass band is included in the level allocation algorithm without any further preprocessing. The subband samples are combined and mapped into 81- PAM or 81-QAM. The level allocation table, which is required at the receiving end for recombining, is error protected and mapped into 5 PAM/QAM or - PAM/QAM. The symbols are then transmitted over a white gaussian noise channel. At the receiving end a recombination based on the level allocation table is performed. The image is reconstructed through the final interpolation and filtering. 2. THEORY 2.1 Odd level quantization in source coding. In subband coding of pictures, the pixels in the different subbands are allocated bits block by block according to the power level of the block. When a block is allocated only 1 bit, a pixel near zero in value will be quantized to either a relatively large positive or negative value. This signal amplification leads to ringing artifacts in the picture that can be visually annoying. In such cases it is an advantage to use an odd level quantizer with zero representation. In this work we use odd level allocation instead of bit allocation, allocating 0, 3, 9,, or 81 levels to each block depending on its power level. The number of levels is a power of 3 in order to still have a simple allocation algorithm and to simplify the channel coding. The level allocation is similar to the bit allocation[2,3], but the division factor is now theoretically 3. It turns out that in practical

2 X Filtering/ Desim. Levelallocation Quant./ Mapping Combinin g 81-PAM/ -QAM MUX Map/ err. corr. code PAM/QAM Noise N(0,σ ) 2 5/-PAM/ -QAM DE- MUX Inver. map/ error. correct Recombinin g Inver. mapping Interpol./ Filt. Y Level allocation table Figure 1: Integrated system for transmission of subband coded images. applications, a division factor of 2.2 gives the best results [4]. transmission. In this article, we therefore use only the term symbol rate. 2.2 Channel coding PAM/QAM As we cannot combine the odd level quantized pixels into 64-PAM or 64-QAM channel symbols, we change from 64-PAM/QAM to 81-PAM or 81-QAM, which is a power of 3. This gives the combination possibilities seen in Table 1. Combination Levels combined Φ (4) 81 Φ (3,1),3 Φ (2,2) 9,9 Φ (2,1,1) 9,3,3 Φ (1,1,1,1) 3,3,3,3 Table 1: Combinations. The combination Φ (2,1,1) is not implemented since it will only be used for maximum one pixel pr. picture at applicable symbol rates. Thus, there is no significant reduction in the picture quality if we leave it out Symbol rate vs. bit rate Since we introduce a coding scheme that is not bit oriented, the term bit rate is confusing. The important factor now is the channel symbol rate. In order two compare this new system to older bit oriented systems we need to compare the systems when they use the same bandwidth (i.e., symbol rate) and power for 2.3 Mappings We need to find the optimal mappings from the source space to the channel space. The advantage of optimized mappings over random mappings has been shown earlier[1,4]. The optimal mappings give the minimum distortion in the reconstructed image for a given channel power and bandwidth. Generally, this is quite difficult. We want close points in the source space to be close in the channel space and points that are far away from each other in the source space needs to be far from each other in the channel space. At the same time we want to map the most probable source symbols to the minimum amplitude channel symbols. In this work we have tried two different methods for finding the mappings: Ad-hoc and simulated annealing Ad-hoc mappings Here, we find the mapping by using the two rules mentioned earlier. This is easy for 81-PAM, but hard for the Φ (4) -mapping in 81-QAM. This is due to the fact that we are making a mapping from one to two dimensions, which means that each point has more neighbors in the channel space than in the source space. Figure 2 shows a mapping made manually.

3 a 40 a 0 a -40 Figure 2: Φ (2,2) mapping onto 81-PAM Simulated annealing [4]. This is a way of finding the mappings through long and not very systematic iterations on a computer. The theory is that we try to find the minimum distortion by, to a certain extent, allowing us to accept mappings with higher distortion than the previous. This way we can move out of local minim. The possibility of accepting a mapping with a higher distortion than the previous is lowered as the iteration goes by. We then end up with a mapping in the end that should have a very low distortion. "5-QAM" -QAM Figure 3: QAM signal constellations. In the second method two and two symbols are combined into -PAM/QAM and an error correcting code is applied. A Reed-Solomon code with two parity symbols that can correct one symbol error in a block of symbols, was used. The Reed-Solomon code is systematic so that there will be no major change to the channel symbol probabilities Error probabilities PAM Side information The level allocation table consists of symbols that take on 5 different values (0 to 4). This side information is needed at the receiving end for recombination. Error free transmission of the level allocation table is of outmost importance. One error in the side information might ruin the picture totally since the mapping from the channel space to the source space then will be wrong. In earlier work, error free transmission of the side information was assumed. Two ways of coding and transmitting the level allocation table have been compared: Use enough power per symbol to ensure error free transmission or apply some kind of error correcting code. The first method transmits each sample from the level allocation table as a 5-PAM/QAM symbol. A majority of the blocks are allocated zero levels at the symbol rates we operate. By mapping the zero source symbol to the zero channel symbol, we can reduce the power needed for error free transmission. 5-QAM is not commonly used, but looks like the constellation shown in Figure 3. Sannsyn for symbolfeil Sannsyn for symbolfeil QAM Figure 4: Symbol error rates for -PAM and - QAM. ( ) 0 errors corrected. (- - -) 1 error corrected.

4 Figure 4 shows the theoretical probability of symbol-error in the side information using -PAM or - QAM with and without an error correcting code added. An error probability of gives in average a error for every picture which is more than good enough for still pictures and acceptable for video. Acquired channel signal-to-noise ratios for a symbol-error rate of are shown in Table 2. 5-PAM -PAM 5-QAM -QAM Table 2: CSNR necessary to achieve symbol error probability of We will later see that a good picture quality is achieved down to ca. db CSNR for 81-PAM and db CSNR for 81-QAM. -PAM/QAM will therefore give good enough error protection. Thus, by using 5-PAM/ QAM transmission of the level allocation table is error free even when the total picture quality is very poor. However, this will increase the symbol rate. 3.1 Source coding 3. RESULTS Figure 5 shows the PSNR as a function of symbol rate for the picture Lenna. As we can see the improvement in picture quality is about 0.4 db PSNR for all rates when we use odd level quantizers instead of even level quantizers Lenna Visually the quality is also improved with less ringing around edges and large smooth areas. 3.2 Comparison 64-PAM to 81-PAM Figure 6 shows the picture quality as a function of channel signal-to-noise ratio for Lenna using both 64- PAM and 81-PAM as a signaling scheme at a symbol rate of 0.83 symbols/pixel. PSNR[dB] CSNR[dB] Figure 6: Lenna at symbols/pixel. ( ) 81- PAM. (- - -) 64-PAM. 81-PAM clearly has an advantage over 64-PAM. At low noise the advantage comes from improved source coding, while the advantage for a noisy channel is even larger. 81-PAM includes a zero symbol which reduces the power needed two transmit 81-PAM. In addition, the 81-PAM symbols have a more narrow distribution than 64-PAM. The symbols near zero are more frequently used in 81-PAM than in 64-PAM Symbolrate (symbols/pixel) Figure 5: Picture quality as a function of channel symbol rate for Lenna. ( ) Combined to 81-level symbols. (- - -) Combined to 64-level symbols. 3.3 Mappings Figure 7 shows the difference in quality for different mappings from source space to the channel space. For PAM the ad-hoc mappings are better for most signal-to-noise ratios. For QAM the mappings made by simulated annealing are better. The reason why we get poorer results with simulated annealing for 81- PAM is either that we did not find the global minimum or that the mappings are not optimized for the correct channel signal-to-noise ratio.

5 35 Lena PAM 3.4 Comparison 81-PAM vs. 81-QAM Lenna Bridge PAM Bridge Lena QAM Bridge QAM Figure 7: Picture quality as a function of channel signal-to-noise ratio. ( ) Mapping found with simulated annealing. (- - -) Ad-hoc mapping Figure 8: Comparison PAM vs. QAM. ( ) QAM with symbol rate 0.11 symbols/pixel. (- - -) PAM with symbol rate 0.11 symbols/pixel. (- - -) QAM with symbol rate 0.08 symbols/pixel. ( ) PAM with symbol rate 0.08 symbols/pixel. Figure 8 shows the results for transmitting with 81- PAM and 81-QAM. The side information is included in the symbol rate using -PAM/QAM to transmit the side information including an error correcting Reed-Solomon code. We see that QAM is always better than PAM measured with PSNR, but theoretically PAM requires only half the bandwidth. However, this is not always true visually. When the channel gets very noisy the PAM transmitted picture gets blurry, while the QAM transmitted picture has large spots which are more annoying than blurring. This is due to the fact that, as

6 mentioned earlier, finding a good mapping from one to two dimensions is very hard and thus, larger errors occur in the QAM case. The very important lowpasslowpass band is coded mostly with 81 levels. An error here is very annoying. Furthermore, QAM does not have as graceful degradation as PAM has. 4. CONCLUSION Moving away from the traditional bit oriented coding scheme and introducing a number of quantization levels that are a power of 3, can improve the quality of the received picture. Moving from 64-PAM/QAM to 81-PAM/QAM gives an even greater advantage when the channel is noisy. Different methods of finding the mapping from source space to channel space has been tried out. The ad-hoc method gives best result for 81-PAM while the method based on simulated annealing is best for 81-QAM. We have also introduced a way of error free transmission of the side information of subband coded pictures at applicable symbol rates, leaving us a total transmission system for subband-coded pictures. REFERENCES [1] T. A. Ramstad, Sub-band coder with a simple bit-allocation algorithm, -- a possible candidate for digital mobile telephony?, in Proc. ICASSP, pp. 3-7, [2] T. A. Ramstad, Consideration on quantizations and dynamic bit allocation in subband codas, in Proc. ICASSP, pp , [3] J.M. Lervik and H.R. Eriksen, Integrated system with subband coding and PAM for image transmission, Master Thesis, Norwegian Institute. of Tech, Dec [4] A. Grøvlen, Combined digital compression and digital modulation, Master Thesis, Norwegian Institute. of Tech, Dec [5] J. M. Lervik, A. Fuldseth, and T. A. Ramstad, Combined image subband coding and multilevel modulation for communication over power- and bandwidth limited channels, in Proc. Workshop on Visual Signal Processing and Communications, New Brunswick, NJ, USA, pp , IEEE, Sept

H.264 Video with Hierarchical QAM

H.264 Video with Hierarchical QAM Prioritized Transmission of Data Partitioned H.264 Video with Hierarchical QAM B. Barmada, M. M. Ghandi, E.V. Jones and M. Ghanbari Abstract In this Letter hierarchical quadrature amplitude modulation

More information

Joint Source-Channel Coding for Image Transmission over Flat Fading Channels

Joint Source-Channel Coding for Image Transmission over Flat Fading Channels Joint Source-Channel Coding for Image Transmission over Flat Fading Channels Presentation at Tandberg Greg Håkonsen 6/6-2007 Outline Motivation Proposed system Source Channel Combination Results Conclusion

More information

IMAGE AND VIDEO TRANSMISSION OVER WIRELESS CHANNEL: A SUBBAND MODULATION APPROACH

IMAGE AND VIDEO TRANSMISSION OVER WIRELESS CHANNEL: A SUBBAND MODULATION APPROACH IMAGE AND VIDEO TRANSMISSION OVER WIRELESS CHANNEL: A SUBBAND MODULATION APPROACH H. Zheng and K. J. R. Liu Department of Electrical Engineering and Institute for Systems Research University of Maryland,

More information

A Modified Image Coder using HVS Characteristics

A Modified Image Coder using HVS Characteristics A Modified Image Coder using HVS Characteristics Mrs Shikha Tripathi, Prof R.C. Jain Birla Institute Of Technology & Science, Pilani, Rajasthan-333 031 shikha@bits-pilani.ac.in, rcjain@bits-pilani.ac.in

More information

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase Fourier Transform Fourier Transform Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase 2 1 3 3 3 1 sin 3 3 1 3 sin 3 1 sin 5 5 1 3 sin

More information

Enhanced DCT Interpolation for better 2D Image Up-sampling

Enhanced DCT Interpolation for better 2D Image Up-sampling Enhanced Interpolation for better 2D Image Up-sampling Aswathy S Raj MTech Student, Department of ECE Marian Engineering College, Kazhakuttam, Thiruvananthapuram, Kerala, India Reshmalakshmi C Assistant

More information

APPLICATIONS OF DSP OBJECTIVES

APPLICATIONS OF DSP OBJECTIVES APPLICATIONS OF DSP OBJECTIVES This lecture will discuss the following: Introduce analog and digital waveform coding Introduce Pulse Coded Modulation Consider speech-coding principles Introduce the channel

More information

Audio and Speech Compression Using DCT and DWT Techniques

Audio and Speech Compression Using DCT and DWT Techniques Audio and Speech Compression Using DCT and DWT Techniques M. V. Patil 1, Apoorva Gupta 2, Ankita Varma 3, Shikhar Salil 4 Asst. Professor, Dept.of Elex, Bharati Vidyapeeth Univ.Coll.of Engg, Pune, Maharashtra,

More information

A Spatial Mean and Median Filter For Noise Removal in Digital Images

A Spatial Mean and Median Filter For Noise Removal in Digital Images A Spatial Mean and Median Filter For Noise Removal in Digital Images N.Rajesh Kumar 1, J.Uday Kumar 2 Associate Professor, Dept. of ECE, Jaya Prakash Narayan College of Engineering, Mahabubnagar, Telangana,

More information

Analysis on Color Filter Array Image Compression Methods

Analysis on Color Filter Array Image Compression Methods Analysis on Color Filter Array Image Compression Methods Sung Hee Park Electrical Engineering Stanford University Email: shpark7@stanford.edu Albert No Electrical Engineering Stanford University Email:

More information

Joint Source-Channel Coding for Image Transmission over Flat Fading Channels

Joint Source-Channel Coding for Image Transmission over Flat Fading Channels Joint Source-Channel Coding for Image Transmission over Flat Fading Channels Thesis presentation Greg Håkonsen 29/6-2007 Outline Motivation Communication basics Source coding Channel coding Combination

More information

Image Compression with Variable Threshold and Adaptive Block Size

Image Compression with Variable Threshold and Adaptive Block Size Image Compression with Variable Threshold and Adaptive Block Size D Gowri Sankar Reddy 1, P Janardhana Reddy 2 Assistant professor, Department of ECE, S V University College of Engineering, Tirupati, Andhra

More information

THE idea behind constellation shaping is that signals with

THE idea behind constellation shaping is that signals with IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 3, MARCH 2004 341 Transactions Letters Constellation Shaping for Pragmatic Turbo-Coded Modulation With High Spectral Efficiency Dan Raphaeli, Senior Member,

More information

Performance Optimization of Hybrid Combination of LDPC and RS Codes Using Image Transmission System Over Fading Channels

Performance Optimization of Hybrid Combination of LDPC and RS Codes Using Image Transmission System Over Fading Channels European Journal of Scientific Research ISSN 1450-216X Vol.35 No.1 (2009), pp 34-42 EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ejsr.htm Performance Optimization of Hybrid Combination

More information

2. REVIEW OF LITERATURE

2. REVIEW OF LITERATURE 2. REVIEW OF LITERATURE Digital image processing is the use of the algorithms and procedures for operations such as image enhancement, image compression, image analysis, mapping. Transmission of information

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

Lab/Project Error Control Coding using LDPC Codes and HARQ

Lab/Project Error Control Coding using LDPC Codes and HARQ Linköping University Campus Norrköping Department of Science and Technology Erik Bergfeldt TNE066 Telecommunications Lab/Project Error Control Coding using LDPC Codes and HARQ Error control coding is an

More information

Comparision of different Image Resolution Enhancement techniques using wavelet transform

Comparision of different Image Resolution Enhancement techniques using wavelet transform Comparision of different Image Resolution Enhancement techniques using wavelet transform Mrs.Smita.Y.Upadhye Assistant Professor, Electronics Dept Mrs. Swapnali.B.Karole Assistant Professor, EXTC Dept

More information

Practical Content-Adaptive Subsampling for Image and Video Compression

Practical Content-Adaptive Subsampling for Image and Video Compression Practical Content-Adaptive Subsampling for Image and Video Compression Alexander Wong Department of Electrical and Computer Eng. University of Waterloo Waterloo, Ontario, Canada, N2L 3G1 a28wong@engmail.uwaterloo.ca

More information

Improved signal analysis and time-synchronous reconstruction in waveform interpolation coding

Improved signal analysis and time-synchronous reconstruction in waveform interpolation coding University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2000 Improved signal analysis and time-synchronous reconstruction in waveform

More information

Compression Schemes for In-body and On-body UWB Sensor Networks

Compression Schemes for In-body and On-body UWB Sensor Networks Compression Schemes for In-body and On-body UWB Sensor Networks Pål Anders Floor #, Ilangko Balasingham #,TorA.Ramstad #, Eric Meurville, Michela Peisino Interventional Center, Oslo University Hospital

More information

Direction-Adaptive Partitioned Block Transform for Color Image Coding

Direction-Adaptive Partitioned Block Transform for Color Image Coding Direction-Adaptive Partitioned Block Transform for Color Image Coding Mina Makar, Sam Tsai Final Project, EE 98, Stanford University Abstract - In this report, we investigate the application of Direction

More information

JPEG Image Transmission over Rayleigh Fading Channel with Unequal Error Protection

JPEG Image Transmission over Rayleigh Fading Channel with Unequal Error Protection International Journal of Computer Applications (0975 8887 JPEG Image Transmission over Rayleigh Fading with Unequal Error Protection J. N. Patel Phd,Assistant Professor, ECE SVNIT, Surat S. Patnaik Phd,Professor,

More information

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis Mohini Avatade & S.L. Sahare Electronics & Telecommunication Department, Cummins

More information

REDUCING PAPR OF OFDM BASED WIRELESS SYSTEMS USING COMPANDING WITH CONVOLUTIONAL CODES

REDUCING PAPR OF OFDM BASED WIRELESS SYSTEMS USING COMPANDING WITH CONVOLUTIONAL CODES REDUCING PAPR OF OFDM BASED WIRELESS SYSTEMS USING COMPANDING WITH CONVOLUTIONAL CODES Pawan Sharma 1 and Seema Verma 2 1 Department of Electronics and Communication Engineering, Bhagwan Parshuram Institute

More information

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication INTRODUCTION Digital Communication refers to the transmission of binary, or digital, information over analog channels. In this laboratory you will

More information

University of California, Davis. ABSTRACT. In previous work, we have reported on the benets of noise reduction prior to coding of very high quality

University of California, Davis. ABSTRACT. In previous work, we have reported on the benets of noise reduction prior to coding of very high quality Preprocessing for Improved Performance in Image and Video Coding V. Ralph Algazi Gary E. Ford Adel I. El-Fallah Robert R. Estes, Jr. CIPIC, Center for Image Processing and Integrated Computing University

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngECE-2009/10-- Student Name: CHEUNG Yik Juen Student ID: Supervisor: Prof.

More information

Overview of Code Excited Linear Predictive Coder

Overview of Code Excited Linear Predictive Coder Overview of Code Excited Linear Predictive Coder Minal Mulye 1, Sonal Jagtap 2 1 PG Student, 2 Assistant Professor, Department of E&TC, Smt. Kashibai Navale College of Engg, Pune, India Abstract Advances

More information

Data Transmission at 16.8kb/s Over 32kb/s ADPCM Channel

Data Transmission at 16.8kb/s Over 32kb/s ADPCM Channel IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 6 (June 2012), PP 1529-1533 www.iosrjen.org Data Transmission at 16.8kb/s Over 32kb/s ADPCM Channel Muhanned AL-Rawi, Muaayed AL-Rawi

More information

FILTER FIRST DETECT THE PRESENCE OF SALT & PEPPER NOISE WITH THE HELP OF ROAD

FILTER FIRST DETECT THE PRESENCE OF SALT & PEPPER NOISE WITH THE HELP OF ROAD FILTER FIRST DETECT THE PRESENCE OF SALT & PEPPER NOISE WITH THE HELP OF ROAD Sourabh Singh Department of Electronics and Communication Engineering, DAV Institute of Engineering & Technology, Jalandhar,

More information

A Proficient Roi Segmentation with Denoising and Resolution Enhancement

A Proficient Roi Segmentation with Denoising and Resolution Enhancement ISSN 2278 0211 (Online) A Proficient Roi Segmentation with Denoising and Resolution Enhancement Mitna Murali T. M. Tech. Student, Applied Electronics and Communication System, NCERC, Pampady, Kerala, India

More information

NOISE ESTIMATION IN A SINGLE CHANNEL

NOISE ESTIMATION IN A SINGLE CHANNEL SPEECH ENHANCEMENT FOR CROSS-TALK INTERFERENCE by Levent M. Arslan and John H.L. Hansen Robust Speech Processing Laboratory Department of Electrical Engineering Box 99 Duke University Durham, North Carolina

More information

DEVELOPMENT OF A DIGITAL TERRESTRIAL FRONT END

DEVELOPMENT OF A DIGITAL TERRESTRIAL FRONT END DEVELOPMENT OF A DIGITAL TERRESTRIAL FRONT END ABSTRACT J D Mitchell (BBC) and P Sadot (LSI Logic, France) BBC Research and Development and LSI Logic are jointly developing a front end for digital terrestrial

More information

Ch. Bhanuprakash 2 2 Asistant Professor, Mallareddy Engineering College, Hyderabad, A.P, INDIA. R.Jawaharlal 3, B.Sreenivas 4 3,4 Assocate Professor

Ch. Bhanuprakash 2 2 Asistant Professor, Mallareddy Engineering College, Hyderabad, A.P, INDIA. R.Jawaharlal 3, B.Sreenivas 4 3,4 Assocate Professor Volume 3, Issue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Image Compression

More information

IJMIE Volume 2, Issue 4 ISSN:

IJMIE Volume 2, Issue 4 ISSN: Reducing PAPR using PTS Technique having standard array in OFDM Deepak Verma* Vijay Kumar Anand* Ashok Kumar* Abstract: Orthogonal frequency division multiplexing is an attractive technique for modern

More information

Image Restoration using Modified Lucy Richardson Algorithm in the Presence of Gaussian and Motion Blur

Image Restoration using Modified Lucy Richardson Algorithm in the Presence of Gaussian and Motion Blur Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 8 (2013), pp. 1063-1070 Research India Publications http://www.ripublication.com/aeee.htm Image Restoration using Modified

More information

Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels

Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels Nghia H. Ngo, S. Adrian Barbulescu and Steven S. Pietrobon Abstract This paper investigates the effects of the distribution of a

More information

SparseCast: Hybrid Digital-Analog Wireless Image Transmission Exploiting Frequency Domain Sparsity

SparseCast: Hybrid Digital-Analog Wireless Image Transmission Exploiting Frequency Domain Sparsity SparseCast: Hybrid Digital-Analog Wireless Image Transmission Exploiting Frequency Domain Sparsity Tze-Yang Tung and Deniz Gündüz 1 arxiv:1811.179v1 [eess.iv] 25 Nov 218 Abstract A hybrid digital-analog

More information

Implementation of Block based Mean and Median Filter for Removal of Salt and Pepper Noise

Implementation of Block based Mean and Median Filter for Removal of Salt and Pepper Noise International Journal of Computer Science Trends and Technology (IJCST) Volume 4 Issue 4, Jul - Aug 2016 RESEARCH ARTICLE OPEN ACCESS Implementation of Block based Mean and Median Filter for Removal of

More information

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering CoE4TN4 Image Processing Chapter 3: Intensity Transformation and Spatial Filtering Image Enhancement Enhancement techniques: to process an image so that the result is more suitable than the original image

More information

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Sara Viqar 1, Shoab Ahmed 2, Zaka ul Mustafa 3 and Waleed Ejaz 4 1, 2, 3 National University

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Objective Evaluation of Edge Blur and Ringing Artefacts: Application to JPEG and JPEG 2000 Image Codecs

Objective Evaluation of Edge Blur and Ringing Artefacts: Application to JPEG and JPEG 2000 Image Codecs Objective Evaluation of Edge Blur and Artefacts: Application to JPEG and JPEG 2 Image Codecs G. A. D. Punchihewa, D. G. Bailey, and R. M. Hodgson Institute of Information Sciences and Technology, Massey

More information

Region Adaptive Unsharp Masking Based Lanczos-3 Interpolation for video Intra Frame Up-sampling

Region Adaptive Unsharp Masking Based Lanczos-3 Interpolation for video Intra Frame Up-sampling Region Adaptive Unsharp Masking Based Lanczos-3 Interpolation for video Intra Frame Up-sampling Aditya Acharya Dept. of Electronics and Communication Engg. National Institute of Technology Rourkela-769008,

More information

Class-count Reduction Techniques for Content Adaptive Filtering

Class-count Reduction Techniques for Content Adaptive Filtering Class-count Reduction Techniques for Content Adaptive Filtering Hao Hu Eindhoven University of Technology Eindhoven, the Netherlands Email: h.hu@tue.nl Gerard de Haan Philips Research Europe Eindhoven,

More information

Audio Signal Compression using DCT and LPC Techniques

Audio Signal Compression using DCT and LPC Techniques Audio Signal Compression using DCT and LPC Techniques P. Sandhya Rani#1, D.Nanaji#2, V.Ramesh#3,K.V.S. Kiran#4 #Student, Department of ECE, Lendi Institute Of Engineering And Technology, Vizianagaram,

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Testing The Effective Performance Of Ofdm On Digital Video Broadcasting

Testing The Effective Performance Of Ofdm On Digital Video Broadcasting The 1 st Regional Conference of Eng. Sci. NUCEJ Spatial ISSUE vol.11,no.2, 2008 pp 295-302 Testing The Effective Performance Of Ofdm On Digital Video Broadcasting Ali Mohammed Hassan Al-Bermani College

More information

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS Puneetha R 1, Dr.S.Akhila 2 1 M. Tech in Digital Communication B M S College Of Engineering Karnataka, India 2 Professor Department of

More information

Reduction of Impulsive Noise in Continuous- Tone Images by Regression Analysis

Reduction of Impulsive Noise in Continuous- Tone Images by Regression Analysis 1 Reduction of Impulsive Noise in Continuous- Tone Images by Regression Analysis Md. Tanvir Al Amin Abstract Obtaining a clear and lucid image by reducing the noise to a minimal level is one of the most

More information

DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam

DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam In the following set of questions, there are, possibly, multiple correct answers (1, 2, 3 or 4). Mark the answers you consider correct.

More information

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES Michelle Foltran Miranda Eduardo Parente Ribeiro mifoltran@hotmail.com edu@eletrica.ufpr.br Departament of Electrical Engineering,

More information

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution 2.1. General Purpose There are many popular general purpose lossless compression techniques, that can be applied to any type of data. 2.1.1. Run Length Encoding Run Length Encoding is a compression technique

More information

UNIT I Source Coding Systems

UNIT I Source Coding Systems SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: DC (16EC421) Year & Sem: III-B. Tech & II-Sem Course & Branch: B. Tech

More information

Histogram Equalization: A Strong Technique for Image Enhancement

Histogram Equalization: A Strong Technique for Image Enhancement , pp.345-352 http://dx.doi.org/10.14257/ijsip.2015.8.8.35 Histogram Equalization: A Strong Technique for Image Enhancement Ravindra Pal Singh and Manish Dixit Dept. of Comp. Science/IT MITS Gwalior, 474005

More information

A DUAL TREE COMPLEX WAVELET TRANSFORM CONSTRUCTION AND ITS APPLICATION TO IMAGE DENOISING

A DUAL TREE COMPLEX WAVELET TRANSFORM CONSTRUCTION AND ITS APPLICATION TO IMAGE DENOISING A DUAL TREE COMPLEX WAVELET TRANSFORM CONSTRUCTION AND ITS APPLICATION TO IMAGE DENOISING Sathesh Assistant professor / ECE / School of Electrical Science Karunya University, Coimbatore, 641114, India

More information

DEVELOPMENT OF LOSSY COMMPRESSION TECHNIQUE FOR IMAGE

DEVELOPMENT OF LOSSY COMMPRESSION TECHNIQUE FOR IMAGE DEVELOPMENT OF LOSSY COMMPRESSION TECHNIQUE FOR IMAGE Asst.Prof.Deepti Mahadeshwar,*Prof. V.M.Misra Department of Instrumentation Engineering, Vidyavardhini s College of Engg. And Tech., Vasai Road, *Prof

More information

Different Approaches of Spectral Subtraction Method for Speech Enhancement

Different Approaches of Spectral Subtraction Method for Speech Enhancement ISSN 2249 5460 Available online at www.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 95 (2013 1056 1062 Different Approaches

More information

Image Transmission over OFDM System with Minimum Peak to Average Power Ratio (PAPR)

Image Transmission over OFDM System with Minimum Peak to Average Power Ratio (PAPR) Image Transmission over OFDM System with Minimum Peak to Average Power Ratio (PAPR) Ashok M.Misal 1, Prof. S.D.Bhosale 2, Pallavi R.Suryawanshi 3 PG Student, Department of E & TC Engg, S.T.B.COE, Tuljapur,

More information

HIGH ORDER MODULATION SHAPED TO WORK WITH RADIO IMPERFECTIONS

HIGH ORDER MODULATION SHAPED TO WORK WITH RADIO IMPERFECTIONS HIGH ORDER MODULATION SHAPED TO WORK WITH RADIO IMPERFECTIONS Karl Martin Gjertsen 1 Nera Networks AS, P.O. Box 79 N-52 Bergen, Norway ABSTRACT A novel layout of constellations has been conceived, promising

More information

An Efficient Educational Approach for the Study of 16 QAM and Block Codes

An Efficient Educational Approach for the Study of 16 QAM and Block Codes An Efficient Educational Approach for the Study of 16 QAM and Block Codes Luciano L. Mendes and Geraldo G. R. Gomes Abstract: The main purpose of this paper is to show how some programs developed in the

More information

Department of Telecommunications. The Norwegian Institute of Technology. N-7034 Trondheim, Norway. and the same power.

Department of Telecommunications. The Norwegian Institute of Technology. N-7034 Trondheim, Norway. and the same power. OFDM for Digital TV Terrestrial Broadcasting Anders Vahlin and Nils Holte Department of Telecommunications The Norwegian Institute of Technology N-734 Trondheim, Norway ABSTRACT This paper treats the problem

More information

Frequency-Domain Channel Estimation for Single- Carrier Transmission in Fast Fading Channels

Frequency-Domain Channel Estimation for Single- Carrier Transmission in Fast Fading Channels Wireless Signal Processing & Networking Workshop Advanced Wireless Technologies II @Tohoku University 18 February, 2013 Frequency-Domain Channel Estimation for Single- Carrier Transmission in Fast Fading

More information

Robust Voice Activity Detection Based on Discrete Wavelet. Transform

Robust Voice Activity Detection Based on Discrete Wavelet. Transform Robust Voice Activity Detection Based on Discrete Wavelet Transform Kun-Ching Wang Department of Information Technology & Communication Shin Chien University kunching@mail.kh.usc.edu.tw Abstract This paper

More information

Image Denoising Using Statistical and Non Statistical Method

Image Denoising Using Statistical and Non Statistical Method Image Denoising Using Statistical and Non Statistical Method Ms. Shefali A. Uplenchwar 1, Mrs. P. J. Suryawanshi 2, Ms. S. G. Mungale 3 1MTech, Dept. of Electronics Engineering, PCE, Maharashtra, India

More information

Efficient Image Compression Technique using JPEG2000 with Adaptive Threshold

Efficient Image Compression Technique using JPEG2000 with Adaptive Threshold Efficient Image Compression Technique using JPEG2000 with Adaptive Threshold Md. Masudur Rahman Mawlana Bhashani Science and Technology University Santosh, Tangail-1902 (Bangladesh) Mohammad Motiur Rahman

More information

Chapter 4 SPEECH ENHANCEMENT

Chapter 4 SPEECH ENHANCEMENT 44 Chapter 4 SPEECH ENHANCEMENT 4.1 INTRODUCTION: Enhancement is defined as improvement in the value or Quality of something. Speech enhancement is defined as the improvement in intelligibility and/or

More information

Transcoding of Narrowband to Wideband Speech

Transcoding of Narrowband to Wideband Speech University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Transcoding of Narrowband to Wideband Speech Christian H. Ritz University

More information

Auditory modelling for speech processing in the perceptual domain

Auditory modelling for speech processing in the perceptual domain ANZIAM J. 45 (E) ppc964 C980, 2004 C964 Auditory modelling for speech processing in the perceptual domain L. Lin E. Ambikairajah W. H. Holmes (Received 8 August 2003; revised 28 January 2004) Abstract

More information

COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES

COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES Encoding Coding is the process of embedding clocks into a given data stream and producing a signal that can be transmitted over a selected medium.

More information

Artifacts Reduced Interpolation Method for Single-Sensor Imaging System

Artifacts Reduced Interpolation Method for Single-Sensor Imaging System 2016 International Conference on Computer Engineering and Information Systems (CEIS-16) Artifacts Reduced Interpolation Method for Single-Sensor Imaging System Long-Fei Wang College of Telecommunications

More information

TELECOMMUNICATION SYSTEMS

TELECOMMUNICATION SYSTEMS TELECOMMUNICATION SYSTEMS By Syed Bakhtawar Shah Abid Lecturer in Computer Science 1 MULTIPLEXING An efficient system maximizes the utilization of all resources. Bandwidth is one of the most precious resources

More information

Adaptive time scale modification of speech for graceful degrading voice quality in congested networks

Adaptive time scale modification of speech for graceful degrading voice quality in congested networks Adaptive time scale modification of speech for graceful degrading voice quality in congested networks Prof. H. Gokhan ILK Ankara University, Faculty of Engineering, Electrical&Electronics Eng. Dept 1 Contact

More information

Solving Peak Power Problems in Orthogonal Frequency Division Multiplexing

Solving Peak Power Problems in Orthogonal Frequency Division Multiplexing Solving Peak Power Problems in Orthogonal Frequency Division Multiplexing Ashraf A. Eltholth *, Adel R. Mekhail *, A. Elshirbini *, M. I. Dessouki and A. I. Abdelfattah * National Telecommunication Institute,

More information

A Review Paper on Image Processing based Algorithms for De-noising and Enhancement of Underwater Images

A Review Paper on Image Processing based Algorithms for De-noising and Enhancement of Underwater Images IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X A Review Paper on Image Processing based Algorithms for De-noising and Enhancement

More information

A Novel Curvelet Based Image Denoising Technique For QR Codes

A Novel Curvelet Based Image Denoising Technique For QR Codes A Novel Curvelet Based Image Denoising Technique For QR Codes 1 KAUSER ANJUM 2 DR CHANNAPPA BHYARI 1 Research Scholar, Shri Jagdish Prasad Jhabarmal Tibrewal University,JhunJhunu,Rajasthan India Assistant

More information

Image Denoising Using Complex Framelets

Image Denoising Using Complex Framelets Image Denoising Using Complex Framelets 1 N. Gayathri, 2 A. Hazarathaiah. 1 PG Student, Dept. of ECE, S V Engineering College for Women, AP, India. 2 Professor & Head, Dept. of ECE, S V Engineering College

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Lossless Huffman coding image compression implementation in spatial domain by using advanced enhancement techniques

Lossless Huffman coding image compression implementation in spatial domain by using advanced enhancement techniques Lossless Huffman coding image compression implementation in spatial domain by using advanced enhancement techniques Ali Tariq Bhatti 1, Dr. Jung H. Kim 2 1,2 Department of Electrical & Computer engineering

More information

On Iterative Multistage Decoding of Multilevel Codes for Frequency Selective Channels

On Iterative Multistage Decoding of Multilevel Codes for Frequency Selective Channels On terative Multistage Decoding of Multilevel Codes for Frequency Selective Channels B.Baumgartner, H-Griesser, M.Bossert Department of nformation Technology, University of Ulm, Albert-Einstein-Allee 43,

More information

Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting

Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting IEEE TRANSACTIONS ON BROADCASTING, VOL. 46, NO. 1, MARCH 2000 49 Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting Sae-Young Chung and Hui-Ling Lou Abstract Bandwidth efficient

More information

Comparative Analysis of WDR-ROI and ASWDR-ROI Image Compression Algorithm for a Grayscale Image

Comparative Analysis of WDR-ROI and ASWDR-ROI Image Compression Algorithm for a Grayscale Image Comparative Analysis of WDR- and ASWDR- Image Compression Algorithm for a Grayscale Image Priyanka Singh #1, Dr. Priti Singh #2, 1 Research Scholar, ECE Department, Amity University, Gurgaon, Haryana,

More information

Other Modulation Techniques - CAP, QAM, DMT

Other Modulation Techniques - CAP, QAM, DMT Other Modulation Techniques - CAP, QAM, DMT Prof. David Johns (johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns) slide 1 of 47 Complex Signals Concept useful for describing a pair of real signals Let

More information

A Novel Approach for MRI Image De-noising and Resolution Enhancement

A Novel Approach for MRI Image De-noising and Resolution Enhancement A Novel Approach for MRI Image De-noising and Resolution Enhancement 1 Pravin P. Shetti, 2 Prof. A. P. Patil 1 PG Student, 2 Assistant Professor Department of Electronics Engineering, Dr. J. J. Magdum

More information

Iterative Joint Source/Channel Decoding for JPEG2000

Iterative Joint Source/Channel Decoding for JPEG2000 Iterative Joint Source/Channel Decoding for JPEG Lingling Pu, Zhenyu Wu, Ali Bilgin, Michael W. Marcellin, and Bane Vasic Dept. of Electrical and Computer Engineering The University of Arizona, Tucson,

More information

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS International Journal on Intelligent Electronic System, Vol. 8 No.. July 0 6 MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS Abstract Nisharani S N, Rajadurai C &, Department of ECE, Fatima

More information

MIXED NOISE REDUCTION

MIXED NOISE REDUCTION MIXED NOISE REDUCTION Marilena Stanculescu, Emil Cazacu Politehnica University of Bucharest, Faculty of Electrical Engineering Splaiul Independentei 313, Bucharest, Romania marilenadavid@hotmail.com, cazacu@elth.pub.ro

More information

Compression and Image Formats

Compression and Image Formats Compression Compression and Image Formats Reduce amount of data used to represent an image/video Bit rate and quality requirements Necessary to facilitate transmission and storage Required quality is application

More information

Effect of Buffer Placement on Performance When Communicating Over a Rate-Variable Channel

Effect of Buffer Placement on Performance When Communicating Over a Rate-Variable Channel 29 Fourth International Conference on Systems and Networks Communications Effect of Buffer Placement on Performance When Communicating Over a Rate-Variable Channel Ajmal Muhammad, Peter Johansson, Robert

More information

Enhanced Waveform Interpolative Coding at 4 kbps

Enhanced Waveform Interpolative Coding at 4 kbps Enhanced Waveform Interpolative Coding at 4 kbps Oded Gottesman, and Allen Gersho Signal Compression Lab. University of California, Santa Barbara E-mail: [oded, gersho]@scl.ece.ucsb.edu Signal Compression

More information

Analysis of Secure Text Embedding using Steganography

Analysis of Secure Text Embedding using Steganography Analysis of Secure Text Embedding using Steganography Rupinder Kaur Department of Computer Science and Engineering BBSBEC, Fatehgarh Sahib, Punjab, India Deepak Aggarwal Department of Computer Science

More information

Performance Optimization in Wireless Channel Using Adaptive Fractional Space CMA

Performance Optimization in Wireless Channel Using Adaptive Fractional Space CMA Communication Technology, Vol 3, Issue 9, September - ISSN (Online) 78-58 ISSN (Print) 3-556 Performance Optimization in Wireless Channel Using Adaptive Fractional Space CMA Pradyumna Ku. Mohapatra, Prabhat

More information

Abstract. Keywords - Cognitive Radio, Bit Error Rate, Rician Fading, Reed Solomon encoding, Convolution encoding.

Abstract. Keywords - Cognitive Radio, Bit Error Rate, Rician Fading, Reed Solomon encoding, Convolution encoding. Analysing Cognitive Radio Physical Layer on BER Performance over Rician Fading Amandeep Kaur Virk, Ajay K Sharma Computer Science and Engineering Department, Dr. B.R Ambedkar National Institute of Technology,

More information

Comparing CSI and PCA in Amalgamation with JPEG for Spectral Image Compression

Comparing CSI and PCA in Amalgamation with JPEG for Spectral Image Compression Comparing CSI and PCA in Amalgamation with JPEG for Spectral Image Compression Muhammad SAFDAR, 1 Ming Ronnier LUO, 1,2 Xiaoyu LIU 1, 3 1 State Key Laboratory of Modern Optical Instrumentation, Zhejiang

More information

CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM

CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM Suneetha Kokkirigadda 1 & Asst.Prof.K.Vasu Babu 2 1.ECE, Vasireddy Venkatadri Institute of Technology,Namburu,A.P,India 2.ECE, Vasireddy Venkatadri Institute

More information

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team Advanced channel coding : a good basis Alexandre Giulietti, on behalf of the T@MPO team Errors in transmission are fowardly corrected using channel coding e.g. MPEG4 e.g. Turbo coding e.g. QAM source coding

More information

Acoustic Echo Cancellation using LMS Algorithm

Acoustic Echo Cancellation using LMS Algorithm Acoustic Echo Cancellation using LMS Algorithm Nitika Gulbadhar M.Tech Student, Deptt. of Electronics Technology, GNDU, Amritsar Shalini Bahel Professor, Deptt. of Electronics Technology,GNDU,Amritsar

More information

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 44 CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 3.1 INTRODUCTION A unique feature of the OFDM communication scheme is that, due to the IFFT at the transmitter and the FFT

More information